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ABSTRACT

Context. Using certain simplifications. Kompaneets derived a partial differential equation that states the local geometrical and kine­
matical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. 
Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining 
the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock 
wave motion in further plane-parallel stratified media were not found, except for radially stratified media.
Aims. We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified 
media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation 
for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic 
gaseous structures known as superbubbles and supershells are formed.
Methods. Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that 
govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions 
provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted 
Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method.
Results. Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media 
whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type 
(one with exponent k = -1 and the other with k = -2) and a quadratic hyperbolic-secant. From these series solutions, we deduced 
exact solutions for the four media in terms of elemental functions. The exact solution for shock wave propagation in a medium of 
quadratic hyperbolic-secant density distribution is very appropriate to describe the growth of superbubbles in the Galactic disk.
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1. Introduction

The study of the dynamics of a non-uniform gaseous medium 
under the effects of an intense point explosion or impact is of 
great astrophysical interest. The exact theoretical formulation 
of the problem leads to a coupled system of governing partial 
differential equations for the fluid dynamics, which is usually 
so complicated that it must be integrated numerically by means 
of refined computational techniques. Nevertheless, Kompaneets 
(1960) found an analytic solution for a blast wave propagat­
ing in an exponentially stratified ambient medium under certain 
simplifying assumptions. The comparison with accurate numer­
ical solutions shows that the analytic approach of Kompaneets 
works surprisingly well (see review by Bisnovatyi-Kogan & 
Silich 1995, and references therein). Alternative approaches to 
analyze the evolution of blast waves in a nonuniform medium 
confirm the Kompaneets results (Laumbach & Probstein 1969; 
Koo & McKee 1990).

The original motivation of the Kompaneets investigation was 
the description of the gas dynamics effects of a high energy 

nuclear explosion in the Earth's upper atmosphere. In an as­
trophysical context, a similar phenomenon is the explosion of 
a supernova (SN), which produces a strong shock wave in the 
interstellar medium (ISM). Various authors have investigated 
the evolution of SN remnants, using the Kompaneets solution 
(Gulliford 1974; Rosado 1981; Lozinskaya 1992; Maciejewski 
& Cox 1999). The Kompaneets solution has been used and 
adapted for application to various astrophysical phenomena: 
multiple supernovae and stellar winds from OB associations 
(Icke 1988; Basu et al. 1999; Dove et al. 2000; Spitoni et al. 
2008), relativistic blast waves (Shapiro 1979), active galaxy 
winds (Schiano 1985), and impacts within the deep gaseous en­
velopes of giant planets (Korycansky 1992) and onto the Earth's 
surface (Newman et al. 1999).

Bisnovatyi-Kogan & Silich (1995) provide a comprehen­
sive review of astrophysical shock waves in which they present 
the different numerical and analytical methods, including the 
Kompaneets (1960) approximation, to address the problem of 
shock wave propagation in the nonuniform ISM. From the 
Rankine-Hugoniot conditions for the velocity of a strong shock 
front and the assumptions that: (a) the pressure behind the shock 
front is spatially uniform and depends only on time, and (b) 
each surface element of the shock front moves perpendicular to 
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itself, Kompaneets (1960) derived a partial differential equation 
whose solution gives the shape and evolution of a shock front 
created by a strong point explosion in a static stratified medium. 
Kompaneets solved his equation analytically for the particular 
case of a shock front propagating in a plane exponential atmo­
sphere, i.e. with a specific law of vertical stratification. Thus, we 
will use the term "the Kompaneets solution" for the analytic ex­
pression of the shape of a shock front and, by extension, of the 
shell of gas swept up by the shock front during its expansion 
through an exponential atmosphere.

The Kompaneets equation by which Kompaneets obtained 
his particular solution could be used in principle to solve ana­
lytically the wave propagation in different media from the expo­
nential atmosphere. So far, the Kompaneets equation has only 
been solved for an exponential medium, excepting solutions 
for radially stratified media with a power-law density distribu­
tion (Korycansky 1992) and an asymptotic solution for a plane- 
parallel stratified medium with inverse-square decreasing den­
sity (Kontorovich & Pimenov 1998). Hence, our objective is to 
apply the Kompaneets approximation to plane-parallel stratified 
atmospheres with other density distributions.

Our primary motivation is the study of large-scale expanding 
structures in the ISM, known as supershells and superbubbles. 
These objects are envisaged as holes or cavities in the Galactic 
gaseous disk and have sizes from 100 to over 1000 pc (Heiles 
1979; Dickey & Lockman 1990). The interstellar gas is concen­
trated strongly towards the Galactic plane. Hence, the gaseous 
disk of the Galaxy can be represented by stratified layers, par­
allel to the Galactic plane, whose densities decrease with the 
height above or below the Galactic plane. Since one of our aims 
is to obtain approximate formulae describing the evolution of 
supershells in the Galactic disk, we will apply the Kompaneets 
approximation to different stratified media that can represent 
the vertical density distribution of the Galactic disk (Dickey & 
Lockman 1990).

fn Sect. 2, we outline the Kompaneets model, which is linked 
to the adoption of an exponential atmosphere as the medium of 
shock-wave propagation, fn Sect. 3, we extend the Kompaneets 
model to address the problem of shock-wave propagation in 
a generic stratified atmosphere, fn Sects. 4 and 5, we demon­
strate that the general solution, obtained in a power series for the 
generic atmosphere, leads to exact solutions in terms of elemen­
tal functions when applied to certain specific atmospheres: with 
exponential (Sect. 4.1), power-law-type (Sects. 4.2 and 4.3) and 
sech2 (Sect. 5) density distributions. Finally, in Sect. 6 we give a 
summary and conclusions of this work. 

2. The Kompaneets approximation

The method we delineate in this section and use throughout 
the paper is based on that developed originally by Kompaneets 
(1960) and must not be confused with the thin-shell ( or layer) ap­
proximation, which is sometimes called by the same name (see 
Bisnovatyi-Kogan & Silich 1995, for a clear distinction between 
both methods).

We will study the evolution of a shock front referred to a 
cylindrical system of coordinate (r,z), where z is perpendicular 
to the stratification plane, fn the Kompaneets model, the origin 
of the coordinate system is located at the explosion position (or 
energy point source). Since there is symmetry around the z-axis, 
we can omit the azimuthal angle. Therefore the evolution of a 
shock front generated by a point explosion can be represented 
by the function f(r, z, t) = 0. The shock front surface in three

dimensions at a given time t is then obtained by rotating the 
closed curve f(r,z,t) = 0 around the z-axis. Since = 0, we 
get
df dr df dz df df
—---- <• —------+ ^-=i)Vf+ — =0,
dr di dz di dt dt (1)

where Vf is the gradient of f and v is the velocity vector of the 
wave front, whose components are and In the Kompaneets 
approximation (Kompaneets 1960), it is assumed that the veloc­
ity vector of each surface element of the wave front is perpen­
dicular to its own surface element. The function f(r,z,f) = 0 
at a given time i is the level surface of f representing the sur­
face of the wave front at this time. Therefore, Vf at any given 
position on the wave front is perpendicular to the surface at the 
corresponding position. Then, Vf and v are parallel vectors and 
v ■ Vf = |d| ■ |Vf|. Hence the modulus of v is (fromEq. (1))

df/dt
IV/I (2)

We assume that the equation f(r, z, t) = 0 is solved for r as a 
function of z and i, i.e. r = g(z,f). Therefore f(r,z,t) = r - 
g(z, t) = Q,j: = = -f? and = 1. We then have that

With Eq. (3) and = -77 = ~jt, Eq. (2) becomes

1 + Î-Ï\dz) (4)

Assuming that the internal pressure of the bubble, P(i), domi­
nates any external pressure, v is given by the Hugoniot relations 
for a strong shock,

/y+W) 
\ 2 p(z)’ (5)

where y is the ratio of specific heats, and p(z) = poF(z) is the 
initial density distribution of the ambient gas. Considering that 
the internal pressure is uniform, this can be expressed in terms 
of the energy density as

P(i) = (r-l)T(r)X, (6)

where E is the total energy of the explosion, V(f) is the volume 
enclosed by the blast wave, and A(y) is a numerical coefficient 
that can be estimated from the solution to the explosion problem 
in a homogeneous medium. Replacing Eq. (6) in Eq. (5), we 
obtain

dE(y~ - 1)
2poW)

Hz)’1. (7)

In order to simplify the problem, Kompaneets (1960) incorpo­
rated an auxiliary variable y defined by

_ f /.lE(y2-l) dt 
y 1 \ 2p0

Substituting Eq. (7) and transforming the time variable accord­
ing to Eq. (8), Eq. (4) reduces to:
/df)2 ! p-\2Id
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This is the fundamental equation obtained by Kompaneets 
(1960), who showed that Eq. (9) can be solved analytically by 
separation of variables for the case of an exponential atmosphere 
F(z) = exp(-z/H), yielding the solution 

(10)

where I*  = ^.

3. Adapted Kompaneets’ equations: a power-series 
method for solving them

The solutions of Eq. (9), as Eq. (10), describe the shape of a 
shock front as a function of the time-like variable I*,  but they 
say nothing about the trajectories of the parts that form the sur­
face of the shock wave. It is useful to be able to determine the 
trajectories and velocities of individual particles associated with 
the shock front. The Kompaneets model describes the motion 
of the shock front, formally representing the shock discontinu­
ity as a mathematical surface infinitesimally thin. Even though 
the dynamics of the rear disturbed gas layer that accompanies 
the shock front is not analyzed in the Kompaneets model, the 
trajectories of individual mathematical points of the shock front 
( streamlines) can give an approximate idea of the associated gas­
particle trajectories. Indeed, a complete solution for the partic­
ular case of a strong point explosion in a homogeneous atmo­
sphere, the Sedov (1959) solution, demonstrates that most of the 
swept-up shocked ambient gas is concentrated in a thin layer, 
just behind the shock front, and is moving at a velocity close to 
the velocity of the shock front (for more details see Zel'dovich 
& Raizer 1968; Bisnovatyi-Kogan & Silich 1995).

The trajectory or the so-called stream-line of each surface 
element of the wave front can be described by solutions in para­
metric form with r(<7, i+) and z(v>,i*),  where ip is the angle be­
tween the initial direction in which the surface element moves 
from the explosion point (i.e. at I*  = 0) and the stratification 
plane. We will call ip the angle of departure, which determines 
the trajectory of the corresponding surface element. The point 
explosion produces a supersonically expanding sphere of hot 
gas, which acting as a piston, initially induces the formation 
of a concentric spherical shock front that runs ahead into the 
undisturbed surrounding gas. In other words, it is assumed that 
at times close to I*  = 0 the wave front is spherical and expands 
radially with uniform velocity. Hence 0 < <7 < In.

To obtain solutions in parametric form, we will adapt the 
equations of the Kompaneets model outlined in Sect. 2. We ex­
press the solutions in terms of the variables <p and I*.  We define 
I*  = where y is is given by Eq. (8) and H is the scale height 
of the density distribution F(z). Hence I*  is a-dimensional. The 
velocity components of a point of the shock front are now ex­
pressed by = ^77 and According to Eq. (8)

and the definition of i*,  77 _ —- 
Hte)2+te)2l 

to Eq. (7), we get

. Therefore’/7vT7?

and eilUiiting

(11)

demands that the velocity v of a point of the shock front should 
be perpendicular to the part of the front formed by this point and 
its neighbors. For example, for a given i*  = h = const., the 
points {r(<7, Ii), z(<p, ii)j with 0 < <7 < 2/r represent the surface of 
the wave front at this particular i* . Let S1 be an arbitrary point 
on this surface. This point of coordinates (r(<7i, ii ), z(<7i, ii )) lies 
at the intersection of the trajectory of the point with angle <71 
of departure and the wave surface at Ii. The coordinates of a 
point S(r(<7i + d<7, Ii), z(<pi + d<7, Ii)) on the shock front close to 
Si can be expressed by r(<7i + d<7, Ii) = r(<7i, ZT) + ^d<7 and 
z(<7i + d<7, Ii) = z(<7i, Ii) + |^d<7, where the partial derivatives are 
evaluated at <7 = <71 and i*  = ii. The vector from Si to S, which 
we call dSi, is a tangent vector to the wave surface at Si. Since 
the vector between two points is the difference of the position 
vectors to the two points, dSi = S(r(<7i,ii) + |^d<7,z(<7i,ii) + 
^d<7) - Si(r(<7i,ii),z(<7i,ii)) = ^)d<p. Since the velocity
v of the point S1 should be perpendicular to the local surface 
of the shock wave, the scalar product of d.S’i = (J7, £*)d<p  by 
v = ($-, ^)~ must be d.S’i v = 0. Therefore, the orthogonality 
relation at each point of the shock front is

(12) 
dip dt*  dip dt*

The simultaneous solution of Eqs. (11) and (12), which we will 
call the adapted Kompaneets equations, provides r(<7, i*)  and 
z(<7, I*)  that in the framework of the Kompaneets model de­
scribes in complete form the evolution of a shock front in a strat­
ified medium. We suppose a series solution of the form

co

r = r(<7,i+) = ^/•„(<7)/i (13)
W = 1

co

z = Z(<7,I*)  = ^z„(<7)C, (14)
W = 1

where r„ and z„ are functions of <7 which remain to be deter­
mined. To solve Eqs. (11) and (12) using infinite series, we 
should also expand the term F(z)_1 of Eq. (11) in a series of 
powers of z, which can generically be written as

= (15)

Given F(z), the numerical values of the coefficients /„ are nat­
urally obtained from /„ = J 1; expressed in this way the 
coefficients fn are adimensional. We should substitute Eq. (14) in 
Eq. (15) and the result of the substitution in Eq. (11). We should 

CO co

also substitute 77 = and |I1C similar
n=l n=l

expressions for z, derived from Eqs. (13) and (14), into Eqs. (11) 
and (12). After substituting, multiplying the series and summing 
the coefficients of the same power of I*,  Eqs. (11) and (12) can 

co co

be written as = 0 and = 0, respectively. This
n=Q n=l

implies that

co = co(ri,zi) = 0
ci = Ci(ri,zi,/2,Z2) = 0

Equation (11) determines the modulus of v, but we need a second 
condition to determine the direction of v. The Kompaneets model
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Table la. Coefficients ar(i. j) and br(i. j) of the power series for r. corresponding to a stratified medium with a generic density distribution F(z)°.

‘ j ar(i.j)
1 1 1
2 1 ~fi + 2f2

2 ~ 2fi_______________________
3 1 4//- 12///+ 48/

2 3/? + 22/?/ - 16/? - 42//3 - 72/
3 /*  + 22/// + 16/? + 42/7 + 24/4

fi/2___________________________________
-2/? + 127
~fiJ ~ 8/1/2 ~ 67_______________________
5/f + 52// - 152/// - 144/?/ + 180/7 
+264/^4 + 6OO/5
4/f + 104/// - 36077 - 528/7 “ 480/ 
7s + 527/7 + 136/7? + 1927// + 180/7

4 1 -15//-547// +4647/7/- 304//+ 300/3/- 1488/77 
+540// - 576T//4 + 1248//4 + 1920/7 + 3600/6

2 -11// + 322/// + 4647/7/ + 304// + 300/?/ + 1488/77 
-1620// + 576///4 - 3744/74 - 576077s - 6480/g

3 -5/6 - 3427/7 - 7207/7/ + 272// “ 732/3/ + 2304/// 
+ 1620// + 1824//7 + 3744/7 + 5760/ 75 + 3600/6

4 -// - 114//7 - 720//7/ - 272/3 - 732/3/ - 23047/2/3 
-5407/ - 18247/7 - 1248 /7 - 1920/7 “ 720/6

+264/7 + 120/5________________________________
-14/7 - 960/5/ + 3072/?// + 1404/// - 11424/// 
-7848/7? - 14016/ 77 + 32256/7 “ 1920/?/ 
+40320/7 + 633607/g + 70560/
-14/7 - 1440//7 - 1536/3// + 5888/7/ “ 1836/?/ 
+20880//77 - 13447/j - 5688/1/? + 8’9287/74 
-15744/ 774 - 48384/74 - 17760/?/ - 60480//5 
-950407/g - 70560/6
-6// - 960//7 - 6144/3// - 5076/// + 14112/// 
+ 19224/7? + 45504/ 774 + 32256/7 + 37440// / 
+40320/7 + 63360/76 + 30240/
-// - 240//7 - 3072/3/? - 3968/7/ - 2538/// 
-17928//77 - 7056/7 “ 9612//? - 10224/3/ 
-22752/77 - 8064/7 " 18720/?/ - 10080// 
-15840//6 ~ 5040/

0 The terms ■■■ represent the coefficients of the Taylor expansion of F(z) whose numerical values are determined from the specific
distribution function F(z) that we choose.

and

t/i = 7(7,7,71,71) = 0
7 = <7(7,7,71,71,7, 7,72,72) = 0

17» — dn(l 1,71,71,71, ■ ■ - , All, 7+1, 7»+l, 7„+l ) — 0.

These relations allow us to determine (7,72), (7,73), (7,7) and 
so on as a function of (7,71), which is obtained from the initial 
conditions. Since the wave must be spherical for small 7, and 
the condition <?0 = 7 + 7? - 4/7 = 0 must be satisfied, we thus 
have 7 = 27/cosy: and zi = 2Hsin<p. Solving recursively the 
rest of the coefficients (see Appendix A), we find the following 
solution of the system of equations (Eqs. (11) and (12)) 

r = 2h|[cos^]î* + j [/ sin 2ç?J i? + |[-(/2 - 2/2)cosç:

-(/f + 2/2) cos 3^14. + ^■[-2(/13 - 6/3) sin 2^

-(73 + 87i72 + 6/)sin4^ + ..j (16)

7 = 2F/1 [sin y>]i*  - j [fi cos 2çi]i? + - [-(/? - 2/) sin ip 

-(/? + 2/) sin 3<^ + ¿[(/? - 4/f2 + 6/) + 2(// 

-6/)cos2çi + (/? + 8fif2 + 6/3)cos4ç?]i*  + ...j. (17)

We see that the solutions for r„ and z„ are trigonometric poly­
nomials. The coefficients r„ with odd n are finite linear combi­
nations of cos(7v>) with k = 1,3,5,..., n. The solutions for z„ 

with odd n are similar to those of r„, except the functions are 
sin(fo^). The coefficients of even powers with respect to 7 also 
have forms similar to those of odd powers just described above, 
with sin(fo^) and cos(f^) interchanged, with k = 0,2,4,..., n. 
Equations (16) and (17) can be written in a more general form 
as follows:

(18)

1
(27!

ï+l
^2 7( z, j) cos 2(7- l)</>
;=i

(19)

A list of the coefficients ar(i, j), br(i, j), a-( i, j) and b-(i, j) up to 
the terms of 8th order with respect to /*  is given in Tables la 
and lb.

4. Exact analytical solutions of the adapted 
Kompaneets equations for the shock-wave 
propagation in the exponential and other specific 
atmospheres

We found exact analytical solutions of the adapted Kompaneets 
equations for media stratified with an exponential density
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Table lb. Coefficients «,((■ j) and Z+(i. j) of the power series for +*.. corresponding to a stratified medium with an arbritrary density distribution.

Ì j a-(i.j) b-(i.j')
1 1 1 0

2 — 7(1.1)
2 1 ar(2.1) 7 - 4/i/r + 6/

2 ¿7(2,2) -/(2.1)
3 — -/(2.2)

3 1 2//-16//-12//+ 96/ -4/5 + 16/7 - 120// + 48// + 480/
2 flr(3.2) -7/5 - 36/// + 120/// + 120/// - 60// - 312// - 840/
3 flr(3,3) -br(3.2)
4 — -br(3.3)

4 1 -5/6- 114/7 + 528///?- 240/3 + 324/7 15/7 + 168/7 - 1440/7? + 2112//? - 666/7
-1440/// - 540// - 384/// + 96// +5112//// - 5040// - 4860//? + 1296/// - 7200///
+4800// + 10800/ -4032// + 2880/// + 10080// + 50400// + 75600/

2 -9// - 342/// + 528//// + 240/ + 324/7 26/7 + 864/7 - 2880//// - 1332/// + 10080/// + 9720///
+ 1440/// - 1260// + 384/2/ + 14400/// - 16128/./ - 5760// - 40320// - 109440// - 131040/
-3360// - 6720// - 7920/

3 ar(4.3) 16/7 + 1 116/7 + 1632/7? - 6016/// + 1872//', 
-21312/7/ + 2016// + 4752//? -‘8640// 
+ 15552/// + 44352// + 21600/// + 60480// 
+ 106560// + 80640/

4 «r(4.4) -/(4.3)
5 — -br(4.4)

distribution, and with power-law-type density distributions. 
These solutions are exact in the sense we should be able to recon­
struct the solution functions from their power series. Although 
the stratification laws we consider here are certainly ideal, they 
can fit partly or approximately real environments.

The density distribution of a stratified medium is gener­
ally expressed as a function of the altitude, or Z-height, above 
the ground level or symmetry plane. On the other hand, the 
Kompaneets model is referred to a local coordinate system, 
whose origin is the explosion point. Therefore, we need to es­
tablish a relation between both systems of reference. We choose 
the Z-axis, with the origin in the plane of symmetry, and the 
z-axis, with the origin in the explosion point, lying along a com­
mon line that passes through the explosion point and is perpen­
dicular to the plane of symmetry. Both positive axes point in 
the same sense, toward decreasing density. Thus, the relation be­
tween both variables is Z = z + Zb, where Zo is the Z coordinate 
of the explosion point. Now our problem is to find the density 
distribution with respect to z, knowing the density distribution 
with respect to Z: p(Z) = pcG(Z), where pc is the density in 
the ground level or symmetry plane (i.e. the maximum density). 
According to the well-known formula for the change of variables 
in distribution functions, p(z) = PcGWz)]^-, where in our par­

ticular case Z = /(z) = z + Zj and hence 77 = 1. Remembering 
that p(z) = poF(z'), where po is the density'in the explosion site, 
we have that po = pcG(Z0) and that

F(z) =
G(z + Zo)

G(Z0)
(20)

The density distributions we use in this Section have in common 
the property that the transformation of Eq. (20) does not change 
the form of these distribution functions, except the value of the 
scale heights. In the case of the exponential distribution, even 
the scale height is the same after the transformation.

4.1. Media stratified with an exponential density distribution
We will apply the general solution provided by Eqs. (18) 
and (19) to the particular case of an exponential atmosphere, 
where F(z) = exp(-^). The Taylor series expansion of 
F(z)“1 gives F(z)“1 = 2,7=o ¿t(§)"’ whose comparison with 
Eq. (15) indicates that f„ = Inserting these values of f„ in 
their respective terms of the coefficients ar(i, j), br(i, j), a-(i, j) 
and b-(i, j) given in Tables la and lb, we find that if j + i, 
ar(i,j) = br(i, j) = 0, and if j = i, ar(i, j) = (-l)‘+1(2z - 2)! and 
br(i, j) = (-l)‘+1(2z- 1)!. Besides, a-(i, j) = ar(i,j) for j = i, 
b-(i,j) = -br(i,j- 1) for j = z+ 1, and the remaining coeffi­
cients are zero. With these values of ar, br, ..., Eqs. (18) and (19) 
take the simple form

Analyzing the known formulas 27= i = arctan an(^

Z7=i P T**  = 7 ln( 1 - 2/ cos .r + p2) for 0 < x < 2zr and p2 < 1 
(Grandshteyn & Ryzhik 2000), it is easily inferred that Eqs. (21) 
and (22) result from the power series expansion of the following 
functions:

/ /cosa \
r = 2H arctan I-------------- I

\1 -/sin 7

z = -2H In I -^1 - 2/ sin ip + t2

(23)

(24)

Therefore, Eqs. (23) and (24) give the exact parametric solution 
for an exponential density distribution. Applying the trigono­
metric identity costi = , to Eq. (23), we get cos (7) =

, = . from which and with Eq. (24) we can eliminate
y l-2i*  sin^+f' 
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sin p and obtain the Kompaneets solution (Eq. (10)). Instead, if 
we eliminate I*  from Eqs. (23) and (24), we obtain an equation 
for the orbit of a point on the shock front as follows

-2H\n (25)z =

The shape of the orbit is determined by the initial launch angle 
p of the point of the shock front.

Putting p = zr/2 and p = —zr/2 in Eq. (24), we obtain the po­
sition of the top, -2H ln( 1 - I*),  and of the bottom of the wave, 
-2Hln( 1 + i+), respectively. At I*  = 1, the top formally reaches 
infinity and the bottom z = -1.39 H. In the Kompaneets model it 
is assumed implicitly that the density distribution function F(z) 
holds for -1.39H < z < co. However, in real situations, we 
generally have more strict boundary conditions. An example is 
the Galactic disk, whose density distribution can be represented 
by the double exponential function exp Hence, the Galactic 
plane, Z - 0, divides the space in two subspaces, each with its 
own density distribution. If the explosion point is at the height 
Zo above the Galactic plane (i.e. in the upper semi-space, Z > 0), 
the density distribution with respect to Z, with the origin at the 
Galactic plane, is pc exp (-Z/H), where pc is the density on the 
Galactic plane. In order to obtain the density distribution with re­
spect to z, as the Kompannets model requires, we should replace 
Z = Zo + z in pc exp(-Z/H) = pc exp(-Z()/H) exp(-z/H), see 
Eq. (20). Since pc exp (-Zo/H) = p(), the density at the explosion 
site, F(z) does not depend on Zo for this particular distribution. 
We should however remember that if a part of the front mov­
ing toward increasing densities crosses the Galactic plane (i.e. 
when z < -Zo), the posterior evolution of this part of the front 
cannot be studied with the Kompaneets model. A special case 
is that of Zo - 0 in which we can consider separately one half 
of a wave moving in the upper semi-space, toward decreasing 
densities, and the other half of the wave moving in the lower 
semi-space, also toward decreasing densities. Therefore in this 
case the evolution of the wave front is symmetric with respect to 
the Galactic plane.

In Fig. 1, we show the evolution of a shock wave propagating 
in an exponential atmosphere of infinite extension and of exten­
sion limited by a boundary plane below the explosion site (e.g. 
the Galactic plane). In the example of Fig. 1, Zo = H and there­
fore the region between z = -H and -1.39 H should be excluded 
from analysis. If the boundary plane is beyond z < -1.39 H 
(or Zo > 1.39 H), this does not affect the conditions of the 
Kompaneets model, that is to say, this case is equivalent to that 
of an infinite atmosphere. In Fig. 2, we show the evolution of the 
shock wave generated by a strong explosion in the midplane of a 
double exponential disk. To draw the curves of Figs. 1 and 2, we 
used the parametric representation given by Eqs. (23) and (24). 
Certainly, for this purpose, we could also use Eqs. (10) and (25). 
The application of the solution (Eqs. (23) and (24)) to the case of 
Fig. 2 requires some care. Given the symmetry conditions, it is 
only necessary to calculate the positions (r, z) of the points of the 
shock front in the first quadrant; the other positions of the wave 
are obtained by (-r,z), (-r, -z) and (r, -z). We should take into 
account that the points of low p cross the midplane. Equating 
Eq. (24) to zero, we find sin p = 1+/2, indicating that at cer­
tain i*  = ii, points of the shock front with p0 < arcsin p /2 
crossed the midplane. Hence, the first quadrant is defined by 
po < p < zr/2. We assume that the interchange of particles, asso­
ciated with points of the shock front of low p, between the upper 
and lower quadrants does not alter essentially the conditions of 
the Kompaneets model.

r/H
Fig-1- Evolution of the shock front produced by a point explosion in a 
static exponential atmosphere. The solids curves show the shock front 
at successive stages of evolution, represented by the sequence of tp 
(fi) = {0.3,0.6,0.8,0.9,1.0). The curve for the shape of the shock front 
at t, is generated by setting I*  = t, in Eqs. (23) and (24) and plotting 
(r(p.ti).z(p.ti)) for 0 < p < 2a. The dashed curves show trajectories or 
stream-lines of points of the front, launched from the explosion site with 
different angles: {</?,) = {-70°.-40°.-10°. 30°. 50°. 70°. 85°). The curve 
for the trajectory of the point launched with the angle p, is generated by 
setting p = pt in Eqs. (23) and (24) and plotting (r(pt. t*},  z(pt. t*))  
for 0 < i*  < 1. To show an application to the case in which there is a 
boundary plane, such as the Galactic plane, this is indicated by a dashed 
line. The left hand vertical axis shows the coordinate z referred to the 
explosion point. The right hand vertical axis shows the coordinate Z 
referred to the Galactic plane. The correspondence between t*  and the 
elapsed time t is given in Appendix B (see also Figs. B.l and B.2).

4.2. Media stratified with a power-law-type density 
distribution: —z-

We consider here an atmosphere with the density distribution 
jo(Z) = where Z is the height above the ground level (or 
the symmetry plane), pc is the density at the ground level and 
H the scale height. Applying Eq. (20), the density distribution, 
normalized to the density p() at the explosion point as a function 
of the height z referred to the explosion point is F(z) =
where H + Zo, a new scale height, and Zj is the height Z 
of the explosion point.

Comparing F(z)“1 = 1 + -¡j- with Eq. (15), we have f\ = 1 
and f„ = 0 for n > 2. Substituting these coefficients in Tables la 
and lb, we get the numerical values of ar( i, j), br(i, j), a-(i, j) 
and b-(i, j) for this particular stratified medium, which are then 
inserted in Eqs. (18) and (19). To operate on Eq. (18), we can 
use the property cos (2j - 1)^> = Tpppicosp) and sin2jp = 
sin pUipj-i >(cos p), where T and U are the Chebyshev polynomi­
als of the first and second kind, respectively. We observe that the 
summation that represents the coefficient of the power (2z - 1) 
of I*,  or of the power (2z), becomes a polynomial of cos p whose 
terms are canceled except the terms with the two major powers 
(i.e. (2z - 1) and (2z - 3)), namely: |[flr(z, z)(2cos^)2‘_1+flr(z, z- 
1) (2cos^)2‘-3 - (2z - l)flr( z, 0(2 cos y?)2'-3] for the odd powers
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r/H
Fig-2. Evolution of the shock front produced by a point explosion in the 
central plane (Z = 0) of a double exponential stratified medium. The 
burst point is located at the coordinate origin. Each solid curve shows 
the shape of the shock front at the value of the time-like parameter, 
i*  = ti. marked on it. Each dashed curve shows the path followed by the 
point on the shock front with the departure angle. marked on the
curve. The correspondence between t*  and the elapsed time t is given 
in Appendix B (see also Figs. B.l and B.2).

of i*,  and sin ipbr(i, z)[(2 cos y?)2l_1 - (2z - 2)(2cos^)2‘-3] + 
sin ¿>r(z, z-1)(2 cos (i>)21-3 for the even powers of i*.  From 
Tables la and lb, we obtained that tzr(z,z) = (-1)‘+1,
tzr(z, z - 1) = (-1 )!+1 (2/ - 3), bfi, I) = (-1 )!+1 and bfi, i - 1) = 
(-1 )‘+1 (2z - 2). Therefore, Eq. (18) becomes

sing: (-l)‘+1(2i+cosç>)2‘
2cosg> (2z)!

The first and second summations of this equation are easily iden­
tified with sin(2i*  cos g>) - 2/„ cos tp and with 1 - cos(2i*  cos g>), 
respectively. Hence,

f cos2g>
r = 2H*  < i*  cos p +---------- r | sin(2i*  cos <z>) - 2/„ cos <z>) |

( (2cosg>)“
sing> r )

+ -------- il - cos(2i*cos<z>)l ? ■ (26)
2cosg> J

Fig. 3. Form of the shock wave (solid curves) at various evolutionary 
stages in a static gaseous medium with an initial density distribution 
given by the law: —See caption of Fig. 1 for the meaning of the 
different symbols. The correspondence between i*. whose represented 
values are marked on the solid curves, and the elapsed time is given in 
Appendix B.

Proceeding in a similar manner with Eq. (19), we find that this 
equation is reduced to

_ 2 „ sin 2g y (~l)i+1(2^cosy>)2i~1
* 2cosg>y^ (2z-l)!

COS2g> y (-l)‘+1(2i+COS(i>)2‘
+ (2cosg>)2 (2?)!

Note that the first summation is identical to the expan­
sion of sin(2i*  cosg>), and the second summation is equal to 
cos(2i*  cos tp) - 1. Hence, we are left with the final formula

f sin2<£
z = 2PIA------ — sin(2i*  cosg>)

[2 cos ip
cos 2<z> )

+ —------- 77 |cos(2i+cosg>) - 1] >. (27)
(2cosg>)“ )

Using Eqs. (26) and (27), we plot the curves of Fig. 3 represent­
ing the propagation of a shock wave in the gaseous medium in­
vestigated here. We see that the solid (and in parts dotted) curves 
for i*  > 1 look like cardioids. In fact, the curves of Fig. 3 can be 
approximately fitted by a function called the limaçon of Pascal, 
a generalization of the cardioid. In polar coordinates, this fitting 
function can be expressed by p = a + b sin f, where in our case 
a = 2PI+1+, b = H+tp, p = fr2 + z2, and sin^ = z/V?'2 + z2. 
According to this limaçon of Pascal, the solution for the top of 
the wave, where f = n/2, is p = 2H+1+ + H*i 2, which agrees 
with Eq. (27) when ip ~^> æ/2. Thus, the top of the wave is accel­
erated uniformly and does not blow out of the gaseous medium 
in a finite time, unlike the exponential atmosphere in which the 
top of the wave moves to infinity in a finite time tb = 1 (see 
Sect. 4.1). The plane z/H*  = -1 has infinite density and hence 
cannot be overcame by the part of the wave that approaches this 
plane (see Fig. 3). Indeed, this part of the wave, which charac­
terizes to the cardioid, is reflected inward (dotted line of Fig. 3). 
However, the Kompaneets model cannot describe properly the
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Table 2. Coefficients ar(i. j) and br(i. j) of the power series for r. corre­
sponding to a stratified medium with a ! ! A,,, law of density distribution 
in altitude.

i J ar(i.j} br(i.j)
f f f 2
2 f -2 -16

2 -6 -24
3 f 16 272

2 120 960
3 120 720

physical reality in this singular region, in part because the inte­
rior enclosed by the wave is almost empty. Besides, the ground 
level in our model is given by the plane Z = z + Z) = 0, which 
lies above the plane with infinite density. In other words, our 
analysis is valid only for Z^Oorz £ -Zb. The particular case 
of an explosion in the symmetry plane of a disk with the double 
power-law-type density distribution —4- can be solved apply-

+ H
ing Eqs. (26) and (27) in a manner similar to that of the case of 
a double exponential disk (Sect. 4.1); and a display similar to 
Fig. 2 can be generated.

4.3. Media stratified with a power-law-type density 
distribution: , b ,

Here we consider an atmosphere with the density distribution 
jo(Z) = 11 , where Z is the height above the ground level (or
the symmetry plane), pc is the density at ground level and H the 
scale height. Applying Eq. (20), the density distribution, normal­
ized to the density po at the explosion point, as a function of the 
height z referred to the explosion point is F(z) = (1+^_)2, where 
H*  = H + Zo, a new scale height, and Zj is the height Z of the 
explosion point. Hence F(z)“1 = 1 + 2^- + ( g;)2 and compar­
ing with Eq. (15) we have that fi = 2, = 1, and f„ = 0 for
n > 2. Replacing these values for the coefficients f„ in Table la 
and lb, we obtain the values for ar, br, a- and b-. We find that 
a-(i, j) = ar(i,j), £>-(/, 1) = 0, and b-(i,j) = -br(i,j- 1) for 
j > 1. Table 2 displays the values of the coefficients ar and br, 
up to i = 3, with which we can also obtain the corresponding 
values of a- and b-.

To gain some insight into the general solution, we first an­
alyze the solution for the top of the wave: z = H*  (e2t* - 1), 
obtained by integrating Eq. (11), with r = 0, by separation of 
variables. Using the identity e2'* - 1 = coth2 , we see that the 
general solution for z can have the form:

_,,u sin^-(cos^)2u(i*)
coth/*  — sin 95 + 2(cos$p)-n(/*)

since yi = n/2 for the top of the wave. We assume that /<(/*)  = 
«if*  + uii2 + /q4 +... and n(/*)  = iqi*  + to/2 + v5t*  +... In order to 
obtain the values of 111,113,115... and v^, v3, v5..., we compare the 
coefficients of equal power of the series expansion of Eq. (28) 
with those of the solution in a power series obtained substituting 
the coefficients of Table 2, and the rest of the coefficients derived 
from them, in Eq. (19). We take into account that the equivalent 
to H in Eqs. (18) and (19) here is H*.  The first terms of z de­
rived from Eq. (19) are z = 2H*|/*  sin <p-t-p cos 2tp - ( sin 9: +
3 sin + ...] and the first terms derived from the power-series 
expansion of Eq. (28) are z = 2H*{i*sin<^>  + i2 [-ui(cos^)2 + 
(sinsi’)2] + |4 sin<fi[-1 - 3(/q + 2tfi)(cos$c>)2 + 3(sin<^)2] + ...j. 

Equating the coefficients of i2 and of /'*.  we have two equations 
to find the two unknowns: /q and tq. Similarly, equating the co­
efficients of i*  and of b*,  we get the values of 113 and V3, and so 
on. The result is «(/*)  = f(i*)  = i*  + ji*  + ^i*  + j^4 + ..., 
which is identical to the expansion of ysinh2i*.  Hence Eq. (28) 
becomes

sin ip - I (cos <z>)2 sinh 2i*
z = 2H* ----------— ---------------------------  (29)

coth i*  - sin 9? + (cos 9?)“ sinh 2i*

In order to find the analytical solution for r, we see that a an­
alytical form for the solution, compatible with the solution in 
power-series derived from Eq. (18), can be:

r = 2H*
i*  cos <9

1 - 2i*  sinç? + tuff*) ’ 
(30)

where tt>(/*)  = v’2/*  + «q/2 + «’e/2 + ■■■ Proceeding in a way 
similar to the example given in the previous paragraph, we get 
u/(A) = 5 4 - -jf4 + t^4 - f^j4 + ... = -1 + 2i*  coth 2i* . Then 
Eq. (30) takes the final form

r = 2H*
COSlfi

2coth2i*  - 2 sin 92 (31)

The general solutions for r and z, Eqs. (31) and (29), satisfy 
the formula r + (z - 2H*  sinh2 /*) 2 = (7/*  sinh 2/*  )2. This 
means that the surface of the wave is a sphere with a center 
Zo = 2H*  sinh2 i*  and a radius q = H*  sinh 2/*.  In other words, 
the wave evolves as a spherical bubble that expands radially with 
the velocity and rises simultaneously with the velocity . 
Now we rewrite the formula of the surface of the wave in canon­
ical form as

r = sinh 2i*) 2 - (z - 2H*  sinh2 i*) 2, (32)

with which we can easily verify that this equation fullfils the 
Kompaneets relation (Eq. (9)). Equations (31) and (29) also sat­
isfy the following relation:

(r - H*  tan 9O2 + (z + H*) 2 = (H*  sec 9>)2. (33)

This shows that the orbits of the individual points are arcs of 
circles.

Figure 4 shows the evolution of the wave in the gaseous 
medium considered in this Section, according to Eqs. (29) 
and (31), or Eqs. (32) and (33). In the example of Fig. 4, the 
offset of the explosion point from the ground level or symmetry 
plane in the case of a disk is equal to H+/2. The lower limit of 
the valid range of Eqs. ( 29) and ( 31) is the ground level or plane 
of symmetry. The explanation of this is similar to that given for 
the cases considered in Sects. 4.1 and 4.2. For the study of an ex­
plosion on the symmetry plane, such as for example the Galactic 
plane, we can employ Eqs. (29) and (31) following the procedure 
detailed in Sect. 4.1, by means of which we generated Fig. 2. The 
time that the wave takes to break out of this gaseous medium is 
formally infinity (i.e. tb = co), as in the case discussed in the 
previous section.

5. Exact analytical solution of the adapted 
Kompaneets equations for the shock-wave 
propagation in a medium stratified 
with a sech2(Z///) density distribution

The density distribution we consider here is particularly ap­
propriate to model the Z-distribution of the ISM. Assuming
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Table 3. Coefficients a*(i. j) and b*(i. j) of the power series for r. corresponding to a stratified medium with a sech2(Z/H) density distribution.

i j d(/.j)

1 1 1 1
2 1 -1 ( -1 + a-)(l + a) - = (-l + a)( 1 + a)

2 -1(1 + 3a-2) -1(1 + O2)
3 1 T?(_1 +»)2(1 +»)2 g(-l + u)2(l + a)2)

2 1 ( -1 + a-)( 1 + a-)( 1 + 3a2 ) 1 ( -1 + a-)( 1 + a-)( 1 + a2 )
3 1(1 + 10a2 +5u4) 1(3 + u2)(l +3u2)

4 1 -Ti3(-1 + a)3(l + a)3 -$(-l +ff)3(l +ff)3
2 -1| ( -1 + a-)2( 1 + a-)2( 1 + 3a2 ) -f (-1 +u)2(l +u)2(l + a2 )
3 -1(-1 +a)(l +a)(l + 10a2 +5a-4) - j(-l + a)( 1 + a)(3 + a2 )( 1 ■4- 3a2)
4 -1(1 + 21a2 + 35a4 + 7a6) -1(1 WHI + 6a2 +u4)

5 1 jffd-l +u)4(l +u)4 44^(-l + ar)4(l + a)4
2 ^(-1 +u)3(l +u)3(l +3u2) |1|(-1 + a)3(l + a)3(l + a2)
3 If (-1 +u)3(l +u)3(l + 10a2 + 5u4) |Z(_1 + a)2(i + a)2(3 + zFXl + 3a2 )
4 1(-1 +u)(l +u)(l + 21a2 +35u4 + 7u6) |(-1 +u)(l +u)(l + a2 )( 1 + 6a-2 + a-4 )
5 1(1 + 36a2 + 126a-4 + 84a-6 + 9a2) 1(5 + 10a2 +u4)(l + 10a2 +5u4)

Fig-4. Form of the shock wave (solid curves) at various evolutionary 
stages in a static gaseous medium with an initial density distribution 
given by the law: —See caption of Fig. 1 for the meaning of the

1 * " 77 1
different symbols. The correspondence between t*. whose represented
values are marked on the solid curves, and the elapsed time is given in 
Appendix B.

that the stars and gas in the Galactic disk are isothermal and 
self-gravitating, and solving the Poisson equation in hydro­
dynamical equilibrium, Spitzer (1942) obtained a quadratic 
hyperbolic-secant law for the dynamical ¿-distribution of stars 
and ISM (see also Rohlfs 1977). Hence, the gas density distribu­
tion of the Galactic disk can be represented by 

p = pc sech2 (Z/H), (34)

where pc is the gas density in the Galactic plane, Z = 0. 
Denoting by Zo the height of the explosion site and replac­
ing Z = Zo + z in Eq. (34), taking into account that the den­
sity in the explosion site is therefore p() = pcsech2 (Zo/H), 
we obtain the density distribution with respect to z,

F(z) = [cosh(¿/H)+asinh(¿/H)] 2,wherea = tanh(Zj/H),see 
Eq. (20). We can express F(z)“1 as the following power series: 
F(Z)-1 = 1+a^ ! ¡^(zW^ + d+a2)^! S(zW". 
By comparing this series expansion with Eq. (15), we determine 
the coefficients f„, with which we obtain from Tables la and lb 
the expressions for br(i, j), and b-(i,j). We see
that b-(i, 1) = 0, ar(i,]) = and br(i, j) = -b-(i,j + 1).
Then we can conveniently rewrite Eqs. (18) and (19) as:

where fl*( i,j) = and Z?*(z,;)  = J + D-
The expressions for a*(i,  j) and b*ii,  j) are given in Table 3 and, 
fl*(z,;)  = fl*(/J)  andb*(i,j)  = ~b*(i,j).

Now we proceed to find the functions that reproduce the 
power series expansion of Eqs. (35) and (36). A guide is the 
trajectory of the upper point of the shock wave, which is lin­
ear (tp = zr/2 and always r = 0) and can be easily determined 
integrating Eq. (11) by the method of separation of variables. 
Assuming for simplicity that a = 0, i.e. an explosion in the 
Galactic plane, the result is: z = 2Harctanh(tan i+). Using the 
identity arctanh(tan i+) = | In and since sin tp = 1 in
this particular solution, we can guess that the solution for any 
<p is

z = 2H- In
2

a/1 + 2 p sing: + p2 

-\/l - 2psin<g> + p2 
(37)
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where p = tani*.  We arrive at the same conclusion analyz- 
ing tie formula (-»■-' r" jg»» =
(Grandshteyn & Ryzhik 2000) and comparing with Eq. (36) and 
the corresponding coefficients of Table 3. When a = 0, the sec­
ond members of Eqs. (35) and (36), depending on b*(i,  j), are 
eliminated and the remaining members are odd functions of i*.  
On the other hand, the formula U =
5 arctan (Grandshteyn & Ryzhik 2000) can be identified 
with Eq. (35), then the solution for r when a = 0 is 

Ipcostfi
1 - p2

(38)

expanded in power series of I* . Comparing the first terms that 
depend on and q$ with the corresponding ones of Eq. ( 36) or 
Eq. ( 35), i.e. terms of the same power of I*,  we obtain the values 
of ps and qi. We substitute the values found for p3 and q-.. and 
repeat the procedure to find p$ and q$, and so on. The result is: 

p = (1 +a)I*

-gf-l + <r)(l + a)“i*  + —(-1 + a)“( 1 + O')3!*  “ ■■■

(-4")(1-4")í2„_1
— ( 1 + a)Í*  + > (-1 + a) ( 1 + a) B2„------------------I*

I2«)’
(42)

where p = tañí*.  We need to find another exact particular so­
lution for z or r to construct the general solution for r and z. 
We start investigating a solution for z and then proceeding by 
analogy we will find the solution for r. When a = 1, all terms 
of Table 3 become zero except those with indexes j = i. In this 
case, Eq. (36) gives z = 2H{\ i(-l)-1 (2t>)21-1 +
I ZXi(-l)1 c°* 2iy’ (2i*) 2‘), which corresponds to the solution

(43)

(39)

where B„ are the Bernoulli numbers. Equations (40) and (41), 
arrayed to show the symmetry of the solutions, can be written in 
simplified form as:

where p = 2t+. Observe that the coefficients a*(i,  j) with j = i, 
determining this solution, can be reduced to the expression 
2ii_i ' ( |[(1 + a)‘ + U _ a)‘] (see Table 3). This indicates that 
p —t (1 + a)t+ -» 2i+ as a —» 1. The sum of the term (1 - a)‘ in 
this expression also indicates that some terms of the general so­
lution depend on a function q -» (1 - a)i*  as a -» 1. Therefore, 
based on Eqs. (37) and (39), we make the following ansatz for 
the general solution for z:

arctan
(p + q) cos tfi

1 - pq-(p-q) sin<p
(44)

(45)

If p = q = tani*,  we obtain the particular solution of Eq. (37); 
and if p = 2i*  and q = 0, we obtain the particular solution of 
Eq. (39). Similarly, we propose the following general solution 
for i".

r „TT Í 1 /I 2»cos<z>= 2H - j - arctan —------+
(2 \2 1-p2

1 Iqcosip
- arctan —----- —
2 1 - q2

p cosip
1 - p sin <p

1 2»cos<r
- - arctan —------—

2 1 -p2

arctan
C/COSÇ3

1 - q sin <p
1

— arctan
2

2<7cos<¿>\}
I-«2 /J

(41)

We assume that p and q have the form: p = ( 1 + a) t*  + pit3* + 
pst*  + ... and q = (1 - a)I*  + qit3* + qst*  + ... We insert these 
expressions for p and q in Eq. (40) or Eq. (41), which is then

Equation (44) was obtained simplifying Eq. (41) by means of the 
identity arctan x±arctan y = arctan-2-^. Summarizing, Eqs. (44) 
and (45) with p and q given by Eqs. (42) and (43) provide an an­
alytical solution to the problem of the propagation of a strong 
shock in a gaseous disk whose density distribution in Z follows 
the sech2Z law. These equations can be used for any position of 
the explosion point within the disk, and describe the evolution 
of each point of the shock wave, wherever in the disk the wave 
reaches. In Fig. 5, we apply these equations to the case of an ex­
plosion outside the Galactic plane or, speaking in general terms, 
outside the middle plane of a disk, whose plane is defined by 
the maximum of density pc (Eq. (34)). Since Eq. (34) is an even 
function, this represents the density distribution at both sides of 
the middle plane, that is to say for Z > 0 as well as for Z < 0, 
and we do not need to distinguish between these subspaces as 
in the exponential model (Sect. 4.1). Hence, in the framework 
of the Kompaneets approximation, Eqs. (44) and (45) give us a 
complete description of the propagation of the wave in the disk.

The time I*  at which the bubble created by the shock wave 
blows out of the disk is here denoted by tb. In Fig. 6, we plot tb as 
a function of a or Zq/H. Equation (45) shows that, for a > 0, z of 
the top of the wave (tp = tt/2) tends to infinity when p = 1 and, 
for a < 0 and <p = -n/2, when <7=1. Then equating Eq. (42) 
or Eq. (43) to 1 and solving for i+, we obtain tb. If a = 0, an 
explosion in the midplane, then p = q = tan i*  = 1 and hence 
tb =0.78.

We can eliminate from Eqs. (44) and (45) the sin <p and cos <p 
functions and obtain the canonical equation of the surface of 
the wave as a function of time. Because this general equation 
is rather complicated and has little practical value, we do not
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Fig-5. Shock wave propagating in a static gaseous medium with 
seclr(Z//7) density distribution, referred to the explosion point (left 
vertical axis), whose off-position with respect to the Galactic plane (or 
central plane of symmetry) is Z^/H = 0.5, i.e. a = 0.462. Its form 
(solid curves) is shown at different t*: | = {0.2,0.45,0.55,0.61). We
show the stream lines (dashes lines) corresponding to the set of an­
gles {</?,) = {-60°. -10°. 30°. 50°. 70°. 85°). The right hand vertical axis 
shows the coordinate Z referred to the Galactic plane. The correspon­
dence between i* and the elapsed time t is given in Appendix B (see 
also Figs. B.3 and B.4).

Fig. 6. Dependence of the blow out time tb with a (lower horizon­
tal scale) or Z-, (upper horizontal scale) for the wave in a medium of 
sech2(Z/H) density distribution. tb is given by the particular value of 
the parameter i* at which the top of the wave front formally reaches 
infinity. Zq is the height of the blast point and a = tanh .

give it here. However, it is instructive to obtain this equation for 
a particular case, viz., when the explosion occurs in the symme­
try plane, i.e. a = 0. Here p = q = tan i*  and Eqs. (44) and (45) 
are simplified. Solving Eq. (45) for sin p> and Eq. (44) for cos p>, 
and using the identity sin“ ip + cos2 ip = 1, we get

zr = H arctan ^tan2 2/„ - sec2 2/„ tanh2 ■ (46)

It is easy to verify that Eq. (46) satisfies the Kompaneets equa­
tion (Eq. (9)). Eliminating i*  from Eqs. (44) and (45), we obtain

Fig. 7. Evolution of a strong shock wave originated by a point explo­
sion in the midplane of a disk with a sccli2 (Z/ /V) law of density distri­
bution. Setting a- = 0 and the time i* to the desired value, we obtain 
from Eqs. (44) and (45) the set of points {r(</>). z(p)). with p as the inde­
pendent variable ranging from 0 to 2?r. representing the surface of the 
wave at the chosen time (full curves with times marked). Similarly but 
fixing p to the desired value, we obtain the set of points {r(A).C(L)). 
representing the orbit of the point identified with the chosen p (dashed 
lines with angles marked on). The correspondence between i* and the 
elapsed time t is given in Appendix B (see also Figs. B.3 and B.4).

the equation for the orbits of the individual points ( streamlines), 
but again it is easier to compute them by using the equations in 
parametric form. The case we have been treating in this para­
graph, the evolution of a strong shock wave originating in the 
midplane of a disk (i.e. a = 0), is illustrated in Fig. 7.

6. Summary and conclusions

In the light of the Kompaneets approximation, we were able to 
find analytical solutions for the propagation of a shock wave 
in different stratified media. We considered four plane-parallel 
stratified media, including the barometric atmosphere adopted 
in the Kompaneets model, whose density-distribution laws are 
summarized in Table 4. We adapted the Kompaneets equations 
that govern the propagation of the wave in order to obtain so­
lutions in parametric form (Col. 3 of Table 4). The adapted 
Kompaneets equations were solved via an analytical approach 
based on a power-series method, and the exact functions that re­
produce the power-series solutions were identified.

Though the problem was initially posed for the case of a 
point explosion in which all of the kinetic energy is released 
to the environment almost instantaneously, our solutions can be 
also apply to the case of continuous injection of energy ( Schiano 
1985; Basu et al. 1999). Note that Eq. (8) admits a function of 
time for the energy that the source releases. Thus, in an astro- 
physical context, our solutions permit us to study the evolution 
of a bubble created by a supernova explosion, as well as that of 
a bubble insufflated by stellar winds and/or multiple explosions.

Out of the four considered media, the medium of the 
sech2Z density distribution is the most appropriate one to 
represent the overall vertical distribution of the ISM in the 
Galactic disk. There are dynamical reasons (Spitzer 1942; 
Rohlfs 1977) and observational ones (Dickey & Lockman 1990;
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Table 4. Synopsis of the basic equations that characterize the studied gas media and the propagation of a shock wave within them0.

p(Z) = f = F(c) = Solutions for the shock-wave motion Blow-out time tt,

Pc exp(-Z/H) exp (-</#) 1.0' zwaictanlCi
Z = -2H In ( yi - 2i*  sin ip + tj)

for 0 < Z < 00 for —Zo < z< °° for -Zo < z < 00
1 r- 277*{i*cosy  + (2cos^2 [sm(2i*cosy)  2i*cosy)]  + 00

O+Í) ll + 7iC
where H, = H + Zo 27377 [1 - cos(2i*  cos V)]}

Z = 2H*{^W  Sln(2f* C0S + (2cos^ [ C0S<2i* C0S

for 0 < Z < 00 for -Zo < z < 00 for -Zo < z < 00
1 r _ y cos^

■ * co th 27* -sin v 00
(1+Í)2 s+ifr)2

where H. = H + Zo 2 sin (p-cos2 sinh 21*  
* co th i*-sin  92+cos2 92 sinh 21*

for 0 < Z < co for -Zo < z < 00 for -Zo < z < 00

pc sech2 (Z/H) [cosh(c/H) + (I'smli (~//7)| ; r - H arctan 7——l-p<7-lp-<7)sinst 0.5-0.78

where a = tanh (Zq/H)
tt i_ /l+2<7sinst+<72. - n m •

wherep = (1 + a)i*  + X„ 2(“1 + aF'd + 

and, q = -(-1 + u)i*  - V, 2(-l + u)”(l +

for -00 < Z < 00 for —00 < z < 00 for —00 < z < 00

0 Density distribution of the plane-parallel stratified medium, with respect to a Z axis (Col. 1) and to a c axis (Col. 2). The c and Z axes are along 
the line that passes through the explosion point and is perpendicular to the stratification plane. The origin of Z-axis lies on the plane of maximum 
gas density pc or symmetry plane, e.g. the Galactic plane. Both positive axes point in the same sense, toward decreasing densities. We denote the 
Z-position (or altitude) of the explosion point by Zo. origin of the z axis. The positions (r. z) of the wave, given by the parametric equations (Col. 3). 
are referred to the cylindrical coordinate system (r.z) with origin in the explosion point and symmetry around the z-axis. The valid range for each 
function is given.

Marshall et al. 2006) that favor the election of the quadratic 
hyperbolic-secant distribution for galactic studies. The sech2Z 
goes over into the Gaussian for small Z, and for large Z, de­
clines slower that the Gaussian. On the other hand, the use of 
the sech2Z distribution permitted us to find, in the framework of 
the Kompaneets approximation, the most general solution for the 
propagation of a shock wave in a medium such as the Galactic 
disk, without having to numerically solve the complete system 
of hydrodynamic equations. Therefore the solution derived from 
the Kompaneets approximation (the bottom row of Table 4) is 
an important tool for studying Galactic shells and supershells 
(Heiles 1979), originating in stellar energy sources as well as 
impacts of high-velocity clouds on the Galactic disk (Tenorio- 
Tagle 1980, 1981; Olano 2004, 2008).

If a shell reaches radii larger than the scale height of the 
Galactic gaseous disk (see Figs. 5 and 7), we can call it a su­
pershell or shell of a superbubble. By the time of the blow out, 
the internal pressure of a superbubble drops to a very low value 
and other forces begin to dominate the motion of the associ­
ated supershell. The gravity restoring force in the Z-direction, 
the differential rotation of the Galactic disk and the resistive 
forces due to the interaction of the expanding supershell with 
the surrounding ISM govern the later evolutionary stages of 
the supershell (e.g. Olano 1982). The solutions obtained from 
the Kompaneets approximation can give not only the shape 
of the supershell at a certain time, but also the velocity and 
column density for each piece of the supershell's surface (see 
Appendix B). Then these calculations can provide the initial con­
ditions to model the later evolutionary stages of these superstruc­
tures. The application of other approximate analytical methods 
(e.g. Hnatyk & Petruk 1999), of the thin-shell approximation 

(e.g. Mac Low & McCray 1988; Silich 1992) and of the full 
numerical calculations (e.g. Mac Low et al. 1989) to the shock 
wave propagation in each of the stratified media we studied here 
by means of the Kompaneets approximation, would permit us to 
make an interesting comparative study.

Acknowledgements. I dedicate this work to the memory of Dr. F. Raúl Colomb 
(1939-2008), one of the pioneers of the radioastronomy and space activities in 
Argentina, with who I shared an interest in astronomical theories of terrestrial 
catastrophism. My thanks to the anonymous referee for helpful comments which 
helped me to improve the manuscript. Part of this work was supported by the 
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) project 
number PIPI 12-200801-0248.

Appendix A: calculation of the coefficients 
of the power series

The conditions that c„ = 0 and d„ = 0 allow us to obtain the 
solutions for r„(v>) and z„(ç>) (see Sect. 2). The explicit expres­
sions of the coefficients c() and d2 are: c() = q + z2 - 4H2 = 0 
and d\ = nfi + ziZi = 0, which are satisfied by the following 
solution,

z'i = 2/7 cos
Zi = 2Hsin<p. (A.l)

The following pair of coefficients <?i and d2 are given by <?i = 
r\r2+Z\(-f\H + Z2) = 0andd2 = 2;-2fi + HL+2z22i+Z1Z2 = 0. 
Solving ci for r2, after substituting Eqs. (A.l), we find

C = ( fiH-zz) tan y (A.2)
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and hence,

r2 = ( f\H - z2) sec2 p - Z2 tan p. (A.3)

Replacing Eqs. (A.2), (A.3) and (A.l) in J2, then we have </2 = 
2H(Z2 + f\H cos 2^) sec 95 = 0. Note that the terms depending 
on ¿2 are cancelled. Solving J2 for z2 and substituting this result 
in Eq. (A.2) we obtain 

r2 = fHsin2p 
Z2 = -fiHcos2p. (A.4)

Repeating the procedure for c2 = 4r2 + 6n r2 - 4f2z2 - 4/i HZ2 + 
4z| + 6ziz3 = Oandt/s = 3r3fi+2r2f2 + rif3 + 3z3zi+2z2z2+ziz3 = 
0, we obtain r3 and z2. Proceeding in a similar form, we find the 
solutions for the rest of the coefficients.

Appendix B: Applications of the solutions

As a consequence of the propagation of a shock front, a thin 
shell of material swept from the surrounding gaseous medium is 
formed just behind the shock front. Hence, given an observed 
structure that can be interpreted as a shell enclosing a cavity 
we can apply our solutions to it. Having specified the gaseous 
medium in which the shell is immersed, the shape of the shell 
is completely described in terms of the dimensionless parame­
ter i*.  Fitting the theoretical shape of the shell to the observed 
shape, one obtains I*  and even the age t of the shell (if one has 
estimates for the energy E of the explosion, the density near 
the explosion site po and the scale height H of the medium ). 
Inverting the transformation of Eq. (8) and recalling that we de­
fined y = 2Hti,, we can obtain the elapsed time I as a function 
of I*.  The total volume included inside the shell can be written 
V(i*)  = 7T I" rdz = 7rH3£l(t*),  where

Q(f*) = (r/H)2^^d<p (B.l)
J-</2

Hence Eq. (8) implies that

di = r ) di*, (B.2)

and

t = r I VQ(i*) di*, (B.3)
Jo

where r = J (cf. Kompaneets 1960).

The velocity of a point of the shock front d* = ( #-, J£), 
as obtained from the formulae of the chosen atmosphere (Col. 3 
of Table 4), is expressed in units of length/time by means of 
v = v^ = >77)’ where Tn = Tvfe’in accordance
with Eq. (B.l). The relation between the velocity of a surface el­
ement of the shock front and the mean velocity of the disturbed 
gas behind this part of the shock front is not considered in the 
Kompaneets model. However, we can say from general consid­
erations that in the adiabatic phase and even more in the radiative 
phase, when the associated shell of shocked gas cools radiatively 
and becomes thinner, the mean gas velocity of a part of the shell 
tends to be equal to the velocity of the associated part of the 
shock front (Bisnovatyi-Kogan & Silich 1995).

Our formulae permit us also to calculate the column density 
77(7*,  <p) for each point and evolutionary stage of the shell. The

t/r
2

1.5

1

0.5

0

Fig. B.l. Relationship between i* and t/r (full curves and right verti­
cal scale), and relationship between 7* and (dashed curves and left 
vertical scale), for shells in exponential atmospheres. The symbol “a" 
labels the curves corresponding to an infinite medium with a single ex­
ponential density distribution (see Fig. 1). and “b" to a disk with a dou­
ble exponential density distribution in whose symmetry plane is located 
the explosion point (see Fig. 2).

increment of the mass accumulated by an element of surface d,4 
of the front moving along a differential of path, di = |i>*|di*,  
along the orbit characterized by p is po F(z) |i>*|  di*dA.  Although 
d,4 has always the same number of streamlines, the area of d,4 
increases with time because of the divergence of the streamlines. 
The vector (is perpendicular to the velocity vector v (see 
Sect. 2). Hence, the length of the sides of dA lying between the 
streamlines p and p + dp is + (f^) dp. The length of the
other two sides of dA, lying between the azimuthal angles (I> and 
Cb + d<I>. is rd<I>. Therefore the columnar density on each element 
of surface of the shell, defined by 7/(1*,  p) = is given by

'-»3o2

(B.4)

The integral of Eq. (B.3) can be solved analytically with the 
solutions for a shell formed in an atmosphere of a power­
law density distribution (Sects. 4.2 and 4.3). Using the li­
maçon of Pascal as an approximation to the equation of the 
surface of the shell (see Sect. 4.2), Q(/*)  = æ(4î3 + |f’) 
and t = 5 V^f*  22Î’i(-|, where 2Fj refers to
the corresponding hypergeometric function. Thus the set I*  = 
{0.5,1.0,1.5,2.0) of the configurations represented in Fig. 3 is 
converted to the set of ages t = {0.25r, 1.49t,4.34t,9.52t). 
In the case of the second atmosphere in which the shell's 
configurations are spherical with radii p = H*sinh2i*  (see 
Sect. 4.3), Q(/*)  = |()jr)3 and the integral of Eq. (B.3) 
can be expressed in terms of a hypergeometric function 
or naturally solved numerically. Thus the conversion of the 
set I* = {0.5,0.8,1.0,1.2) of Fig. 4 to ages is I =
{0.20r, 1.06t,2.24t,4.45t), respectively. Applied to this last 
case, Eq. (B.4) yields a simple analytic result, namely: 7/(1*,  p) = 
dm/dA, where dm = poH*[-(sec 2^)arctan(sec^sinh2i*  - 
cosh 2i*  tan p) + sec p sinh 2i*  - p sec2 p + 2 sinh2 i*  tan p\ and 
dA = cos pl( cosh 2i*-sin  pf. To refer this column density to the 
elevation angle f measured relative to the r-axis, which agrees 
with p at I*  = 0, we can use the correspondence between both 
angles given in this case by tan f = * = tan p - sec p tanh i* .
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Fig. B.2. Relationship between tp and for shells in exponential
atmospheres and t*  = 0.9. The upper horizontal scales give the corre­
sponding elevation angles. The symbols “a" and “b" mean the same as 
in Fig. B.l.

Fig. B.3. Relationship between i*  and t/r (full curves and right vertical 
scale), and relationship between t*  and for shells in media with 
seclr(Z/H) density distribution. The curves for two positions of the 
explosion point. Zo = 0 (i.e. a- = 0. see Fig. 7) and Zq/H = 0.5 (i.e. 
a = 0.462, see Fig. 5). are represented.

We will now proceed to evaluate numerically the integrals 
of Eqs. (B.l) and (B.3) with the solutions for the evolution of 
shells formed within atmospheres with exponential and sech2 
density distributions (see Sects. 4.1 and 5). Thus we derive 
the curves of Figs. B.l and B.3, relating i*  to 1/t and to 
For the case “b" of Fig. B.l, the lower limit of integration 
is zero and the result of this integration is multiplied by 2. 
Transforming i*  into t by means of the curves of Fig. B.l, we 
find that the sequence of configurations represented in Figs. 1 
and 2, corresponding to the set i* = {0.3,0.6,0.8,0.9,1.0), 
have the ages t = {0.07t,0.39t,0.87t, 1.25t, 1.85t) and t = 
{0.07t, 0.49t, 1.14t, 1 ,65t, 2.45t}, respectively. From the curves 
of Fig. B.3, we get that the stages of evolution represented by 
i*  = {0.2,0.45,0.55,0.61} (Fig. 5) and f*  = {0.3,0.6,0.7,0.78} 
(Fig. 7) have the ages t = {0.02r, 0.19r, 0.34r, 0.47r) and 
t = {0.06r, 0.40t, 0.61t, 0.87t}, respectively. Solving numeri­
cally the integral in Eq. (B.4), we can estimate in units ofpoH the 
column densities on the surface of a swept-up shell that evolved 
in a medium with exponential (Fig. B.2) and with sech2 density 
distribution (Fig. B.4) to a certain stage i*.

90*
90c

Fig. B.4. Column density (in units of p$H) vs. angle ip (or elevation 
angle ft, using the upper horizontal scale) for the shell represented in 
Fig. 5 (Zo = 0.5 H) and for the shell represented in Fig. 7 (Zo = 0). 
when t*  = 0.6.
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