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Abstract

F.J. Gaspari, A.M. Rodríguez Vagaria, and G.E. Senisterra. 2009. Estimation of soil 
erosionability in the stream basin of Pillahuinco Grande, Buenos Aires province, Argentina. 
Cien. Inv. Agr. 36(1): 43-52. In a hydrographic watershed, the erosionability (K factor) of the 
soil evaluation depends on the technical resources, developed applied sciences, and spatial 
technology available. For the determination of erosionability in the watershed of Pillahuinco 
Grande's Creek (Argentina) (38°S, 61°15'W), the Universal Soil Loss Equation (USLE) was 
used by applying a geographic information system (GIS) for the cartographic evaluation. A 
database of geological, environmental, and soil associations was developed, which indicated 
tliat geomorphologic variability, caused by geology and soil, significantly determines the 
spatial variation of the K factor values, in a range from 0.02 to 0.69 ((t-m2-h)-(ha-J-cm)_1). A 
new quantification was determined with the simplified K factor from the USLE model and with 
tlie two generated equations, KI, starting from sand, silt and organic matter, and K2, beginning 
from sand and organic matter. A linear regression and the coefficient of efficiency (RN2) were 
established, which indicated the adjustment of the K factor for each developed pattern. The RN2 
correlation value was 0.76 in relation to the simplified K factor, 0.87 to KI, and 0.86 to K2 (very 
similar due to the small significance of silt in the equation). This relationship demonstrates that 
tlie application of KI and K2, according to the readiness of the data, is more specific and exact 
than tlie results obtained by applying tlie simplified K factor.
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Introduction

The hydrographic basin is the unit of study 
and administration in agrohydrological man
agement, and it is defined as a territorial space 
formed by a main water stream, its tributaries, 
and a water collector area, which are separated 
by the water dividing line.
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The presence of man in a basin creates a series 
of problems that arise from an irrational use of 
natural resources. Among these are the deg
radation and loss of soil productivity, erosion, 
floods, desertification, water eutrophication, 
forest destruction and loss of biodiversity. Be
cause of these problems, the human population 
experiences a decrease in quality of life, which, 
in extreme cases, ends with migrations towards 
large cities (Gaspari, 2000).

The planning and management of sustainable 
basin development are necessary for under
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standing and stabilizing the use and manage
ment of natural resources and as a way to estab
lish a methodology for planning the territorial 
arrangement of the Buenos Aires mountainous 
basins (Gaspari, 2000).

The hydrological restoration of forest, the active 
response of man to the destruction or deteriora
tion of soil resources, vegetation and water, is the 
due to actions that must be addressed globally, 
which sometimes entail high, continuous invest
ments for long periods. Their effects are benefi
cial only through time (Del Palacio, 1999).

In the mountainous basins of the Coronel Pring
les Partido, Province of Buenos Aires, economi
cal growth is historically related to agricultural 
and livestock production. The agricultural pro
duction corresponds to 50% of the district’s 
production. The main crops are wheat, soybean, 
barley, sunflower, sorghum and maize, and 70% 
of the production is exported. Coronel Pringles 
is currently part of Consorcio Intermunicipal 
de Desarrollo Regional (CIDERE) that recent
ly opened the Regional Development Agency 
(Agenda de Desarrollo Regional, ADR). It is 
intended to foster strategic sectorial alliances, 
coordinate public and private efforts for foster
ing regional development, and promote cooper
ation, employment generation, and economical, 
social, and environmental sustainability. The 
area of study comprises the Pillahuinco Grande 
stream basin located in the Mountainous Sys
tem of Ventania Partido of Coronel Pringles, 
in the southwest of the Buenos Aires Province, 
Argentina. It covers a surface of 109,353,95 ha 
(Figure 1). Serious environmental problems 
are observed in this zone, due to the degrada
tion and loss of the soil surface by water erosion 
(Gaspari and Rodríguez Vagaria, 2006).

The surface water erosion results in the loss of 
the productive soil potential. Therefore, it is im
portant to study the processes generating these 
problems. There are several factors affecting 
soil stability, which can be grouped as climatic, 
edafic, terrain or vegetation factors (Vich, 1989; 
Kirkby and Morgan, 1994).

Figure 1. Geographical localization of the Pillahuinco 
Grande Watershed Basin (38° S; 61° 15' W). Buenos Aires 
Province, Argentina.

Numerous methods have been developed for de
termining soil losses. In 1965, Wischmeier and 
Smith presented a model called the USLE (Uni
versal Soil Loss Equation), in which the factors 
determining the amount of aroused sediments 
include a fifth factor of erosion control by crop 
practices. It is expressed asA = RxKxLSxC 
x P, where A is the soil losses (t-ha4year'), R is 
the index of pluvial erosion ((J-cm)-(m2-h)4), K is 
the soil erosionability factor ((t-m2-h)-(ha-J-cm)4), 
LS is the pending factor, C is the crop factor, 
and P is the dimensionless crop practices fac
tor (Mintegui Aguirre and López Unzu, 1990; 
Kirkby and Morgan, 1994; López Cadenas de 
Llano, 1998; Mintegui Aguirre et al., 2006).

Regardless of other factors of erosion, the sus
ceptibility of soils to water erosion is deter
mined from the content, texture, and structure 
of organic matter (OM), which are unlikely to 
be available for a whole hydrographic basin 
(Irurtia et al., 1984).

The objective of this work was to estimate the 
coefficient of soil erosionability (K) adjusted to 
the Pillahuinco Grande stream basin according 
to geospatial distribution. The zoning and ad
justment of K will generate a dynamic digital 
tool for determining the soil losses by surface 
water erosion in the Pillahuinco Grande stream 
basin.
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Materials and methods

The stream basin of Pillahuinco Grande (38°S. 
61°15'W) is characterized by a highly variable, 
temperate, and sub-humid climate with moder
ate temperatures.

Harrington (1947) described how the southern 
mountains of the Province of Buenos Aires 
form a cluster of elevations contrasting with the 
general level of the Pampas. The terrain pres
ents different levels of erosion with drain lines 
of dendritic design, attached mainly to modern 
eolic sediments. The surrounding plain, free of 
rocky formations, presents a zone more immedi
ate to the sierra (perimountainous) with uneven 
surfaces more or less noticeable, which are more 
evident near streams.

The geological formations present in the region 
were classified by Tricart (1973) as Platense 
eolic. Platense aqueous. Lujanian eolic and Lu- 
janian aqueous, which explain the soil genesis 
of the area under study. Although all contribute 
to the soil formation in the region, the exten
sive mantle surface composed of the eolic post
Pampa sediments is the most important and pre
dominant material forming the soils.

The region under study offers a wide range of 
edaphic and environmental situations due to 
the diverse action from the factors mentioned 
above. From the topographical point of view, 
there are strong terrain variations that rule the 
arrangement and extension of consolidated 
rocky formations, overlaying sedimentary de
posits. drain conditions, runoff surface and ac
cumulation of rainwater participating in edaph
ic processes. The climate, terrain, structure and 
composition of the original geological material 
and the vegetation are factors that, in their re
gional variations, determine the edaphogenesis 
of the region’s soils. The region is divided into 
four geological environments:

Mountainous environment. The extensive Lu
janian eolic mantle along with the remaining 
Pampean tufa mantle and the Lujanian aqueous 
surfaces spreads over hillsides and summits and 
reduces the exposition of old consolidated rocks. 
Therefore, the rocky formations are scarce. The 

created terrain generally reflects the underlying 
rock, and the external form was adapted by an 
intense erosive action based on diverse geologi
cal structures. In the mountainous environment, 
the post-Pampean loess may be supported di
rectly on old rocks.

Intramountainous environment. The intramoun- 
tainous environment comprises the central and 
interior region of the sierra environment and 
includes the cluster of depressions and longitu
dinal and transversal valleys. The materials fill
ing these depressions are predominantly thick 
and of the colluvial type that are in contact with 
mountains, of loessic character on the general 
plain, and are fluvial-lacustrian and partly cov
ered by retransported edafic material towards 
the streams’ axes. Because of its brittle nature, 
it is easily eroded by water action, which leads 
to the formation of large gullies. The streams 
cut the loessic mantle, and only the narrow flu
vial bed maintains alluvial characteristics.

Perimountainous environment. This environ
ment develops in attachment to the sierra and 
surrounds it and its slopes. When the transgres
sive accumulation of the Lujanian eolic depos
its occurs, an inclined plane is defined, leaning 
against the mountains, and a slope decreases 
slowly to fuse with the plain. The dense loess ac
cumulation in the foothill slowly decreases and 
is thus present only at isolated spots. The most 
common places are the hills, which originated 
by the dissection of the general plain produced 
by streams running down the mountains.

Plain environment. This environment extends 
externally to the perimountainous environment 
and is characterized by the loss of loessic cover 
homogeneity as the presence of tufa becomes 
more abundant. However, some aspects of the 
plain are very different, so different sectors are 
noteworthy: a. Northern Sector: In the extended 
plain sector, it presents homogeneous charac
teristics. The fluvial streams extend in scarcely 
carved wider valleys subject to flooding. The 
unevenness between the stream beds and the 
plain reaches a barely noticeable inflexion, b. 
Spills Sector: The mountainous streams spread 
superficially on the plain to generate “spills.” 
The detritic material is characterized by abun
dant dissolved calcium carbonate, which forms
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Table 1. Soil associations according to Spinelli Zinni (1978) (Figure 2).

Name Soil Association
1 Rock, and up to 2do5% of litic hapludol (Very shallow Brunizem on top of rock, without textural B horizon)
2 Rock, and from 25% up to 50% of litic hapludol (Shallow Brunizem on top of rock, without textural B horizon) and 

litic Argiudol (Shallow Brunizem on top of rock, with textural B horizon)
3 Rock, and from 25% up to 75% of litic Argiudol (Shallow Brunizem on top of rock, with textural B horizon) and litic 

Hapludol (Very shallow Brunizem on top of rock, without textural B horizon).
6 Tipic Argiudol (Brunizem with moderate textural B2 horizon) and less than 25% of litic Argiudol (Shallow Brunizen 

with textural B2 horizon above tufa).
7 Tipic Argiudol (Brunizem with moderate textural B2) and up to 50% of litic Argiudol (Brunizen with textural B2 

horizon above tufa).
10 Tipic and litic Argiudol (moderate deep Brunizem with moderate textural B2 horizon above tufa) and up to 25% of 

outcrop tufa.
11 Tipic and litic Argiudol (moderate deep Brunizem with B2 horizon above tufa) and up to 50% of outcrop tufa.
23 Natracualf, Natracuol (Solonetz, Solonetz solodizado) and up to 30% of tipic and litic Argiudol (moderate deep 

Brunizem with strongly textural B2 horizon above tufa).
25 Tipic Argiudol (moderate deep Brunizem) with 30% of Argialbol and Natracuol (Solonetz solodizado) and outcrop 

tufa.

a calcareous layer through evaporation. During 
the last dry period, the floods concentrate the 
major proportion of soluble salts (sodium), caus
ing salination and/or alkalization of the affected 
areas, c. Southeast Sector: The Lujanian eolic 
accumulation is dense and abundant at the foot 
of the mountains and becomes thinner farther 
away from the mountains. The accumulation re
spects the pre-existing terrain and maintains the 
topographical relationships.

Soil identification (Table 1), geological associa
tions, distributions and local variations allow for 
the classification of the environment. As the soil 
is an integral and functional part of the environ
ment where it is present, it is important to show 
how geomorphologic variations influence soil 
constitution and how the edaphological classi
fication adjusts to the surrounding geological 
environments (Table 2).

The Geographic Information System (Sistema 
de Información Geográfica, SIG) allowed for 
the elaboration of the edaphic base cartography 
and geological associations of the basin of the 
Arroyo Pillahuinco Grande (Idrisi Kilimanjaro 
14.0, Clark University, USA, 2003). The proce
dure consisted of generating and zoning the ba
sin according to the maps of soil association and 
geological environments, by means of digitaliz
ing the analogical format (scale 1:250.000).

In order to determine the soil erosionability (K), 
the only published data (Spinelli Zinni et al, 

1978) were used to elaborate, arrange, analyze, 
classify and interpret a geospatial database.

The development and application of a carto
graphic model allowed for data analysis and re
cording with the SIG Idrisi Kilimanjaro, which 
permitted space tracking (López Cadenas de 
Llano, 1998; Gaspari et al, 2006).

The texture, OM, permeability and structure 
data were extracted from the most representa
tive area profiles according to Spinelli Zinni 
(1978). In order to determine the factor K, it 
was necessary to identify the representative 
profile of the series type (Scotta et al, 1986). 
It is worth mentioning that these profiles were 
extrapolated according to the relationship of 
soil association and location in respect to the 
geological environments.

The soil erosionability (K) (t-m2-h)-(ha-J-cm)1 
was calculated by Formula 1, according to the 
universal equation of soil loss (USLE) (Mint- 
egui Aguirre and López Unzú, 1990):

100 K = 10“ 2.71 M 1-u (12-a) + 4.20 (6-2) + 3.23 (c-3)

[Eq 1]

where M is the product of soil particles between 
0.002 and 0.1 mm of diameter and is expressed 
in percentages by the percentage of soil par
ticles between 0.002 and 2 mm in diameter; a 
is the percentage of OM (for the calculations, 
1.72 of organic carbon was used when the OM 



VOLUME 36 N°1 ENERO - ABRIL 2009 47

percentages were not available); b represents 
the soil structure coded according to the gran
ule size; c describes the class of permeability 
soil, according to the USDA (Wischmeier and 
Smith. 1978).

For the estimation of simplified factor K (Ks). 
the values b and c may be dispensed, and Eq 2 
is obtained (Mintegui Aguirre and Lopez Unzu. 
1990):

Ks = IO'6 2.71 M 1U (12-a) [Eq 2]

Once the erosionability K factor and Ks for each 
profile were determined, an area weighted by 
the factor (°<) was made according to the area 
of influence to establish the coefficient for each 
soil association according to the geological en
vironment.

These results allowed for the generation of a 
mathematical adjustment model adapted to the 
Pillahuinco Grande stream basin, producing 
two equations to modify and promote the K 
determination factor. Thus, laboratory data ob
tained by processing simple soil samples taken 
from field were used and corroborated with data 
records from studies by Spinelli Zinni (1978). 
From the development of a regression equation 

and the inclusion of the percentages of sand, silt 
and OM, the KI value was obtained. A second 
regression equation showing how the indepen
dent variables, sand and OM, allowed for ob
taining the K2 value. These two models allowed 
for representing the soil erosionability in the ba
sin in a simplified and practical form.

The goodness of fit between the data obtained 
with the original model (Eq 1) and the data 
obtained with the other three models (Ks, KI 
and K2) was evaluated by a linear regression 
analysis with a coefficient of determination (R2) 
by the minimun square method (Navidi. 2006) 
and the criterion of efficiency by Nash-Sutcliffe 
(1970). The Nash-Sutcliffe regression (RN2) rep
resents the relationship between the observed 
and predicted values (Llorens. 2003).

Results and discussion

The zoning of the geological environments and 
the soil associations are presented in Figure 2A 
and B, respectively. The contributions of dif
ferent soil associations with respect to the geo
logical environments in the Pillahuinco Grande 
stream basin are shown in Table 2.

Geological Environment
Highland Intrahigland Perihighland Septentrional Spill Sudoriental

Plain Plain Plain Area

Table 2. Area and proportion of soil associations by geological environment of the Pillahuinco Grande Watershed.

Soils ha % ha % ha % ha % ha % ha % ha
1 1466.23 100.00 1466.23

2 7214.54 92.88 548.33 7.06 4.68 0.06 7767.55

3 8370.75 90.75 741.75 8.04 49.84 0.54 3.69 0.04 53.26 0.58 4.41 0.05 9224.42

6 715.30 14.79 2269.06 46.91 1852.53 38.30 4836.89

7 1169.35 7.69 6870.79 45.18 2985.71 19.63 2223.09 14.62 134.32 0.88 1824.37 12.00 15207.72

10 636.67 3.57 75.48 0.42 2435.22 13.67 5894.59 33.08 8772.08 49.23 17817.92

11 871.93 74.78 294.09 25.22 1166.02

23 56.14 0.12 294.18 0.60 1590.83 3.26 45957.01 94.23 872.11 1.79 48771.30

25 3095.92 100.00 3095.92

Area, 
ha

19572.84 10486.07 5262.42 7124.76 55429.18 11472.97 109353.95
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Figure 2. A. Geologic environment map of the Pillahuinco Grande Watershed. B. Soil association map of the Pillahuinco 
Grande Watershed. Buenos Aires Province, Argentina (for legent, see Table 1).

The database, derived from the study by Spinel
li Zinni (1978) and including the soil profile ac
cording to the geological environment, is pre
sented in Table 3. The factor oc, representing the 
occupation degree, was used to weight the K 
value in homogeneous surfaces for each soil as
sociation by implementing the methodology in 
Eqs 1 and 2. The weighted K values and simpli
fied K values varied according to the intrinsic 
characteristics of each homogeneous zone de
termined by SIG. where the content of OM was 
the most influential variable in the minimum 
extreme of K and Ks values, and the soil struc
ture and permeability were most influential in 

the maximum extreme. This presented a range 
between 0.0144 and 0.6874 (t-m2-h)-(ha-J-cm)1 
for K and a narrower range, between 0.0467 and 
0.5121 (t-m2-h)-(ha-J-cm)1. forKs.

The mathematical K model adjusted to the zone 
under study established two new equations. The 
first (Eq 3) was determined through a linear 
multiple regression, in which the percentages 
of sand, silt and OM were used as independent 
variables and the factor K calculated from the 
USLE model was a dependent variable:

Kl = 1.63929 - 0.0161516 x (%sand) - 0.00686702 x (%silt) 
- 0.0746648 x(%OM) [Eq 3]
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Soil data base USLE Simplify USLE

Table 3. Database for the determination of the erosionability factor for soil profile (KJ and pondered by soil association 
according to LISLE model (K) and simplified LISLE (Ks) ((t.m2.h) (ha. J.cm)1).

Soil

%
particles 

0.002 - 0,1 
nnn

%
particles 
0.002 - 2

nun M
a
%

b c OC K.J K K1 s Ks

1 42.0 74.0 3108.0 10.2 2 2 1 0.0144 0.0144 0.0467 0.0467
2 57.9 74.0 4284.6 9.8 3 2 1 0.0920 0.0920 0.0823 0.0823
3 51.5 70.5 3630.7 9.8 2 4 1 0.1005 0.1005 0.0682 0.0682

71.1 78.7 5595.6 3.5 3 3 0.55 0.4734 0.2373
75.0 78.2 5865.0 4.5 3 3 0.45 0.4436 0.1807

U.Z Ilo

72.9 79.0 5759.1 3.9 2 3 0.58 0.4248 0.4248
7 75.0 78.2 5865.0 4.5 3 3 0.26 0.4436 0.3617 0.4016 0.3866

38.8 83.6 3243.7 3.8 2 3 0.16 0.2235 0.2235
21.2 91.3 1935.6 1.1 2 2 0.14 0.1326 0.1649

10 68.3 73.5 5020.0 5.2 3 3 0.35 0.3469 0.2513 0.3049 0.2361
30.1 86.7 2609.7 2.2 3 2 0.51 0.2182 0.2085

11 46.5 82.4 3831.6 1.2 3 1 1 0.3333 0.3334 0.3559 0.3559
73.9 82.7 6111.5 2.4 3 3 0.04 0.5808 0.5388

Z j
72.0 74.9 5392.8 1.5 4 6 0.96 0.6919 0.5110

U. J 1Z 1

25 68.3 73.5 5020.0 5.2 3 3 1 0.3469 0.3469 0.3049 0.3049
oc: Areal correction factor.

According to the R2 value. 87.35% of the vari
ability of factor KI is explained by the three 
variables (sand, silt and OM), with a 99% con
fidence level. By individually analyzing each 
variable, the value of probability for silt is 0.49, 
which is non-significant and with a confidence 
level of 90%. The analysis of the independent 
variables of KI determined that the model may 
be simplified to a new expression, given by Eq 
4 (K2):

K2 = 1.15281 - 0.0109355 x (%sand) - 0.0703187 x (%OM) 
[Eq 4]

The R2 value for K2 explains that 86.76% of the 
variation was due to the sand and OM values.
In order to establish the relationships among the 
formulas, a simple linear regression was used 
(R2). where the K was correlated with Ks. KI 
and K2 (Figure 3A, B and C). The dispersion of 
the data expressed with the graphics allowed for 
verifying the goodness of fit among the differ
ent K values. This was expressed with a major 
adjustment of R2 with the relationship between 
K and KI (0.86), without significant differences 
with the K and K2 (0.85) relationship. In the 

case of Ks. an R2 value of 0.76 was obtained.
The application of RN2 expressed the results ho
mologically. since a value of 0.87 with a K2 of 
0.86 was obtained in the relationship of K with 
KI. However, the value with Ks was 0.67.

The regression analysis and the use of the crite
ria by Nash-Sutcliffe (1970) established that the 
proposed formulas adjust more precisely with 
the K value from the USLE than the simplified 
formula.

The obtained results allowed for defining a new 
methodology for the determination of soil ero
sionability in the stream basin of Pillahuinco 
Grande according to geospatial distribution. This 
erosionability was established simply with a high 
correlation to the values generated by K from the 
USLE and without the need of a wide database. 
Furthermore, the sand and OM data are inexpen
sive and easy to access and determine.

The present work includes new elements for the 
identification of the physical state of a hydro
graphic basin using a universal basic methodol
ogy and SIG. Although many investigators criti
cize the USLE due to a weak scientific base, it
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Figure 3. Lineal relationship between the erosionability factor K and simplified erosionability factor (Ks) (A) KI (B) and 
K2 (C) (t-m2-h) (ha-J-cm)1).

has been an effective tool to predict erosion and 
design strategies for soil conservation (Kirkby 
and Morgan, 1994).

The present work allowed for the estimation of 
the coefficient of erosionability and its space 
distribution for the Pillahuinco Grande stream 
basin, Argentina, through four parametric mod
els, based on the factor K from the USLE, which 
is of great importance for evaluating the risks 
of surface water erosion. The geomorphologic 
variability, caused by geology and soils, signifi
cantly affected the spatial variation of the factor 

K. The zoning and adjustment of K generated a 
dynamic digital tool for using the USLE to de
termine erosionability for the estimation of soil 
loss by surface water erosion.
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Resumen

F.J. Gaspari, A.M. Rodríguez Vagaría y G.E. Senisterra. 2009. Estimación de la 
erosionabilidad del suelo en la cuenca del arroyo Pillahuinco Grande, Provincia de 
Buenos Aires, Argentina. Cien. Inv. Agr. 36(1): 43-52. La evaluación de la erosionabilidad 
de los suelos (K) en una cuenca hidrográfica, depende de la disponibilidad de los recursos 
técnicos, ciencias aplicadas desarrolladas y de tecnología espacial. La metodología utilizada 
para su determinación en la Cuenca del Arroyo Pillahuinco Grande (Argentina), fue la Ecuación 
Universal de Pérdida de Suelo (USLE), establecida a partir de la evaluación cartográfica con 
aplicación de sistema de información geográfica. Se desarrolló una base de datos de ambientes 
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geológicos y asociaciones de suelos donde se observó que la variabilidad geomorfológica, 
causada por la geología y suelos, determina de manera significativa una variación espacial 
de los valores del factor K, encontrándose en un rango de 0,02 a 0,69 (t-m2-h)-(ha-J-cm)_1. A 
partir de K se estableció una nueva cuantificación con el K simplificado de la USLE y con dos 
ecuaciones generadas K1 a partir de arena, limo y materia orgánica, y K2 con arena y materia 
orgánica. Se estableció una regresión lineal y el coeficiente de eficiencia (K2) que indicó el 
ajuste de K para cada modelo desarrollado. Este último, expresó una correlación de 0,76 en 
relación con K simplificado, de 0,87 con K1 y de 0,86 con K2, muy semejantes debido a la baja 
significancia del limo sobre la ecuación. Esta relación demuestra que la aplicación de la K1 y 
K2, según disponibilidad de datos, es mas precisa y exacta que los resultados que pude aportar 
la fórmula del Ks.

Palabras clave: Cuenca, erosionabilidad de suelos, SIG, suelos, USLE.
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