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Abstract
The clinical efficacy of conditionally replicative oncolytic adenoviruses (CRAd) is still limited by the inefficient infection of the 
tumor mass. Since tumor growth is essentially the result of a continuous cross-talk between malignant and tumor- 
associated stromal cells, targeting both cell compartments may profoundly influence viral efficacy. Therefore, we developed 
SPARC promoter-based CRAds since the SPARC gene is expressed both in malignant cells and in tumor-associated stromal 
cells. These CRAds, expressing or not the Herpes Simplex thymidine kinase gene (Ad-F512 and Ad(l)-F512-TK, respectively) 
exerted a lytic effect on a panel of human melanoma cells expressing SPARC; but they were completely attenuated in 
normal cells of different origins, including fresh melanocytes, regardless of whether cells expressed or not SPARC. 
Interestingly, both CRAds displayed cytotoxic activity on SPARC positive-transformed human microendothelial HMEC-1 cells 
and WI-38 fetal fibroblasts. Both CRAds were therapeutically effective on SPARC positive-human melanoma tumors growing 
in nude mice but exhibited restricted efficacy in the presence of co-administered HMEC-1 or WI-38 cells. Conversely, co
administration of HMEC-1 cells enhanced the oncolytic efficacy of Ad(l)-F512-TK on SPARC-negative MIA PaCa-2 pancreatic 
cancer cells in vivo. Moreover, conditioned media produced by stromal cells pre-infected with the CRAds enhanced the in 
vitro viral oncolytic activity on pancreatic cancer cells, but not on melanoma cells. The whole data indicate that stromal cells 
might play an important role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses.
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Introduction
The concept that the stromal microenvironment is a crucial 

regulator of tumor development was originally proposed by Paget 
many years ago in his “seed and soil:' hypothesis [1], Essentially, 
tumors are heterogeneous organs that in addition to the malignant 
cells contain cancer-associated fibroblasts, endothelial and inflam
matory cells [1,2]. These tumor-companion cells are intermingled 
in the tumor-associated stroma that comprises most of the tumor 
mass in many carcinomas and provide the soil in which malignant 
cells will grow, invade and metastasize [3-5]. Malignant and 
stromal cells communicate one to each other through cell-cell and 
cell-matrix interactions and secretion of soluble factors, providing 
an intratumor connection that is essential for tumors growing 
beyond a certain size [5]. Despite this evidence, only recently 
research in cancer turn to the tumor environment aiming to 
establish how malignant and stromal cells communicate and 
“coconspirate’ in tumor development [6],

Conditionally replicative adenoviruses (CRAd) are engineered 
to selectively replicate within and kill tumor cells through the use 
of “cancer cell”-selective promoter elements that transcriptionally 
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restrict expression of genes essential for CRAd replication [7]. 
Different CRAds had recently reached the clinic although they did 
not realize the expectations regarding their potential therapeutic 
effectiveness [8], Different strategies were applied to improve 
CRAds efficacy including viral retargeting through the exchange 
of the capsid fiber or addition of specific moieties such as the RGD 
that will retarget vectors to enter the cell through cell surface 
integrins [9,10],

Despite those efforts, clinical CRAds efficacy is still limited and 
the reasons for that remain elusive, although viral spread or 
“lateralization” appears as one of the most important aspects. 
Stromal cells -especially fibroblasts- can impose limitations for 
lateral spread because of their physical presence and their capacity 
to produce extracellular matrix that might affect CRAd activity 
and interaction with malignant cells. In this regard, CRAd limited 
efficacy might arise in part from the fact that they are generally 
designed to target the malignant cell compartment alone while no 
attention was paid on neighbor stromal cells. Only very recently 
efforts were aimed to combine CRAd activity with enzymatic 
degradation of the stroma [11] with the potential risk of releasing 
tumor cells to the circulation. However, no evidence was presented 
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yet on the role stromal cells might play in defining CRAd activity. 
Since stromal cells “cross talk” with malignant cells can define 
tumor outcome it can be hypothesized that, unless simultaneously 
targeted, they will severely limit CRAd replication and spreading.

SPARC (Secreted Protein Acidic and Rich in Cysteines) has 
been associated with a family of non-structurally related proteins 
like Tenascin and Thrombospondin that regulate cell adhesion by 
inducing focal cell contacts disassembly [12]. SPARC, also named 
Osteonectin, is a secreted glycoprotein whose expression in healthy 
tissues is largely associated with tissue remodeling, morphogenesis, 
and wound healing [13]. In adults, its expression is greatly 
diminished and restricted to areas with certain levels of cellular 
turnover such as gut epithelia and central lens epithelia, Leydig 
cells and Sertoli cells [13-15]. SPARC is produced by different cell 
types including malignant cells and tumor associated stromal cells 
such as fibroblast and endothelial cells [16], It was found to bind to 
different components of the extracellular matrix such as collagens, 
and to interact with specific growth factors or with their signaling 
pathways such as VEGF, PDGF and bFGF, suggesting that it 
might play a role in vasculogenesis [17]. Among the many 
biological processes modulated by SPARC, its anti-adhesive 
[18,19], pro-migratory [20], and anti-apoptotic [21] properties 
on certain cell types in addition to its capacity to regulate matrix 
metalloproteinase (MMP) expression and activity [17,22,23] have 
been associated with increased tumor agresiveness. Indeed, 
increased SPARC expression has been described in multiple 
cancers, including colon [24], esophagus [25], pancreas [26], 
breast [27], lung [28], brain [29], bladder [30], renal [31], and 
melanoma [18,32]. SPARC overexpression by the malignant cells 
themselves or by neighbor fibroblasts and endothelial cells has 
been associated with poor prognosis in different human cancer 
types [16,33,34], Primary and metastatic melanoma samples 
expressed high levels of SPARC in malignant cells and in 
intermingled fibroblasts and endothelial cells, whereas dysplastic 
nevi, benign nevi and normal melanocytes exhibited low to none 
SPARC expression [32]. Moreover, SPARC expression by 
peritumoral fibroblasts portends a poorer prognosis for patients 
with pancreatic cancer [33].

Reports characterizing the 5' region of the SPARC gene, 
including the non-translated exon 1, revealed a significant 
homology between the murine, bovine and human gene, including 
the lack of canonical TATA or CIAAT box sequences and the 
presence of a purine-rich stretch composed of two boxes, named 
GGA-box 1 and 2 separated by a 10 bp pyrimidine-rich spacer 
element [35]. The GGA1 box provides maximal promoter 
activity, and deletion of the spacer element appears to increase 
the activity induced by the GGA boxes [35]. Interestingly, the 
region comprising approximately 1.4 Kb that includes both GGA 
boxes was suggested to be essential for cell-type specific regulation 
of the bovine promoter but not of the human promoter [36], This 
difference might arise from a GCI-box with multiple Spl binding 
sites located upstream of the GGA-boxes in the bovine promoter 
which is not conserved in the human promoter [36], More recent 
data observed with the human promoter demonstrated the 
presence of an non-canonical API-binding site between 
— 120 bp and —70 bp that can bind a c-Jun/Fral heterodimer 
in vitro [3 7]. This c-Jun responsive element is an SP-1 binding site 
and appears to be sufficient to induce maximal promoter 
activation [37]. We have recently shown that a 1.3 Kb SPARC 
promoter fragment was effective in driving the expression of the 
Herpes Simplex virus thymidine kinase gene (TK) both in 
melanoma and endothelial cells leading to the elimination of 
melanoma tumors in vivo in nude mice [38], These data led us to 
hypothesize that SPARC promoter could be a good candidate for 

generating a CRAd to target the malignant and stromal cell 
components of the tumor mass that will be strongly attenuated in 
normal, non-cancer associated cells.

Here, we show that the oncolytic efficacy of these novel CIRAds 
depends on the specific interactions that the malignant cells 
establish with neighbor stromal cells. This interaction might 
restrict or augment CIRAds efficacy depending on the tumor type. 
We also propose that the design of CIRAds should consider stromal 
cells as a potential target for achieving improved efficacy.

Results

Selection of a SPARC promoter fragment to drive E1A 
gene expression

In order to target both the tumor and stroma compartment we 
designed a CRAd based on the SPARC promoter since SPARC 
was shown to be expressed both in malignant and tumor- 
associated stromal cells [16], We first assessed the activity of 
different promoter fragments that were generated maintaining the 
integrity of specific motives such as two GGA boxes that confer 
maximal activity, a TATA-like box, two transcription initiation 
sites [35] and a putative downstream promoter element (DPE 
[39]). Promoter activity was assessed by cloning each fragment 
into the promoterless firefly luciferase reporter plasmid pGL3- 
Basic followed by cell transfection and luminescence quantifica
tion. By comparing luciferase levels in A375N melanoma cells that 
overexpress SPARC compared to breast cancer T-47D and 
cervical cancer HeLa cell lines that exhibited very low levels of 
SPARC (see Table 1 for relative SPARC mRNA levels in different 
cell lines), we selected the —513/+35 fragment, and named it 
F512P1’ (Figure 1A). F512Pr showed 3.3-fold higher activity than

Table 1. Relative expression of SPARC mRNA levels in 
different malignant and non-malignant cell lines.

Cell Line Source Relative Expression3 nb

A375N Melanoma 100.00 3

MEL888 Melanoma 15.23 ±0.61 3

MEL-J-N Melanoma 23.65±2.97 3

SB2 Melanoma 31.20±8.11 3

IIB-MEL-LES Melanoma 7.36±0.58 3

BxPC3 Pancreas cancer 0.00 ±0.00 2

MIA PaCa-2 Pancreas cancer 0.00 ±0.00 3

T-47D Breast cancer 0.1 5 ±0.04 3

MCF-7 Breast cancer 0.00 ±0.00 2

MDA-231 Breast cancer 0.00 ±0.00 2

NHM Normal melanocytes 8.00 ±4.42 2

CCD841 Normal colon 4.03 ±1.12 3

MCF12-A Normal breast 0.00 ±0.00 2

HMEC-1 Human endothelium 20.23±1.21 4

HaCaT Kératinocyte 0.05 ±0.05 2

CCD1140 Fibroblast 41.70 ±6.09 4

Malme-3 Fibroblast 78.00±4.60 2

WI-38 Fibroblast 19.47±1.67 3

aThe data was obtained by real time - PCR and is expressed as the relative 
expression with respect to the levels observed in the A375N cell line. The 
numbers correspond to the mean±standard deviation. 

bNumber of replicates.
doi:10.1 371/journal.pone.0005119.t001
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Figure 1. Luciferase activity driven by different variants of SPARC promoter. (A) Left: the different variants of SPARC promoter. Right: 
Luciferase activity of the different variants of SPARC promoter different cells lines. Data are shown relative to SV40 luciferase activity. Error bars 
represent mean±SD. (B) Schematic structure of Ad-F512 and Ad(l)-F512-TK genomes.
doi: 10.1371 /journal, pone.0005119.g001

the SV40 promoter in A375N cells, while in HeLa and T-47D has 
similar or less activity than the SV40 promoter (Figure 1A). 
F512P1' exhibited the highest luciferase activity (1.7 to 4.9 - fold 
induction over SV40 promoter) in melanoma cell lines that do 
express high SPARC mRNA levels although no strict relationship 
was observed between SPARC mRNA levels and promoter 
activity (Figure S1A and Table 1). We were unable to efficiently 
transfect additional non-malignant stromal cells such as WI-38 
fibroblasts and HMECI-1 endothelial cells (data not shown).

CRAds cytopathic effect on malignant cells
Since stromal cells were hardly transfectable and the activity of 

the promoter might change in the context of a viral structure, we 
initially constructed a non-replicative adenoviral vector (Ad(I)- 
F512-luc) where luciferase activity was driven by the F512P1'. All 
the cell types tested, including fibroblasts and endothelial cells 
exhibited promoter activity; in some cases higher than those 
observed in malignant cells (Figure SIB). Based on this preliminary 
evidence we constructed two new CRAds based on F512P1'. Ad- 
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F512 contained F512P1' upstream of the E1A gene (Figure IB). 
Ad(I)-F512-TK contained an insulator element [40] that isolated 
F512P1-E1A from the enhancer elements located in the left ITR, 
and the TK suicide gene that was placed downstream of E1A 
following an IRES sequence (Figure IB).

The cytopathic effect (CPE) of the two CRAds was compared 
on a panel of tumor cells that expressed or not SPARC mRNA. 
Different human malignant cell lines were infected with different 
concentrations of the CRAds or adenovirus wild type (Ad-wt) that 
was used as a control for viral replication and lytic effect that was 
assessed by crystal violet staining followed by densitometer 
quantification. Initial experiments were performed in the absence 
of GCIV to test whether addition of the TK gene could be 
deleterious to CRAd activity. Ad-wt exhibited CPE on almost 
every cancer cell line at a low titer of 5xl04 (MOI of 1) to 
5x10° vp/ml (MOI of 100) regardless of SPARC expression levels 
(Figures 2A and S2A). On the contrary, both CRAds exhibited 
CPE mainly on SPARC positive-human melanoma cells at 
relatively moderate viral concentrations of 5x10° to
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Figure 2. CRAd lytic activity in vitro on human cancer cells. (A) Cell viability after infection with Ad-wt, Ad-F512, or Ad(l)-F512-TK. Human 
cancer cell lines were infected at different concentrations of the CRAds. (B) Viability of SB2 melanoma cells after infection with Ad-(I)F512-TK in the 
presence or not of GCV added at the indicated times. Remaining cells were fixed and stained with crystal violet at day 10.
doi: 10.1371 /journal, pone.0005119.g002

2.5 xlO7 vp/ml (Figures 2A and S2A). It was of note that high 
concentrations of the CRAds exerted a lytic effect on SPARCI- 
negative MIA PaCa-2 cells (Figure 2A and Table 1). By using E4 
production as readout of viral replication we confirmed that the 
CRAd replicated not only in SB2 melanoma cells but also in MIA 
PaCa-2 pancreatic cancer cells (Figure S3). The importance of 
CRAd replication in SPARCI-negative cells is described below. In 
general, Ad(I)-F512-TK exhibited increased CPE compared to 
Ad-F512 and addition of GCV, not before 48 hr after viral 
infection, enhanced its lytic activity indicating that the TK gene 
was active (Figures 2B and S2B).

Lack of CRAds cytopathic effect on normal cells
We next established the level of attenuation of Ad-F512 and 

Ad(I)-F512-TK lytic activity on normal cells. By day 10 following 
infection with 5xl07 vp/ml of Ad-F512 or Ad(I)-F512-TK, the 
viability of normal melanocytes was >95% compared to complete 
melanocytes elimination by Ad-wt (Figure 3A). Similarly, Ad-F512 
and Ad(I)-F512-TK exhibited no CPE on CICD841 normal 
colonic cells or normal MCT12A breast cells, whilst Ad-wt lysed 
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these cells at 5xl06vp/ml (Figures S4A and B). Moreover, 
HaClaT keratinocytes were sensitive to the lytic effect of Ad-wt 
while they were completely refractory to the lytic activity of 
F512Pr-based CRAds (Figure 3B and S4C). Finally, the SPARCI- 
positive CCD-1140 and Malme-3 normal adult skin fibroblasts 
were sensitive to the highest Ad-wt concentration but were 
completely resistant to Ad-F512 or Ad(I)-F512-TK probably due 
to the absence of E1B region in the present CRAd constructs [41] 
(Figure 3B and S4CI). These data demonstrate that normal cells are 
completely resistant to the F512Pr-based CRAds regardless of 
whether they expressed SPARC or not.

CRAds cytopathic effect on transformed endothelial cells 
and fetal fibroblasts

We next assessed CIRAd’s CPE on SPARCI-positive large T 
antigen-transformed microendothelial cells (HMECI-1) and WI-38- 
fetal lung fibroblasts that could be considered as resembling the 
potential characteristics of cancer-associated stromal cells. Both 
cell types were lysed by Ad(I)-F512-TK in the absence of GCV 
(Figures 30 and S4C) although WI-38 cells were at least one order
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Figure 3. Assesment of CRAd lytic activity in vitro on non-cancerous human cells. (A) Lysis of normal melanocytes by Ad5-wt but not by 
the CRAd. (B) HaCaT adult kerantinocytes and normal adult fibroblasts sensitivity to Ad-wt but not to the CRAds. (C) Lytic activity of the Adwt and 
the CRAd on WI-38 fibroblasts and HMEC-1 cells (Of note is that HMEC-1 cells detached from the well in the absence of virus). (D) Reduced HMEC-1 
viability after infection with Ad-(I)F512-TK (5x106 vp/ml) followed by GCV. Remaining viable cells were stained as described. ***P<0.001 (one-way 
ANOVA follow by a Tukey multiple comparison test).
doi: 10.1371 /journal.pone.0005119.g003

less sensitive (Figure 3C). The higher sensitivity of HMEC-1 cells 
was probably the result of their higher transducibility compared to 
WI-38 fibroblasts as assessed through the use of a non-replicative 
adenovirus expressing luciferase (Figure S5). In fact, both cell types 
were slightly permissive to viral replication compared to malignant 
cells (Figure S3). Addition of GCV improved Ad(I)-F512-TK lytic 
capacity on HMEC-1 cells, as assessed by the MTT assay 
(Figure 3D). Similar studies with WI-38 cells evidenced no 
improvement of CRAd activity (data not shown). Thus, SPARCI- 
positive HMEC-1 endothelial cells supported viral replication and 
were sensitive to their cytotoxic activity.

The presence of stromal cells restricted the therapeutic 
efficacy of the CRAds on established melanomas

Having established the lytic efficacy of the CRAds on the 
different cell types, we next decided to examine the ability of Ad- 
F512 to inhibit the growth of human melanoma xenografts s.c. 
established in nude mice following administration of malignant 
cells alone or mixed with stromal cells. Mice carrying established 
SB2 melanoma tumors were treated with three consecutive i.t. 
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administrations at days 0, 3 and 7 of IO10 vp/mouse of Ad-F512, 
Ad-P-gal or vehicle alone. None of the mice benefited from the 
administration of Ad-P-gal or vehicle as all the tumors reached 
2 cm3 when mice were considered not survivors (Figure 4A and 
Figure S6). Treatment with Ad-F512 resulted in a potent 
antitumor effect, as the tumor completely disappeared in 3 of 5 
mice and one mouse exhibited reduced tumor growth (Figure 4A). 
One mouse remained alive for almost one year (data not shown). 
Another mouse exhibited accelerated tumor growth, most 
probably due to incomplete transduction and/or viral dissemina
tion [42]. In two additional studies, 2/4 and 3/5 mice treated with 
Ad-F512 remained free of tumor at the end of the experiments at 
90 days (Figures 6SA and B). Cured mice exhibited complete 
tumor remission 2-3 weeks after the last CRAd administration 
(Figure 4B) that was accompanied by a massive macrophage 
infiltrate probably associated with clearance of cellular debries 
(data not shown). Tumor injection with Ad-P-gal showed staining 
preferentially at the tumor periphery with a gradual decrease 
towards the inner part of the tumor (Figure 4B). Thus, a CRAd 
driven by the SPARC promoter was therapeutically effective
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Figure 4. Ad-F512 effect on the in vivo growth of human melanoma xenografts. (A) Tumor growth in mice harboring SB2 melanomas 
treated with Ad-F512 or control virus. Right panel shows Kaplan-Meier survival curves. (B) Left panel includes photographs of an Ad-^-gal - treated 
mouse and a mouse treated with the CRAd. The arrow shows complete tumor regression, 14 days after Ad-F512 administration. (C) Tumor growth in 
mice harboring Mel/Fib tumors treated with Ad-F512 or control virus. Right panel shows Kaplan-Meier survival curves. (D) Left panel shows Mel/Fib 
tumors staining positive for p-galactosidase in the malignant nests but not in fibroblasts septa (arrow), and right panel shows adenoviral hexon- 
positive staining of Mel/Fib tumors. (E) Tumor growth in mice harboring Mel/Endo tumors treated with Ad-F512 or control virus. Right panel shows 
Kaplan-Meier survival curves. (F) Left panel includes nests of microendothelial cells with the typical cobblestone morphology; middle panel shows 
endothelial cells staining positive for Von Willebrand and right panel shows Mel/Endo tumors staining positive for p-galactosidase both in malignant 
cells and in endothelial cells lining intratumor vessels (arrow). In figures corresponding to the in vivo studies, each curve corresponds to a single 
animal.
doi: 10.1371/journal.pone.0005119.g004
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leading to the cure of more than 50% of mice harboring human 
melanomas composed of malignant cells alone.

To better understand the role of stromal cells we next studied 
whether Ad-F512 could be therapeutically effective on established 
tumors composed of melanoma and stromal cells. Mice were 
xenografted with a mix of 4.0xlO6 SB2 melanoma cells and 
2.0 xlO6 WI-38 fetal fibroblasts (Mel/Fib tumors, Figure 4C). 
Mel/Fib tumor’s architecture closely resembled human tumors 
with nests of malignant cells separated by septa of fibroblasts 
(Figure 4D) compared to the homogeneous appearance of tumors 
made of malignant cells alone (see Figure 4B, P-galactosidase). In 
the presence of WI-38 fibroblasts, Ad-F512 exerted a statistically 
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significant delay on Mel/Fib tumor growth but no cure was 
observed (Figure 4C). Interestingly, only malignant cells at the 
peripheral nests, but almost no WI-38 fibroblasts, were infected, as 
evidenced by positive staining for P-gal activity (Figure 4D, P- 
galactosidase). Malignant cells also showed positive hexon staining 
after Ad-F512 administration, indicating viral replication 
(Figure 4D, hexon staining).

We further examined the role of stromal cells by xenografting 
mice with a mix of 4.0xlO6 SB2 cells and 2xl06 HMEC-1 cells 
(Mel/Endo tumors, Figure 4E). Nests of HMEC-1 distributed all 
over the tumor mass exhibiting cobblestone morphology 
(Figure 4F, cobblestone morphology), and few of them that 
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surrounded blood vessels stained positive for factor VIII indicating 
endothelial differentiation (Figure 4F, Von will ebrand factor 
staining). Interestingly, both melanoma and endothelial cells 
surrounding blood vessels stained positive for virus infection 
following administration of Ad-P-gal (Figure 4F, P-galactosidase). 
Thus, despite the absence of a clear physical barrier for viral 
spreading in Mel/Endo tumors, the presence of endothelial cells 
impaired Ad-F512 activity as WI-38 did, and no cure was 
observed.

Given the reduced therapeutic efficacy of Ad-F512 in the 
presence of stromal cells, we sought to establish whether TK 
expression combined with GCIV might help to overcome tumor 
resistance due to the presence of stromal cells in the tumor mass. 
Thus, mice harboring Mel/Endo tumors were treated with Ad(I)- 
F512-TK followed by 2 weeks of GCV administration. GCV 
started to be administered 4 days after the last viral injection to 
facilitate maximal viral spreading and to avoid cell death induced 
by GCV before the virus started replicating. Under these 
conditions, 5 out of 6 mice showed tumor growth delay after 
treatment with Ad-(I)F512-TK and GCV including one tumor 
that ceased growing compared to none in control mice (Figure 5A). 
Similar experiments performed on established Mel/Fib tumors 
showed inhibition of growth with Ad-(I)F512-TK/GCIV in all 
mice compared to the control, and complete remission in 2 mice 
(Figure 5B). Thus, Ad-(I)F512-TK/GCIV demonstrated improved 
efficacy compared to Ad-F512 since few cures were observed after 
treatment, although as a whole, the presence of stromal cells 
hampered viral lytic efficacy.

The presence of stromal cells improved the therapeutic 
efficacy of the CRAd on established pancreatic cancer

Figure 2A showed that the CIRAds exerted a lytic effect on MIA 
PaCla-2 cells despite the absence of SPARC expression. Previous 
studies have shown that SPARC promoter is hypermethylated in 
pancreatic cancer cells [26]. That should not necessarily affect the 
activity of an extrinsic promoter carried by the CRAd. Indeed 
F512P1' was able to drive luciferase expression in the context of an 
adenoviral vector in MIA PaCla-2 cells, although at a lower level 
compared to A375N melanoma cells (Figure S7). Based on that, 

we assessed whether the present CRAd may be active on SPARCI- 
negative pancreatic cancer cells in vivo in the presence or not of co
administered stromal cells.

Treatment of established MIA PaCla-2 tumors made of 
malignant cells alone with Ad(I)-F512-TK+GCIV induced remis
sion of 2 out of 7 tumors while the other 5 grew as the controls 
although this difference was not statistically significant (Figure 6A). 
This suggests that SPARC promoter was partially active on 
pancreatic cancer despite the lack of SPARC expression. We next 
treated mice harboring tumors made of an initial mix of 9.0 xlO6 
MIA PaCla-2 cells and 2.0xl06 HMECI-1 cells (Pan/Endo 
tumors). We selected HMECI-1 cells over WI-38 fibroblasts based 
on their higher infectivity in vitro and in vivo and their capacity to 
inhibit the in vitro growth of a co-culture ofHMECI-1: MIA PaCla-2 
cells when HMECI-1 cells were pre-infected with Ad(I)-F512-TK 
in the presence of GCV (Figure S8).

Pan/Endo tumors showed loosely packed malignant cells 
surrounded by a dense extracellular matrix that was independent 
of the presence or not ofHMECI-1 cells (Figure 6B). Pancreatic 
tumors obtained without endothelial cells showed a similar 
morphology (data not shown). In order to confirm that HMECI- 
1 cells were present in the tumor mass at the time of CRAd 
infection we pre-infected them with a lentivirus expressing GFP. 
Microscopic observation of tumor slices confirmed the presence of 
EGFP-positive cells that in some cases formed typical cobblestone 
structures (Figure 6CI), and tend to form vessels that often stained 
positive for factor VIII (Figure 6D). Ad(I)-F512-TK administration 
followed by GCV induced complete tumor remission in all but one 
mice (5/6) strongly indicating that the presence of HMECI-1 
microendothelial cells in the pancreatic tumor mass favored the 
therapeutic efficacy of Ad-(I)-F512-TK/GCIV (Figure 6E).

Soluble factors produced by stromal cells greatly 
influence viral oncolytic efficacy

The striking differences in CRAd activity observed between 
melanoma and pancreatic cancer when microendothelial cells 
were co-administered with malignant cells and the evidence that 
microendothelial cells and fibroblasts hampered CRAd activity 
irrespective of tumor architecture, led us to hypothesize that

A SB2/HMEC-1 B SB2/WI-38

■i Vehicle*GCV (n-4)
— Adil) F512-TK+GCV (n-61

Days after adenovirus injection

■■ Vehicle+GCV (n=4l
■■ Add>-F512-TK«GCVInMi

Figure 5. Ad(l)-F512-TK+GCV effect on the in vivo growth of human melanoma xenografts including stromal cells. (A) Tumor growth 
and Kaplan-Meier survival curve of mice harboring Mel/Endo tumors, treated with Ad(l)-F512-TK or vehicle, followed by GCV. (B) Tumor growth and 
Kaplan-Meier survival curve of mice harboring Mel/Fibro tumors treated with Ad(l)-F512-TK or vehicle followed by GCV. Each curve represents a single 
animal.
doi: 10.1371 /journal, pone.0005119.g005
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A
V«hdt<GCV (n-4)

Days after adenovirus injection

Figure 6. Ad(l)-F512-TK+GCV effect on the in vivo growth of human pancreatic cancer xenografts. (A) Tumor growth and Kaplan-Meier 
survival curve of mice harboring MIA PaCa-2 tumors, treated with Ad(l)-F512-TK or vehicle, followed by GCV. (B) Hematoxylin-eosin staining of Pan/ 
Endo tumors; the area limited by the square is enlarged in D. (C) Typical nests of microendothelial cells (EGFP-HMEC-1) with cobblestone morphology 
in a Pan/Endo tumor. (D) Large and small vessels (arrow) staining positive for Von Willebrand factor. (E) Tumor growth and Kaplan-Meier survival 
curve of mice harboring Pan/Endo tumors, treated with Ad(l)-F512-TK or vehicle, followed by GCV. Each curve represents a single mouse. Error bars 
represent mean±SD.
doi: 10.1371 /journal, pone.0005119.g006

D

soluble factors might have been playing a role. WI-38- and 
HMEC-1-conditioned media induced a slight inhibition of F512Pr 
activity in SB2 melanoma cells (Figure 7A). In clear contrast, both 
WI-38 and HMEC-1 conditioned media strongly enhanced 
F512P1' activity in pancreatic MIA PaCa-2 cancer cells 
(Figure 7A). In addition, WI-38-conditioned media enhanced 
viral lytic activity on SB2 cells and other melanoma cells as well 
(Figure 7B and S9A). Moreover, both conditioned media 
enhanced at a different extent CRAd activity on MIA PaCa-2 
cells (Figures 7B and S9A).

Surprisingly, preinfection of stromal cells with the CRAd 
completely obliterated the enhancement in CRAd lytic activity 
induced by the conditioned media on SB2 melanoma cells 
(Figure 70). But in clear contrast, conditioned media obtained 
from pre-infected HMEC-1 and WI-38 cells dramatically 
enhanced CRAd lytic activity on MIA PaCa-2 cells (Figure 70). 
This effect was observed even at 1/5000 dilution indicating its 
potency (Figure S9B). Thus, soluble factors produced by stromal 
cells can play a dramatic and differential role in defining the 
therapeutic efficacy of a CRAd on specific tumor types.

Soluble factors produced by stromal cells enhance 
pancreatic cancer cells exit from quiescence

Previous evidence demonstrated that oncolytic viruses increased 
the amount of cells in S-phase [43] and that E1B mutant viruses, 
such as the present CIRAds, exhibited better cytopathic effect on 

.Gj).. PLoS ONE | www.plosone.org

cells in S phase [44], To dissect CIRAd’s effects, we first assessed 
whether arrested malignant cells infected with the CRAd showed 
an accelerated exit from quiescence compared to non-infected 
cells. Indeed, infected MIA PaCa-2 cells exhibited a higher cell 
number in S-phase at 20 hr compared to non-infected cells 
(Figure 8A). Surprisingly, SB2 melanoma cells exhibited a retarded 
exit from G0/G1 compared to MIA PaCa-2 cells, regardless of 
whether SB2 cells were infected or not with the CRAd (Figure 8A).

Next, we assessed whether stromal cells-conditioned media 
might also accelerate MIA PaCa-2 cells exit from quiescence. 
Twenty four hours after MIA PaCa-2 cells release from G0/G1, 
we observed a clear increase in the amount of cells in S-phase 
when they were exposed to conditioned media obtained from 
HMEC-1 cells pre-infected with the CRAd (Figure 8B), compared 
to MIA PaCa-2-own conditioned media obtained from cells 
infected also with the CRAd (Figure 8B) or the control media 
(Figure 8B).

Discussion
This work provides the first evidence on the key role that 

stromal cells play in the outcome of the oncolytic efficacy of 
conditionally replicative adenoviruses. To our surprise the 
presence of stromal cells was detrimental for CRAd efficacy on 
melanoma tumors but favored CRAd oncolytic activity on 
pancreatic tumors. Soluble factors secreted by stromal cells were
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A B

MIA PaCa-2 SB2

Figure 7. Effect of conditioned media produced by stromal cells on CRAd activity. (A) Transcriptional activity of F512Pr in SB2 and MIA 
PaCa-2 cells following cell infection with Ad(l)-F512-luc in the presence of HMEC-1 (column E), WI-38 (column F)- or their own conditioned medium 
(column C). (B) Cell viability after infection of SB2 and MIA PaCa-2 cells with Ad(l)-F512-TK in the presence of the different conditioned media. (C). Cell 
viability after infection of SB2 and MIA PaCa-2 cells with Ad(l)-F512-TK in the presence of the different conditioned media obtained from previously 
infected cells. *P<0.05, ***P<0.001 (one-way ANOVA follow by a Tukey multiple comparison test).
doi: 10.1371 /journal.pone.0005119.g007
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responsible for at least two potential mechanisms that might 
explain this differential efficacy: the levels of viral lytic activity and 
the timing for cell exit from quiescence. Thus, either because they 
hampered or enhanced CRAd activity, stromal cells might play an 
important role in defining the maximal oncolytic capacity of these 
viruses.

We designed conditionally replicative adenoviruses based on a 
specific segment of the SPARC promoter with the aim to target 
both malignant and tumor-associated stromal cells. Either CRAd, 
expressing or not TK were cytotoxic in vitro on a panel of 
melanoma cell lines expressing SPARC. Mostly important, normal 
cells from diverse sources were completely refractory to the 
CIRAds while under the same conditions they were eliminated by 
wild type Ad5. Of note, Ad-F512 and Ad(I)-F512-TK were unable 
to lyse normal adult fibroblasts while exhibited lytic effect on cells 
that resemble cancer-associated stromal cells such as transformed 
microendothelial cells and fetal fibroblasts.

We observed a clear therapeutic efficacy of our CIRAds on 
melanoma tumors made of malignant cells alone. Although the 
CRAd expressing TK appeared to exhibit a slightly enhanced 
therapeutic efficacy both CIRAds exhibited diminished efficacy 
when tumors contained in addition stromal cells. Clo-administra- 

.(u j).. PL°S ONE | www.plosone.org

tion of WI-38 fibroblasts imposed to melanoma tumors an 
architecture consisting of malignant cell nests separated by 
fibroblasts septa that appeared as a physical barrier for the 
CIRAds and were refractory to viral infectivity in vivo. Previous 
studies suggested that the presence of physical barriers produced 
by stromal cells or their increased production of extracellular 
matrices imposed restrictions for viral spread and hence, 
diminished viral therapeutic efficacy [42,45]. These physical 
barriers also appeared to restrict viral infection to malignant cells 
in close proximity to blood vessels [46], Therefore, co-adminis- 
tration of proteolytic enzymes that degrade the ECIM or the use of 
vasoactive compounds were proposed as alternatives to improve 
the therapeutic efficacy of oncolytic viruses [11,47] with the risk of 
releasing malignant cells to the circulation. While it is likely that 
the presence of WI-38 cells could hamper viral spread, it was 
surprising that the presence of HMEC-1 also restricted viral 
efficacy although no histological evidence of a physical barrier was 
observed. On the contrary, soluble factors secreted by WI-38 
fibroblasts, but not HMECI-l endothelial cells, exerted a slight but 
significant enhancement of CRAd activity on melanoma cells in 
vitro that was obliterated when the conditioned media was obtained 
from pre-infected WI-38 cells. In this regard it was of interest that
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Figure 8. Effect of conditioned media produced by stromal cells on cell cycle. (A) Exit from cell cycle quiescence of MIA PaCa-2 and SB2 
cells pre-infected with the CRAd. (B) Exit from cell cycle quiescence of MIA PaCa-2 cells in the presence of different conditioned media. One biological 
replicate out of two is shown in each case.
doi: 10.1371 /journal, pone.0005119.g008

Ad(I)-F512-TK+GCV showed better efficacy on Mel-Fibro than 
on Mel-Endo tumors, suggesting that soluble factors produced by 
non-infected WI-38 cells might have enhanced CRAd activity in 
vivo. Although highly unlikely, we cannot rule out that host cells 
could have contributed in some aspects to the results since the 
F512 human promoter is active in rodent fibroblasts in vitro (data 
not shown).

It was not unexpected that the present CRAds were also slightly 
effective on SPARC-negative pancreatic cancer cells. Previous 
evidence has shown that promoters carried by the CRAd are not 
subjected to the transcriptional regulations imposed to endogenous 
promoters such as hypermethylation [48]. More striking was the 
evidence that co-administration of endothelial cells enhanced the 
therapeutic efficacy of the CRAd in pancreatic tumors. This was 
consistent with the fact that soluble factors produced by fibroblasts 
and microendothelial cells enhanced viral activity in pancreatic 
cancer cells, especially when conditioned media were obtained 
from pre-infected cells. Previous evidence from the literature have 
demonstrated that oncolytic viruses increased the amount of cells 
in S-phase [43]. Even more important, E1B mutant viruses, such 
as the present CRAds, exhibited better cytopathic effect on cells in 
S phase [44], The present work indicates that the CRAd 
accelerates pancreatic cancer cells exit from quiescence and 
induces the release of soluble factors produced by stromal cells that 
enhance the number of pancreatic cancer cells in S-phase. Both 
effects might converge in an enhanced lytic effect compared to 

.Gj).. PLoS ONE | www.plosone.org

melanoma cells. Thus, despite the fact that adenoviruses are 
known for their capacity to infect cycling and non-cycling cells, our 
data suggest that non-cycling cells could avoid CRAd attack. This 
is especially important since a consensus exists that potential 
cancer stem cells are not cycling under steady state conditions. 
Thus, the identification of the soluble factors produced by stromal 
cells that can accelerate G0/G1 exit of malignant cells could be 
very useful to design improved vectors or as potential adjuvant of 
virotherapy. In preliminary experiments using neutralizing 
antibodies we identified the mitogenic factor bFGF as one the 
products present in stromal cells-conditioned media, supporting 
the idea that accelerated release of malignant cells from quiescence 
could be used as adjuvancy. In this regard, recent evidence 
demonstrate that lentiviral vectors that, similar to adenoviruses, 
were supposed to infect both cycling and quiescent cells appear to 
be more effective in the presence of mitogenic factors such as EGF 
[49] supporting the idea that the induction of cell reentry from 
quiescence could provide a better scenario to enhance CRAd 
effectiveness.

The potential clinical use of an oncolytic vector based on 
SPARC promoter raised the question as to whether downregu
lation of SPARC expression might serve as an escape mechanism 
for a cell to avoid oncolytic attack. The role of SPARC in tumor 
progression is controversial although in certain types of human 
cancer such as glioblastoma and melanoma, SPARC overexpres
sion in the malignant cells themselves has been associated with 
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increased aggressiveness ([16] and references therein). Interesting
ly, SPARC overexpression by tumor-associated fibroblasts in 
pancreatic and lung cancer is also a marker of bad prognosis 
despite the fact that the malignant cells themselves are SPARC- 
negative due to promoter hypermethylation [33,50]. Based on the 
present data we might hypothesize that if cell clones that are 
SPARC-negative due to promoter hypermethylation emerge due 
to the selective pressure imposed by CRAd attack, they might be 
still susceptible to the treatment if the DNA binding proteins that 
regulate SPARC promoter activity are being expressed. Alterna
tively, malignant SPARC-negative cells such as those found in 
pancreatic cancer might be susceptible to oncolytic attack if they 
are surrounded by stromal SPARC-positive cells. In this regard, a 
very recent article also raised the possibility to overcome the 
barrier imposed by cancer associated fibroblasts by using selected 
mutant viruses with enhanced capacity to replicate in cancer 
associated stromal cells [51]. Indeed, multiple passages in vivo of a 
wild type adenovirus 5 in a human pancreatic tumor xenografted 
in nude mice selected a mutant virus with enhanced antitumor 
activity and augmented lytic effect and progeny release both in 
malignant cells and in cancer associated fibroblasts [51].

Adenoviral retargeting through partial or complete modification 
of the fiber, has become a method of choice to improve viral 
efficacy [52]. We observed that melanoma/stroma xenografts 
grew faster than xenografts of melanoma cells alone (see control 
groups in Figure 4) indicating the need for improved viral 
infectivity since human tumors are a heterogeneous mix of 
malignant and stromal cells. It has been shown that stable 
melanoma cell lines express CAR, while short term cultures of 
primary melanomas very often lack CAR expression [52]. Primary 
melanomas were very efficiendy transduced by other adenovirus 
serotypes or by pseudotyped particles with chimeric or genetically 
modified fibers [52-54], However, tumor endothelium appears to 
be very efficiently infected by adenovirus type 5 [55]. Thus, deeper 
knowledge of the in vivo expression of viral receptors in the 
different cellular compartments of the tumor mass (malignant and 
stromal cells) might help improve the therapeutic efficacy of 
virotherapy.

Stromal cells are a major component of human cancer tissue 
and “cross talk” with malignant cells to stimulate tumor growth 
and metastatic dissemination. We believe that their co-adminis- 
tration in murine models of cancer is essential to better understand 
viral spread and oncolytic efficacy. As we show here, they can 
support viral replication and modulate the efficacy of a CRAd 
through the production of soluble factors. Testing additional 
CRAds that target only malignant cells or using non-permissive 
stromal cells in mixed models as the one described in this article, 
would be useful to establish whether targeting stromal cells can 
definitely improve the in vivo antitumor efficacy of oncolytic 
vectors.

Materials and Methods

Cell Culture
The human cell lines HeLa (cervical cancer, CCL-2), T-47D 

(breast cancer, HTB-133), MDA-MB-231 (breast cancer, HTB- 
26), WI-38 (fetal lung fibroblasts, CCL-75), MCF-7 (breast cancer, 
HTB-22), MIA PaCa-2 (pancreas carcinoma, CRL-1420), BxPC-3 
(pancreas adenocarcinoma CRL-1687), Malme 3 (normal skin 
fibroblast, HTB-102), CCD-1140 (normal skin fibroblast, CRL- 
2714), CCD841 (normal colon, CRL-1790), MCF12A (normal 
breast, CRL-10782), and 293HEK (human embryonic kidney, 
CRL-1573) were obtained from ATCC (American Tissue Culture 
Collection, Rockville, MD, USA). The HMEC-1 cells (Human 
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Microvascular Endothelial Cells) were kindly provided by 
Francisco Candal (Adanta, USA). The human melanoma cell line 
IIB-MEL-LES was already described [18]; MEL-J-N is an in vitro 
selected clone of IIB-MEL-J [18]; A375N, MEL888 and SB2 
human melanoma cell lines and human normal melanocytes were 
kindly provided by Estela Medrano (Houston, USA). Keratino- 
cytes (HaCaT) were kindly provided by Fernando Larcher 
(Madrid, Spain). All the cell lines were grown in the recommended 
medium supplemented with 10% of fetal bovine serum (Natocor, 
Cordoba, Argentina), 2 mM glutamine, 100 U/ml penicillin and 
100 (Ig/ml streptomycin and maintained in a 37°C atmosphere 
containing 5% CO2. MIA PaCa-2 cells were also supplemented 
with 2.5% of horse serum (Invitrogen, Carlsbad, CA).

Plasmids and recombinant adenoviruses
pGEM-hSPPr plasmid containing the —1175/+71 SPARC 

promoter [38] was used as a template to obtain the SPARC 
promoter variants displayed in Figure 1. Table IS provides the list 
of primers used for the different clonings: the —1175/+35 
promoter fragment was cloned using primers SPfse and R35; the 
—1175/+28 promoter fragment using primers SPfse and R28, the
— 513/+71 promoter fragment using primers F513 and R71, the
— 513/+35 promoter fragment using primers F513 and R35, the
— 513/+28 promoter fragment using primers F513 and R28 
(Table SI), the —513/+24 promoter fragment using primers F513 
and R24, the —120/+71 promoter fragment using primers Fl20 
and Spas, the —120/+35 promoter fragment using primers F120 
and R35, and the —120/+28 promoter fragment using primers 
F120 and R28. The hSPPrAlO promoter variant (1236 bp) was 
already described [38]. The different promoter variants were 
cloned in pCR4-TOPO (Invitrogen, Carlsbad, CA) and sub
cloned in the promoterless firefly luciferase reporter plasmid 
pGL3-Basic (Promega Corp., Madison, WI).

In order to improve the shutde vector-pADPSY capacity [56], 
we replaced the RSV promoter with a multiple cloning site (MCS: 
Spel, Bell, KpnB, Nhel, Mlul, BgBI, EcoRV, Clal, SnaBI, Sall) to 
create the pAd-Xp shutde vector. Next, a fragment of 234 bp 
corresponding to the stop codon region of the bovine growth 
hormone gene [40] was PCR-cloned in the SpA/Kpml sites 
downstream of the ITR in the MCS to create a new shutde 
vector, pAd-I-Xp (using primers INSU-F-Spel: INSU-R-Kpnl, 
Table SI). A BgBI/BamHI-ILIK gene fragment (+560/+1632 of the 
adenoviral genome) was subcloned in the BgBI site of pAd-Xp or 
pAd-I-Xp followed F512 promoter cloning upstream of El A in 
MluI/BgBI sites, to obtain the shutde plasmids pAd-F512-ElA or 
pAd-I-F512-ElA. The HSV-tk gene was amplified from the 
plasmid phSPPr-TK ([38]) and cloned in JVcoI/SaB sites of pCite-1 
vector (Novagene, Madison, WI.). The fragment IRES-HSV-tk 
was extracted with AroRI and SaB, the EcoFB site was filled in and 
cloned in pAd-I-F512-ElA in the EcoB/V/SaB sites downstream of 
El A to obtain the pAd(I)-F512-TK plasmid.

In order to produce pAd-SV40-luc vector the SV40-luciferase 
fragment was extracted from pGL3 with BgBI/BamHI and cloned 
in the BgBI site of pAd-XP. pAd(I)-F512-luc was constructed in 
two steps. First, the luciferase gene was obtained from pGL3-513/ 
+35 with BgBI/BamHI and cloned in the BgBI site of pAd-XP 
vector to produce pAd-XP-luc. Next, the (I)-F512 sequence was 
obtained from pAd-I-F512-ElA with FspI/BgBI and cloned into 
the FspI/BgBI site of pAd-XP-luc to obtain pAd(I)-F512-luc. 
Finally, the 2256 bp fragment of CMV-Renilla was obtained from 
pRL-CMV (Promega Corp. Madison, WI) with BgBI/BamHI and 
subcloned in the BgBI site of pAd-XP vector to create pAd-CMV- 
Renilla. To construct Ad-F512, Ad(I)-F512-TK, Ad(I)-F512-luc, 
Ad-CMV-Renilla and Ad-SV40-luc, the co-transfection in 
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293HEK cells was used [57]. Adenovirus amplification and 
purification were performed as described [58]. Physical particle 
concentration (viral particles/ml) was determined by absorbance 
at 260 nm. Determination of 50% tissue culture infective dose-TC 
ID50 was determined by standard plaque assay on 293HEK cells
[58] . All the constructs and viruses were confirmed by restriction 
pattern and automatic DNA sequencing (ABI PRISM 377 DNA 
Sequencer, Applied Biosystems, Foster City, CA). Ad-wt was 
kindly provided by Dr Andre Lieber (Seattle, USA).

Luciferase Assays and Real Time-PCR
Luciferase assay using plasmids were performed as described 

[38]. For assays using adenovirus, 5xl04 cells/well (seeded in 24- 
well plates) were transduced with Ad-SV40-luc at 25x10® vp/ml 
in 200 JJ.1 of DMEM/F12 containing 2% FBS. Eight hundred pl of 
fresh medium containing serum was added 2 hours later followed 
by cells harvesting 48 hours later. Quantification of luciferase 
activity followed manufacturer’s recommendations (Promega 
Corp. Madison, WI). Luciferase activity was normalized by 
protein concentration in the cell lysate (Bio- Rad, Hercules, CA).

For assessing promoter activity in the presence of the different 
conditioned media, cells were seeded in 24-well plates at a density 
of 7 xlO4 cells/well. The next day, cells were infected with Ad(I)- 
F512-luc (35xl06 vp/ml, about 100 of MOI) and Ad-CMV- 
Renilla (3.5 x 10® vp/ml, about 10 of MOI) in 200 pl of 2% 
DMEM/F12. After 2 hours of infection the medium was removed 
and 0.4 ml of serum-free conditioned medium was added. Cells 
were harvested 48 hours later and dual luciferase assay was 
performed following manufacturer’s recommendations (Promega 
Corp. Madison, WI).

Real Time-PCR was performed as described [38].

Cell killing assays
Cells were seeded in 24-well plates at a density of 1 x 104 cells/ 

well (HMEC-1 density was 5 xlO4 cells/well). The next day, cells 
were infected with the corresponding virus in 200 pl of DMEM/ 
F12 containing 2% FBS. After 4 hours of infection 0.8 ml of 
fresh medium containing 10% FBS was added. Cytopathic effect 
was monitored by staining viable cells with crystal violet [58]. 
For evaluation of Ad(I)-F512-TK activity followed by GCV, cells 
were infected at 5x10® pv/ml in 200 pl. Twenty four hours 
later, cells were mixed and seeded onto a 24-well plate with 
uninfected cells at density of 5xl04 cells/well. The next day, 
cells were treated with 50 pM of GCV. The medium with GCV 
was replaced each 48 hours. After 5 days of exposure to GCV. 
The number of surviving cells was determined by the MTT assay
[59] -

One step growth curves in malignant and stromal cells
SB2, MIA-PaCa-2, HMEC-1 and WI-38 cells (2xl04 cells/ 

well) were infected at 100 MOI of Ad(I)-F512-TK or inactivated 
Ad(I)-F512-TK (heated during 20 minutes at 90°C) in 200 pl of 
DMEM/F12 containing 2% FBS. After 4 hr of infection medium 
was removed, the cells were washed with PBS to remove 
uninternalized viruses, and 0.5 ml of fresh medium containing 
10% FBS was added. Cells were collected at time 0, 48 hr, 72 hr 
and 96 hr later. DNA was extracted from cells using the Illustra 
tissue & cells genomicPrep Mini Spin kit (GE Healthcare, 
Buckinghamshire, United Kingdom) and E4 gene was measured 
by Q-Real Time PCR [60,61]. Genomic DNA was subjected to 
Real-Time PCR in an iCycler iQ System (Bio-Rad Laboratories, 
Hercules, CA, USA). Each 25 pl reaction volume contained 1 unit 
Platinum® Taq DNA polymerase (Invitrogen, Carlsbad), 1 x PCR 
Reaction Buffer (20 mM Tris-HCl, 21 pH 8.4, and 50 mM KC1), 

1.5 mM Mg2Cl, 2.5 g BSA, 0.01% Glycerol, 0.4 pM of each 
specific primer targeting the E4 region (Ad5, nucleotides 33806- 
34074) (Table SI), 200 pM of dNTPs and 0.3xSYBR Green 
Solution. PCR conditions were set as follows: 150 seconds at 94°C 
and then 39 cycles of 45 seconds at 94°C, 30 seconds at 60°C and 
30 seconds at 72°C. All the reactions were performed in triplicate. 
Analysis of data was carried out using the iCycler software (Bio
Rad Laboratories, Hercules, CA, USA) by comparing test sample 
to a standard. Standard Curves were generated by serial dilutions 
of IO10 copies of Adenoviral DNA in a solution of control cellular 
genomic DNA. Total E4 copies per sample were normalized with 
the amount of DNA present in each sample and reported as E4 
copies/ng of DNA.

In vivo studies
Five to six - weeks old female athymic N:NIH(S)-nu mice 

(Faculty of Veterinary, University of La Plata, Argentina) were 
s.c. injected either with tumor cells alone or with a mix of tumor 
cells and stromal cells. When the average tumor volume reached 
100 mm3, mice were randomly separated into different treat
ments. The corresponding groups received three intra-tumoral 
injections on days 0, 3 and 7, either of Ad-F512 or Ad(I)-F512- 
TK containing 1 xIO10 vp/mouse. Control mice were injected 
either with Ad-P-gal or vehicle indistinctly since both had no 
effect on tumor growth. In the case of GCV treatment, four days 
after the last adenovirus injection a daily dose of 30 mg kg-1 of 
GCV (Cymevene, Roche) was administered for 15 consecutive 
days. Tumor volumes were estimated weekly from caliper 
measurements (volume = 0.5 x(width)xlength). Mice were sac
rificed when tumors reached an average of 2000 mm3 and mice 
were considered not survivors. None of the mice showed signs of 
wasting or other visible indications of toxicity. In vivo experiments 
followed institution guidelines, and all animals under study 
received food and water ad-libitum.

GFP/HMEC-1 cells were obtained by infection of the 
endothelial cells with a GFP-lentiviral virus (GenScripts Corp., 
Scotch Plains, NJ, USA). Cells (1 xlO5) were plated into each well 
of a six-well plate and after 4 h infected with a multiplicity of 
infection of 5 in the presence of 8 fig per mL of polybrene (Sigma, 
St Louis, Missouri). Cells were incubated with the virus for 15 hr, 
washed and examined for green fluorescent protein (GFP) 
expression at 48 hr. After 48 hr antibiotic selection was initiated 
and stably expressing GFP cells were selected.

For histology studies, samples were fixed in 10% neutral- 
buffered formalin before paraffin embedding and cutting of 5-ftm 
sections. Alternatively, samples were fixed in 4% paraformalde
hyde for 1 hour, cryopreserved overnight in 30% sucrose, 
embedded in tissue OCT, and stored at —20°C. Cryostat sections 
of 9 firn were mounted on gelatin-coated slides. After hydration 
slides were hematoxylin and eosin stained. For immunohisto
chemical studies we used a goat anti-adenoviral hexon protein 
antibody AB1056 (Chemicon International, Hampshire, UK), a 
rabbit anti-P-galatosidase antibody A-11132 (Molecular Probes, 
Eugene, OR, USA) and a rabbit anti-human Von Willebrand 
Factor (Dako, Germany) followed by a biotinylated donkey anti
goat antibody Jackson ImmunoResearch, West Grove, USA) or 
biotinylated goat anti-rabbit antibody (Vector Laboratories, 
Burlingame, CA, USA), respectively. Biotinylated secondary 
antibodies were used in conjunction with the Vectastain ABC kit 
(Vector Laboratories, Burlingame, CA, USA) and finally the 
reaction was visualized with DAB (Dako, Germany). Slides were 
counterstained with hematoxylin and photographed in an 
Olympus BX60 microscope.
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Ethics statement
All animal procedures were performed according to the rules 

and standards of German animal law and the regulations for the 
use of laboratory animals of the National Institute of Health, USA. 
Animal experiments were approved by the Ethical Committee of 
the Institute Leloir Foundation.

Preparation of conditioned media
Four million cells were seeded on 100 mm cell culture dishes. 

Twenty four hours later cells, infected or not with 500 MOI of the 
CRAd, were placed in DMEM/F12 containing 2% FBS. Two 
hours later, medium was replaced by DMEM/F12 without serum 
and conditioning was followed for additional 24 hours, centrifuged 
and stored at — 80°C. The amount of virus in the conditioned 
media was determined by 50% tissue culture infective dose (TC 
ID50) in a standard plaque assay on 293HEK cells [58]. An 
average of 107-108 vp/ml was found in all preparation.

Flow cytometry
Cells (2.5xl05/well MW6) were arrested in G0/G1 by serum 

starvation for 72 hours and then kept in 1 ml of DMEM/F 12 
containing 2% FBS for two hours. Cells were infected or not at 
1000 of MOI in the same medium. Four hours later, 2 ml of 
serum-free conditioned medium was added and final serum 
concentration was adjusted to 5%. Cells were trypsinized at the 
indicated times, washed with PBS, fixed in 70% ethanol at 4°C 
overnight, washed again with PBS, resuspended in PBS-triton- 
X100, treated with RNase (Sigma Co, San Luis, MO) and stained 
with propidium iodide. Cell cycle status was analyzed using a 
FACSCalibur flow cytometer (Becton Dickinson, Oxford, United 
Kinngdom). Ten thousand cells were analyzed in each case.

Statistical analysis
Survival rates were calculated with the Kaplan-Meier method 

and differences were evaluated by the log-rank test. Statistical 
difference between groups was determined by one-way analysis of 
variance follow by a Tukey multiple comparison test. A P-value of 
<0.05 was considered statistically significant. Data analysis was 
performed with the GraphPad Prism 4.0 (GraphPad Software, 
Inc., San Diego, CA).

Supporting Information
Figure SI Luciferase activity driven by F512Pr. (A) In a plasmid 
context. (B) In an adenovirus context. Transcriptional activity of 
F512Pr promoter in stromal and malignant cells following 
infection with Ad(I)-F512-luc/Ad-CMV-Renilla. Data are ex
pressed in RLU (Firefly/Renilla). Error bars represent mean±SD. 
Found at: doi:10.1371/journal.pone.0005119.sOOl (5.58 MB EPS) 

Figure S2 Quantification of Crystal violet assays. Densitometric 
analysis of wells corresponding to figures 2A and 2B was performed 
by using the Image J program available at http://rsb.info.nih.gov/ij; 
and developed by Wayne Rasband, National Institutes of Health, 
Bethesda, MD. Error bars represent mean±SD.
Found at: doi: 10.1371/journal.pone.0005119.s002 (1.07 MB 
PDF)

Figure S3 One step growth curve and viral production. Time 
dependent increase of E4 gene copy was used as a readout of 
CRAd replication. (A) Cells infected with Ad(I)-F512-TK and (B) 
Cells infected with heat-inactivated Ad(I)-F512-TK.
Found at: doi: 10.1371/journal.pone.0005119.s003 (0.29 MB 
PDF)

Figure S4 Cytophathic effect and quantification of Crystal violet 
assays. (A) CPE of normal colon cells CCD841. (B) Cell viability of 
normal breast cells MCF12A. (C) Densitometric analysis of wells 
corresponding to Figures 3B and C was performed by using the 
Image J program available at http://rsb.info.nih.gov/ij; and 
developed by Wayne Rasband, National Institutes of Health, 
Bethesda, MD. Error bars represent mean±SD.
Found at: doi: 10.1371/journal.pone.0005119.s004 (0.98 MB 
PDF)

Figure S5 In vitro transduction of HMEC-1 and WI-38 cells 
with non-replicative adenovirus. WI-38 and HMEC-1 cells were 
transduced with 5x106 vp/ml of Ad-SV40-luc as described in 
Material and Methods. Cell extracts were assayed two days later 
for firefly luciferase activity and protein concentration. Error bars 
represent mean±SD.
Found at: doi: 10.1371/journal.pone.0005119.s005 (0.27 MB 
PDF)

Figure S6 Ad-F512 effect on the in vivo growth of human 
melanoma xenografts. (A) and (B) Tumor growth in mice 
harboring SB2 melanomas treated with Ad-F512, vehicle or 
control virus (Ad-b-gal). Right panel corresponds to Kaplan-Meier 
survival curve of the tumor growth graft.
Found at: doi: 10.1371/journal.pone.0005119.s006 (0.38 MB 
PDF)

Figure S7 Luciferase activity driven by F512Pr in melanoma 
and pancreatic cancer cells. Transcriptional activity of F512Pr 
promoter in MIA PaCa-2 and A375N cells following infection 
with Ad(I)-F512-luc/Ad-CMV-Renilla. Data are expressed rela
tive to Ad-SV40-luc activity in each cell line.
Found at: doi: 10.1371/journal.pone.0005119.s007 (0.26 MB 
PDF)

Figure S8 Viability of co-cultures of HMEC-1 cells infected ex 
vivo with Ad(I)-F512-TK- and human MIA PaCa-2 cells followed 
by GCV. Only the 20:80 ratio (HMEC-1 :MIAPaCa-2) is shown. 
*P<0.05 (one-way ANOVA followed by a Tukey multiple 
comparison test).
Found at: doi: 10.1371/journal.pone.0005119.s008 (0.27 MB 
PDF)

Figure S9 Effect of conditioned media produced by stromal cells 
on CRAd activity. (A) Cell viability after infection of the different cell 
types with Ad(I)F512-TK in the presence of different dilutions of 
conditioned media obtained from HMEC-1 cells, WI-38 fibroblasts 
or their own (B) Similar to A, but the conditioned media was 
obtained from pre-infected cells. For further details see Figure 7. Cell 
viability was assessed at day 6 of infection by using MTT assay.
Found at: doi: 10.1371/journal.pone.0005119.s009 (0.37 MB 
PDF)

Table SI Primers sequences. The table shows the sequence of 
primers used for the different clonings.
Found at: doi:10.1371/journal.pone.0005119.sOlO (0.04 MB 
DOC)
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