Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector

ATLAS Collaboration ${ }^{\star}$
CERN, 1211 Geneva 23, Switzerland
Received: 16 February 2016 / Accepted: 8 November 2016 / Published online: 29 November 2016
© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract

A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on $20.3 \mathrm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter \tilde{d}. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter \tilde{d} is constrained to the interval $(-0.11,0.05)$ at 68% confidence level, consistent with the Standard Model expectation of $\tilde{d}=0$.

Contents

$$
1 \text { Introduction . } 1
$$

2 Effective Lagrangian framework 2
3 Test of CP invariance and Optimal Observable 3
4 The ATLAS detector 4
5 Simulated samples 4
6 Analysis 6
7 Fitting procedure 8
8 Results 9
9 Conclusions 10
References 11

1 Introduction

The discovery of a Higgs boson by the ATLAS and CMS experiments $[1,2]$ at the LHC [3] offers a novel opportunity to search for new sources of CP violation in the interaction of
the Higgs boson with other Standard Model (SM) particles. C and CP violation is one of the three Sakharov conditions [46] needed to explain the observed baryon asymmetry of the universe. In the SM with massless neutrinos the only source of CP violation is the complex phase in the quark mixing (CKM) matrix $[7,8]$. The measured size of the complex phase and the derived magnitude of CP violation in the early universe is insufficient to explain the observed value of the baryon asymmetry [9] within the $\operatorname{SM}[10,11]$ and, most probably, new sources of CP violation beyond the SM need to be introduced. No observable effect of CP violation is expected in the production or decay of the SM Higgs boson. Hence any observation of CP violation involving the observed Higgs boson would be an unequivocal sign of physics beyond the SM.

The measured Higgs boson production cross sections, branching ratios and derived constraints on coupling-strength modifiers, assuming the tensor structure of the SM, agree with the SM predictions [12,13]. Investigations of spin and CP quantum numbers in bosonic decay modes and measurements of anomalous couplings including CP-violating ones in the decay into a pair of massive electroweak gauge bosons show no hints of deviations from the tensor structure of the SM Higgs boson [14, 15]. Differential cross-section measurements in the decay $H \rightarrow \gamma \gamma$ have been used to set limits on couplings including CP -violating ones in vector-boson fusion production in an effective field theory [16]. However, the observables, including absolute event rates, used in that analysis were CP-even and hence not sensitive to the possible interference between the SM and CP-odd couplings and did not directly test CP invariance. The observables used in this analysis are CP-odd and therefore sensitive to this interference and the measurement is designed as a direct test of CP invariance.

In this paper, a first direct test of CP invariance in Higgs boson production via vector-boson fusion (VBF) is presented, based on proton-proton collision data corresponding

[^0]to an integrated luminosity of $20.3 \mathrm{fb}^{-1}$ collected with the ATLAS detector at $\sqrt{s}=8 \mathrm{TeV}$ in 2012. A CP-odd Optimal Observable [17-19] is employed. The Optimal Observable combines the information from the multi-dimensional phase space in a single quantity calculated from leadingorder matrix elements for VBF production. Hence it does not depend on the decay mode of the Higgs boson. A direct test of CP invariance is possible measuring the mean value of the CP-odd Optimal Observable. Moreover, as described in Sect. 2, an ansatz in the framework of an effective field theory is utilised, in which all CP -violating effects corresponding to operators with dimensions up to six in the couplings between a Higgs boson and an electroweak gauge boson can be described in terms of a single parameter \tilde{d}. Limits on \tilde{d} are derived by analysing the shape of spectra of the Optimal Observable measured in $H \rightarrow \tau \tau$ candidate events that also have two jets tagging VBF production. The event selection, estimation of background contributions and of systematic uncertainties follows the analysis used to establish 4.5σ evidence for the $H \rightarrow \tau \tau$ decay [20]. Only events selected in the VBF category are analysed, and only fully leptonic $\tau_{\text {lep }} \tau_{\text {lep }}$ or semileptonic $\tau_{\text {lep }} \tau_{\text {had }}$ decays of the τ-lepton pair are considered.

The theoretical framework in the context of effective field theories is discussed in Sect. 2 and the methodology of testing CP invariance and the concept of the Optimal Observable are introduced in Sect. 3. After a brief description of the ATLAS detector in Sect. 4, the simulated samples used are summarised in Sect. 5. The experimental analysis is presented in Sect. 6, followed by a description of the statistical method used to determine confidence intervals for \tilde{d} in Sect. 7. The results are discussed in Sect. 8, following which conclusions are given.

2 Effective Lagrangian framework

The effective Lagrangian considered is the SM Lagrangian augmented by CP-violating operators of mass dimension six, which can be constructed from the Higgs doublet Φ and the $\mathrm{U}(1)_{Y}$ and $\mathrm{SU}(2)_{I_{W}, \mathrm{~L}}$ electroweak gauge fields B^{μ} and $W^{a, \mu}$ ($a=1,2,3$), respectively. No CP-conserving dimension-six operators built from these fields are taken into account. All interactions between the Higgs boson and other SM particles (fermions and gluons) are assumed to be as predicted in the SM; i.e. the coupling structure in gluon fusion production and in the decay into a pair of τ-leptons is considered to be the same as in the SM.

The effective $\mathrm{U}(1)_{Y}$ - and $\mathrm{SU}(2)_{I_{W}, \mathrm{~L} \text {-invariant Lagrangian }}$ is then given by (following Refs. [21,22]):
$\mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{SM}}+\frac{f_{\tilde{B} B}}{\Lambda^{2}} \mathcal{O}_{\tilde{B} B}+\frac{f_{\tilde{W} W}}{\Lambda^{2}} \mathcal{O}_{\tilde{W} W}+\frac{f_{\tilde{B}}}{\Lambda^{2}} \mathcal{O}_{\tilde{B}}$
with the three dimension-six operators
$\mathcal{O}_{\tilde{B} B}=\Phi^{+} \hat{\tilde{B}}_{\mu \nu} \hat{B}^{\mu \nu} \Phi$
$\mathcal{O}_{\tilde{W} W}=\Phi^{+} \hat{\tilde{W}}_{\mu \nu} \hat{W}^{\mu \nu} \Phi$
$\mathcal{O}_{\tilde{B}}=\left(D_{\mu} \Phi\right)^{+} \hat{\tilde{B}}^{\mu \nu} D_{\nu} \Phi$.
and three dimensionless Wilson coefficients $f_{\tilde{B} B}, f_{\tilde{W} W}$ and $f_{\tilde{B}} ; \Lambda$ is the scale of new physics.

Here D_{μ} denotes the covariant derivative $D_{\mu}=\partial_{\mu}+\frac{\mathrm{i}}{2} g^{\prime} B_{\mu}+\mathrm{i} g \frac{\sigma_{a}}{2} W_{\mu}^{a}, \hat{V}_{\mu \nu}\left(V=B, W^{a}\right)$ the field-strength tensors and $\tilde{V}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} V^{\rho \sigma}$ the dual fieldstrength tensors, with $\hat{B}_{\mu \nu}+\hat{W}_{\mu \nu}=\mathrm{i} \frac{g^{\prime}}{2} B_{\mu \nu}+\mathrm{i} \frac{g}{2} \sigma^{a} W_{\mu \nu}^{a}$.

The last operator $\mathcal{O}_{\tilde{B}}$ contributes to the CP-violating charged triple gauge-boson couplings $\tilde{\kappa}_{\gamma}$ and $\tilde{\kappa}_{Z}$ via the relation $\tilde{\kappa}_{\gamma}=-\cot ^{2} \theta_{W} \tilde{\kappa}_{Z}=\frac{m_{W}^{2}}{2 \Lambda^{2}} f_{\tilde{B}}$. These CP-violating charged triple gauge boson couplings are constrained by the LEP experiments [23-25] and the contribution from $\mathcal{O}_{\tilde{B}}$ is neglected in the following; i.e. only contributions from $\mathcal{O}_{\tilde{B} B}$ and $\mathcal{O}_{\tilde{W} W}$ are taken into account.

After electroweak symmetry breaking in the unitary gauge the effective Lagrangian in the mass basis of Higgs boson H, photon A and weak gauge bosons Z and $W^{ \pm}$can be written, e.g. as in Ref. [26]:

$$
\begin{align*}
\mathcal{L}_{\mathrm{eff}}= & \mathcal{L}_{\mathrm{SM}}+\tilde{g}_{H A A} H \tilde{A}_{\mu \nu} A^{\mu \nu}+\tilde{g}_{H A Z} H \tilde{A}_{\mu \nu} Z^{\mu \nu} \\
& +\tilde{g}_{H Z Z} H \tilde{Z}_{\mu \nu} Z^{\mu \nu}+\tilde{g}_{H W W} H \tilde{W}_{\mu \nu}^{+} W^{-\mu \nu} \tag{3}
\end{align*}
$$

Only two of the four couplings $\tilde{g}_{H V V}\left(V=W^{ \pm}, Z, \gamma\right)$ are independent due to constraints imposed by $\mathrm{U}(1)_{Y}$ and $\mathrm{SU}(2)_{I_{W}, \mathrm{~L}}$ invariance. They can be expressed in terms of two dimensionless couplings \tilde{d} and \tilde{d}_{B} as:
$\tilde{g}_{H A A}=\frac{g}{2 m_{W}}\left(\tilde{d} \sin ^{2} \theta_{W}+\tilde{d}_{B} \cos ^{2} \theta_{W}\right)$
$\tilde{g}_{H A Z}=\frac{g}{2 m_{W}} \sin 2 \theta_{W}\left(\tilde{d}-\tilde{d}_{B}\right)$
$\tilde{g}_{H Z Z}=\frac{g}{2 m_{W}}\left(\tilde{d} \cos ^{2} \theta_{W}+\tilde{d}_{B} \sin ^{2} \theta_{W}\right)$
$\tilde{g}_{H W W}=\frac{g}{m_{W}} \tilde{d}$.
Hence in general $W W, Z Z, Z \gamma$ and $\gamma \gamma$ fusion contribute to VBF production. The relations between \tilde{d} and $f_{\tilde{W} W}$, and \tilde{d}_{B} and $f_{\tilde{B} B}$ are given by:
$\tilde{d}=-\frac{m_{W}^{2}}{\Lambda^{2}} f_{\tilde{W} W} \quad \tilde{d}_{B}=-\frac{m_{W}^{2}}{\Lambda^{2}} \tan ^{2} \theta_{W} f_{\tilde{B} B}$.
As the different contributions from the various electroweak gauge-boson fusion processes cannot be distinguished experimentally with the current available dataset, the arbitrary choice $\tilde{d}=\tilde{d}_{B}$ is adopted. This yields the following relation for the $\tilde{g}_{H V V}$:
$\tilde{g}_{H A A}=\tilde{g}_{H Z Z}=\frac{1}{2} \tilde{g}_{H W W}=\frac{g}{2 m_{W}} \tilde{d} \quad$ and $\quad \tilde{g}_{H A Z}=0$.

The parameter \tilde{d} is related to the parameter $\hat{\kappa}_{W}=$ $\tilde{\kappa}_{W} / \kappa_{\text {SM }} \tan \alpha$ used in the investigation of CP properties in the decay $H \rightarrow W W$ [15] via $\tilde{d}=-\hat{\kappa}_{W}$. The choice $\tilde{d}=\tilde{d}_{B}$ yields $\hat{\kappa}_{W}=\hat{\kappa}_{Z}$ as assumed in the combination of the $H \rightarrow W W$ and $H \rightarrow Z Z$ decay analyses [15].

The effective Lagrangian yields the following Lorentz structure for each vertex in the Higgs bosons coupling to two identical or charge-conjugated electroweak gauge bosons $H V\left(p_{1}\right) V\left(p_{2}\right)\left(V=W^{ \pm}, Z, \gamma\right)$, with $p_{1,2}$ denoting the momenta of the gauge bosons:

$$
\begin{align*}
T^{\mu \nu}\left(p_{1}, p_{2}\right)= & \sum_{V=W^{ \pm}, Z} \frac{2 m_{V}^{2}}{v} g^{\mu \nu} \\
& +\sum_{V=W^{ \pm}, Z, \gamma} \frac{2 g}{m_{W}} \tilde{d} \varepsilon^{\mu \nu \rho \sigma} p_{1 \rho} p_{2 \sigma} . \tag{8}
\end{align*}
$$

The first terms ($\alpha g^{\mu \nu}$) are CP-even and describe the SM coupling structure, while the second terms ($\alpha \varepsilon^{\mu \nu \rho \sigma} p_{1 \rho} p_{2 \sigma}$) are CP -odd and arise from the CP-odd dimension-six operators. The choice $\tilde{d}=\tilde{d}_{B}$ gives the same coefficients multiplying the CP-odd structure for $H W^{+} W^{-}, H Z Z$ and $H \gamma \gamma$ vertices and a vanishing coupling for the $H Z \gamma$ vertex.

The matrix element \mathcal{M} for VBF production is the sum of a CP-even contribution $\mathcal{M}_{\text {SM }}$ from the SM and a CPodd contribution $\mathcal{M}_{\text {CP-odd }}$ from the dimension-six operators considered:
$\mathcal{M}=\mathcal{M}_{\mathrm{SM}}+\tilde{d} \cdot \mathcal{M}_{\mathrm{CP} \text {-odd }}$.
The differential cross section or squared matrix element has three contributions:

$$
\begin{align*}
|\mathcal{M}|^{2}= & \left|\mathcal{M}_{\mathrm{SM}}\right|^{2}+\tilde{d} \cdot 2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{CP}-\text { odd }}\right) \\
& +\tilde{d}^{2} \cdot\left|\mathcal{M}_{\mathrm{CP}-\text { odd }}\right|^{2} \tag{10}
\end{align*}
$$

The first term $\left|\mathcal{M}_{\text {SM }}\right|^{2}$ and third term $\tilde{d}^{2} \cdot\left|\mathcal{M}_{\text {CP-odd }}\right|^{2}$ are both CP-even and hence do not yield a source of CP violation. The second term $\tilde{d} \cdot 2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\text {CP-odd }}\right)$, stemming from the interference of the two contributions to the matrix element, is CP-odd and is a possible new source of CP violation in the Higgs sector. The interference term integrated over a CP-symmetric part of phase space vanishes and therefore does not contribute to the total cross section and observed event yield after applying CP-symmetric selection criteria. The third term increases the total cross section by an amount quadratic in \tilde{d}, but this is not exploited in the analysis presented here.

3 Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely model-independent way by measuring the mean value of a CP-odd observable $\left\langle\mathcal{O}_{\mathrm{CP}}\right\rangle$. If CP invariance holds, the mean
value has to vanish $\left\langle\mathcal{O}_{\mathrm{CP}}\right\rangle=0$. An observation of a nonvanishing mean value would be a clear sign of CP violation. A simple CP-odd observable for Higgs boson production in VBF, the "signed" difference in the azimuthal angle between the two tagging jets $\Delta \phi_{j j}$, was suggested in Ref. [22] and is formally defined as:

$$
\begin{align*}
& \epsilon_{\mu \nu \rho \sigma} b_{+}^{\mu} p_{+}^{v} b_{-}^{\rho} p_{-}^{\sigma}=2 p_{\mathrm{T}+} p_{\mathrm{T}-} \sin \left(\phi_{+}-\phi_{-}\right) \\
& \quad=2 p_{\mathrm{T}+} p_{\mathrm{T}-} \sin \Delta \phi_{j j} . \tag{11}
\end{align*}
$$

Here b_{+}^{μ} and b_{-}^{μ} denote the normalised four-momenta of the two proton beams, circulating clockwise and anticlockwise, and $p_{+}^{\mu}\left(\phi_{+}\right)$and $p_{-}^{\mu}\left(\phi_{-}\right)$denote the fourmomenta (azimuthal angles) of the two tagging jets, where $p_{+}\left(p_{-}\right)$points into the same detector hemisphere as $b_{+}^{\mu}\left(b_{-}^{\mu}\right)$. This ordering of the tagging jets by hemispheres removes the sign ambiguity in the standard definition of $\Delta \phi_{j j}$.

The final state consisting of the Higgs boson and the two tagging jets can be characterised by seven phase-space variables while assuming the mass of the Higgs boson, neglecting jet masses and exploiting momentum conservation in the plane transverse to the beam line. The concept of the Optimal Observable combines the information of the highdimensional phase space in a single observable, which can be shown to have the highest sensitivity for small values of the parameter of interest and neglects contributions proportional to \tilde{d}^{2} in the matrix element. The method was first suggested for the estimation of a single parameter using the mean value only [17] and via a maximum-likelihood fit to the full distribution [18] using the so-called Optimal Observable of first order. The extension to several parameters and also exploiting the matrix-element contributions quadratic in the parameters by adding an Optimal Observable of second order was introduced in Refs. [19,27,28]. The technique has been applied in various experimental analyses, e.g. Refs. [15,29-39].

The analysis presented here uses only the first-order Optimal Observable $\mathcal{O O}$ (called Optimal Observable below) for the measurement of \tilde{d} via a maximum-likelihood fit to the full distribution. It is defined as the ratio of the interference term in the matrix element to the SM contribution:
$\mathcal{O O}=\frac{2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\text {CP-odd }}\right)}{\left|\mathcal{M}_{\mathrm{SM}}\right|^{2}}$.
Figure 1 shows the distribution of the Optimal Observable, at parton level both for the SM case and for two non-zero \tilde{d} values, which introduce an asymmetry into the distribution and yield a non-vanishing mean value.

The values of the leading-order matrix elements needed for the calculation of the Optimal Observable are extracted from HAWK [41-43]. The evaluation requires the fourmomenta of the Higgs boson and the two tagging jets. The momentum fraction $x_{1}\left(x_{2}\right)$ of the initial-state parton from the proton moving in the positive (negative) z-direction can be derived by exploiting energy-momentum conservation from

Fig. 1 Distribution of the Optimal Observable at parton-level for two arbitrary \tilde{d} values. The SM sample was generated using MADGRAPH5_AMC@NLO [40] (see Sect. 5) at leading order, and then reweighted to different \tilde{d} values. Events are chosen such that there are at least two outgoing partons with $p_{\mathrm{T}}>25 \mathrm{GeV},|\eta|<4.5$, large invariant mass $\left(m\left(p_{1}, p_{2}\right)>500 \mathrm{GeV}\right)$ and large pseudorapidity gap $\left(\Delta \eta\left(p_{1}, p_{2}\right)>2.8\right)$
the Higgs boson and tagging jet four-momenta as:
$x_{1 / 2}^{\text {reco }}=\frac{m_{H j j}}{\sqrt{s}} \mathrm{e}^{ \pm y_{H j j}}$
where $m_{\mathrm{Hjj}}\left(y_{\mathrm{Hjj}}\right)$ is the invariant mass (rapidity) obtained from the vectorially summed four-momenta of the tagging jets and the Higgs boson. Since the flavour of the initialand final-state partons cannot be determined experimentally, the sum over all possible flavour configurations $i j \rightarrow k l H$ weighted by the CT10 leading-order parton distribution functions (PDFs) [44] is calculated separately for the matrix elements in the numerator and denominator:

$$
\begin{align*}
2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{CP}-\mathrm{odd}}\right)= & \sum_{i, j, k, l} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) \\
& \times 2 \operatorname{Re}\left(\left(\mathcal{M}_{\mathrm{SM}}^{i j \rightarrow k l H}\right)^{*} \mathcal{M}_{\mathrm{CP}-\text { odd }}^{i j \rightarrow k l H}\right) \tag{14}
\end{align*}
$$

$$
\begin{equation*}
\left|\mathcal{M}_{\mathrm{SM}}\right|^{2}=\sum_{i, j, k, l} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right)\left|\mathcal{M}_{\mathrm{SM}}^{i j \rightarrow k l H}\right|^{2} \tag{15}
\end{equation*}
$$

4 The ATLAS detector

The ATLAS detector [45] is a multi-purpose detector with a cylindrical geometry. ${ }^{1}$ It comprises an inner detector (ID) surrounded by a thin superconducting solenoid, a

[^1]calorimeter system and an extensive muon spectrometer in a toroidal magnetic field. The ID tracking system consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. It provides precise position and momentum measurements for charged particles and allows efficient identification of jets containing b-hadrons (b-jets) in the pseudorapidity range $|\eta|<2.5$. The ID is immersed in a 2 T axial magnetic field and is surrounded by high-granularity lead/liquid-argon sampling electromagnetic calorimeters which cover the pseudorapidity range $|\eta|<3.2$. A steel/scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity range $(|\eta|<1.7)$. In the forward regions ($1.5<|\eta|<4.9$), the system is complemented by two end-cap calorimeters using liquid argon as active material and copper or tungsten as absorbers. The muon spectrometer surrounds the calorimeters and consists of three large superconducting eight-coil toroids, a system of tracking chambers, and detectors for triggering. The deflection of muons is measured in the region $|\eta|<2.7$ by three layers of precision drift tubes, and cathode strip chambers in the innermost layer for $|\eta|>2.0$. The trigger chambers consist of resistive plate chambers in the barrel $(|\eta|<1.05)$ and thin-gap chambers in the end-cap regions ($1.05<|\eta|<2.4$).

A three-level trigger system [46] is used to select events. A hardware-based Level-1 trigger uses a subset of detector information to reduce the event rate to 75 kHz or less. The rate of accepted events is then reduced to about 400 Hz by two software-based trigger levels, named Level-2 and the Event Filter.

5 Simulated samples

Background and signal events are simulated using various Monte Carlo (MC) event generators, as summarised in Table 1. The generators used for the simulation of the hardscattering process and the model used for the simulation of the parton shower, hadronisation and underlying-event activity are listed. In addition, the cross-section values to which the simulation is normalised and the perturbative order in QCD of the respective calculations are provided.

All the background samples used in this analysis are the same as those employed in Ref. [20], except the ones used to simulate events with the Higgs boson produced via gluon fusion and decaying into the $\tau \tau$ final state. The Higgs-plus-one-jet process is simulated at NLO accuracy in QCD with Powheg-Box [47-49,73], with the MINLO feature [74] applied to include Higgs-plus-zero-jet events at NLO accuracy. This sample is referred to as HJ MINLO. The Powheg-Box event generator is interfaced to Pythia8 [51], and the CT10 [44] parameterisation of the PDFs is used. Higgs boson events produced via gluon fusion and decay-

Table 1 MC event generators used to model the signal and the background processes at $\sqrt{s}=8 \mathrm{TeV}$

Signal	MC generator	$\begin{aligned} & \sigma \times \mathcal{B}[\mathrm{pb}] \\ & \sqrt{s}=8 \mathrm{TeV} \end{aligned}$		
VBF, $H \rightarrow \tau \tau$	Powheg- Box [47-50] Pythia8 [51]	0.100	(N) NLO	[41,42,52-54]
VBF, $H \rightarrow W W$	same as for $H \rightarrow \tau \tau$ signal	0.34	(N) NLO	[41,42,52-54]
Background	MC generator	$\begin{aligned} & \sigma \times \mathcal{B} \\ & \sqrt{s}=8 \end{aligned}$		
$W(\rightarrow \ell \nu),(\ell=e, \mu, \tau)$	ALPGEN [55] + PYTHIA8	36,800	NNLO	[56,57]
$\begin{aligned} & Z / \gamma^{*}(\rightarrow \ell \ell) \\ & 60 \mathrm{GeV}<m_{\ell \ell}<2 \mathrm{TeV} \end{aligned}$	Alpgen + PYthia8	3910	NNLO	[56,57]
$\begin{aligned} & Z / \gamma^{*}(\rightarrow \ell \ell) \\ & 10 \mathrm{GeV}<m_{\ell \ell}<60 \mathrm{GeV} \end{aligned}$	Alpgen + Herwig [58]	13,000	NNLO	[56,57]
$\mathrm{VBF} Z / \gamma^{*}(\rightarrow \ell \ell)$	SHERPA [59]	1.1	LO	[59]
$t \bar{t}$	Powheg-Box + Pythia8	$253{ }^{\dagger}$	NNLO + NNLL	[60-65]
Single top : $W t$	Powheg-Box + Pythia8	22^{\dagger}	NNLO	[66]
Single top : s-channel	Powheg-Box + Pythia8	$5.6{ }^{\dagger}$	NNLO	[67]
Single top : t-channel	AcerMC [68] + PYthia6 [69]	87.8^{\dagger}	NNLO	[70]
$q \bar{q} \rightarrow W W$	Alpgen + Herwig	54^{\dagger}	NLO	[71]
$g g \rightarrow W W$	Gg2WW [72] + HERWIG	$1.4{ }^{\dagger}$	NLO	[72]
$W Z, Z Z$	Herwig	30^{\dagger}	NLO	[71]
$\mathrm{ggF}, H \rightarrow \tau \tau$	HJ MINLO [73,74] + PYTHIA8	1.22	NNLO + NNLL	[54,75-80]
$\mathrm{ggF}, H \rightarrow W W$	Powheg-Box [81] + PYTHIA8	4.16	NNLO + NNLL	[54,75-80]

All Higgs boson events are generated assuming $m_{H}=125 \mathrm{GeV}$. The cross sections times branching fractions $(\sigma \times \mathcal{B})$ used for the normalisation of some processes (many of these are subsequently normalised to data) are included in the last column together with the perturbative order of the QCD calculation. For the signal processes the $H \rightarrow \tau \tau$ and $H \rightarrow W W$ SM branching ratios are included, and for the W and Z / γ^{*} background processes the branching ratios for leptonic decays $(\ell=e, \mu, \tau)$ of the bosons are included. For all other background processes, inclusive cross sections are quoted (marked with a \dagger)
ing into the $W^{+} W^{-}$final state, which are a small component of the background, are simulated, as in Ref. [20], with Powheg [47-49, 81] interfaced to Pythia8 [51]. For these simulated events, the shape of the generated p_{T} distribution is matched to a NNLO + NNLL calculation HRES2.1 $[82,83]$ in the inclusive phase space. Simultaneously, for events with two or more jets, the Higgs boson p_{T} spectrum is reweighted to match the MINLO HJJ predictions [84]. The overall normalisation of the gluon fusion process (ggF) is taken from a calculation at next-to-next-to-leading order (NNLO) [7580] in QCD, including soft-gluon resummation up to next-to-next-to-leading logarithm terms (NNLL) [85]. Next-to-leading-order (NLO) electroweak (EW) corrections are also included [86,87]. Higgs boson events produced via VBF, with SM couplings, are also simulated with PowHEG interfaced with Pythia8 (see Table 1 and Ref. [20]).

Production by VBF is normalised to a cross section calculated with full NLO QCD and EW corrections [41,42,52] with an approximate NNLO QCD correction applied [53]. The NLO EW corrections for VBF production depend on the p_{T} of the Higgs boson, and vary from a few percent at low p_{T} to $\sim 20 \%$ at $p_{\mathrm{T}}=300 \mathrm{GeV}$ [88]. The p_{T} spectrum of the VBF-produced Higgs boson is therefore reweighted, based
on the difference between the Powheg-Box + PYthia calculation and the HAWK [41-43] calculation which includes these corrections.

In the case of VBF-produced Higgs boson events in the presence of anomalous couplings in the $H V V$ vertex, the simulated samples are obtained by applying a matrix element (ME) reweighting method to the VBF SM signal sample. The weight is defined as the ratio of the squared ME value for the VBF process associated with a specific amount of CP mixing (measured in terms of \tilde{d}) to the SM one. The inputs needed for the ME evaluation are the flavour of the incoming partons, the four-momenta and the flavour of the two or three final-state partons and the four-momentum of the Higgs boson. The Bjorken x values of the initial-state partons can be calculated from energy-momentum conservation. The leading-order ME from HAWK [41-43] is used for the $2 \rightarrow 2+H$ or $2 \rightarrow 3+H$ process separately. This reweighting procedure is validated against samples generated with MADGraph5_AMC@NLO [40]. As described in Ref. [89], MADGRAPH5_AMC@NLO can simulate VBF production with anomalous couplings at next-to-leading order. The reweighting procedure proves to be a good approximation to a full next-to-Leading description of the BSM process.

(a)

Fig. 2 Mean of the Optimal Observable as a function of the $\mathrm{BDT}_{\text {score }}$ for the SM signal (black dots with error bars) and for the sum of all background processes (filled red area), for the a $\tau_{\text {lep }} \tau_{\text {lep }}$

In the case of the $H \rightarrow W W$ sample, if CP violation exists in the $H V V$ coupling, it would affect both the VBF production and the $H W W$ decay vertex. It was verified that the shape of the Optimal Observable distribution is independent of any possible CP violation in the $H \rightarrow W W$ decay vertex and that it is identical for $H \rightarrow W W$ and $H \rightarrow \tau \tau$ decays. Hence the same reweighting is applied for VBF-produced events with $H \rightarrow W W$ and $H \rightarrow \tau \tau$ decays.

For all samples, a full simulation of the ATLAS detector response [90] using the GEANT4 program [91] was performed. In addition, multiple simultaneous minimum-bias interactions are simulated using the AU2 [92] parameter tuning of Pythia8. They are overlaid on the simulated signal and background events according to the luminosity profile of the recorded data. The contributions from these pile-up interactions are simulated both within the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings. Finally, the resulting simulated events are processed through the same reconstruction programs as the data.

6 Analysis

After data quality requirements, the integrated luminosity of the $\sqrt{s}=8 \mathrm{TeV}$ dataset used is $20.3 \mathrm{fb}^{-1}$. The triggers, event selection, estimation of background contributions and systematic uncertainties closely follow the analysis in Ref. [20]. In the following a short description of the analysis strategy is given; more details are given in that reference.

Depending on the reconstructed decay modes of the two τ leptons (leptonic or hadronic), events are separated into the dileptonic ($\tau_{\text {lep }} \tau_{\text {lep }}$) and semileptonic ($\tau_{\text {lep }} \tau_{\text {had }}$) channels. Following a channel-specific preselection, a VBF region is selected by requiring at least two jets with $p_{\mathrm{T}}^{j_{1}}>40 \mathrm{GeV}$ (50 GeV) and $p_{\mathrm{T}}^{j_{2}}>30 \mathrm{GeV}$ and a pseudorapidity separa-

(b)
and $\mathbf{b} \tau_{\text {lep }} \tau_{\text {had }}$ channel. The signal and background model is in agreement with the hypothesis of no bias from the BDT score
tion $\Delta \eta\left(j_{1}, j_{2}\right)>2.2(3.0)$ in the $\tau_{\text {lep }} \tau_{\text {lep }}\left(\tau_{\text {lep }} \tau_{\text {had }}\right)$ channel. Events with b-tagged jets are removed to suppress top-quark backgrounds.

Inside the VBF region, boosted decision trees (BDT) ${ }^{2}$ are utilised for separating Higgs boson events produced via VBF from the background (including other Higgs boson production modes). The final signal region in each channel is defined by the events with a $\mathrm{BDT}_{\text {score }}$ value above a threshold of 0.68 for $\tau_{\text {lep }} \tau_{\text {lep }}$ and 0.3 for $\tau_{\text {lep }} \tau_{\text {had }}$. The efficiency of this selection, with respect to the full VBF region, is 49% (51%) for the signal and 3.6% (2.1%) for the sum of background processes for the $\tau_{\text {lep }} \tau_{\text {lep }}\left(\tau_{\text {lep }} \tau_{\text {had }}\right)$ channel. A non-negligible number of events from VBF-produced $H \rightarrow W W$ events survive the $\tau_{\text {lep }} \tau_{\text {lep }}$ selection: they amount to 17% of the overall VBF signal in the signal region. Their contribution is entirely negligible in the $\tau_{\text {lep }} \tau_{\text {had }}$ selection. Inside each signal region, the Optimal Observable is then used as the variable with which to probe for CP violation. The $\mathrm{BDT}_{\text {score }}$ does not affect the mean of the Optimal Observable, as can be seen in Fig. 2.

The modelling of the Optimal Observable distribution for various background processes is validated in dedicated control regions. The top-quark control regions are defined by the same cuts as the corresponding signal region, but inverting the veto on b-tagged jets and not applying the selection on the $\mathrm{BDT}_{\text {score }}$ (in the $\tau_{\text {lep }} \tau_{\text {had }}$ channel a requirement of the transverse mass ${ }^{3} m_{\mathrm{T}}>40 \mathrm{GeV}$ is also applied). In the $\tau_{\text {lep }} \tau_{\text {lep }}$ channel a $Z \rightarrow \ell \ell$ control region is obtained by requiring two same-flavour opposite-charge leptons, the invariant mass of the two leptons to be $80<m_{\ell \ell}<100 \mathrm{GeV}$, and no $\mathrm{BDT}_{\text {score }}$

[^2]
(a)

(b)

(c)

Fig. 3 Distributions of the Optimal Observable for the $\tau_{\text {lep }} \tau_{\text {lep }}$ channel in the a top-quark control region (CR), b $Z \rightarrow \ell \ell \mathrm{CR}$, and \mathbf{c} low$\mathrm{BDT}_{\text {score }} \mathrm{CR}$. The CR definitions are given in the text. These figures
requirement, but otherwise applying the same requirements as for the signal region. These regions are also used to normalise the respective background estimates using a global fit described in the next section. Finally, an additional region is defined for each channel, called the low-BDT score control region, where a background-dominated region orthogonal to the signal region is selected by requiring the $\mathrm{BDT}_{\text {score }}$ to be less than 0.05 for $\tau_{\text {lep }} \tau_{\text {lep }}$ and less than 0.3 for $\tau_{\text {lep }} \tau_{\text {had }}$. The distribution of the Optimal Observable in these regions is shown in Figs. 3 and 4, demonstrating the good description of the data by the background estimates.

The effect of systematic uncertainties on the yields in signal region and on the shape of the Optimal Observable is eval-
use background predictions before the global fit defined in Sect. 7. The "Other" backgrounds include diboson and $Z \rightarrow \ell \ell$. Only statistical uncertainties are shown
uated following the procedures and prescriptions described in Ref. [20]. An additional theoretical uncertainty in the shape of the Optimal Observable is included to account for the signal reweighting procedure described in Sect. 5. This is obtained from the small difference between the Optimal Observable distribution in reweighted samples, compared to samples with anomalous couplings directly generated with MADGRAPH5_AMC@NLO. While the analysis is statistically limited, the most important systematic uncertainties are found to arise from effects on the jet, hadronically decaying τ and electron energy scales; the most important theoretical uncertainty is due to the description of the underlying event and parton shower in the VBF signal sample.

(a)

Fig. 4 Distributions of the Optimal Observable for the $\tau_{\text {lep }} \tau_{\text {had }}$ channel in the a top-quark control region (CR) and blow-BDT score $^{C R}$. The CR definitions are given in the text. These figures use background

(b)
predictions before the global fit defined in Sect. 7. The "Other" backgrounds include diboson and $Z \rightarrow \ell \ell$. Only statistical uncertainties are shown
tors, both of which affect the expected numbers of signal and background events.

After constructing the negative log-likelihood (NLL) curve by calculating the NLL value for each \tilde{d} hypothesis, the approximate central confidence interval at 68% confidence level (CL) is determined from the best estimator $\hat{\tilde{d}}$, at which the NLL curve has its minimum value, by reading off the points at which $\triangle \mathrm{NLL}=\mathrm{NLL}-\mathrm{NLL}_{\text {min }}=0.5$. The expected sensitivity is determined using an Asimov dataset, i.e. a pseudo-data distribution equal to the signal-plus-background expectation for given values of \tilde{d} and the parameters of the fit, in particular the signal strength μ, and not including statistical fluctuations [93].

In both channels, a region of low $\mathrm{BDT}_{\text {score }}$ is obtained as described in the preceding section. The distribution of the $\mathrm{BDT}_{\text {score }}$ itself is fitted in this region, which has a much larger number of background events than the signal region, allowing the nuisance parameters to be constrained by the data. This region provides the main constraint on the $Z \rightarrow \tau \tau$ normalisation, which is free to float in the fit. The event yields from the top-quark (in $\tau_{\text {lep }} \tau_{\text {lep }}$ and $\tau_{\text {lep }} \tau_{\text {had }}$) and $Z \rightarrow \ell \ell$ (in $\tau_{\text {lep }} \tau_{\text {lep }}$ only) control regions defined in the previous section are also included in the fit, to constrain the respective background normalisations, which are also left free in the fit.

The distributions of the Optimal Observable in each channel are shown in Fig. 5, with the nuisance parameters, background and signal normalisation adjusted by the global fit performed for the $\tilde{d}=0$ hypothesis. Table 2 provides the fitted yields of signal and background events, split into the various contributions, in each channel. The number of events observed in data is also provided.

(a)

Fig. 5 Distributions of the Optimal Observable in the signal region for the $\mathbf{a} \tau_{\text {lep }} \tau_{\text {lep }}$ and $\mathbf{b} \tau_{\text {lep }} \tau_{\text {had }}$ channel, after the global fit performed for the $\tilde{d}=0$ hypothesis. The best-fit signal strength is $\mu=1.55_{-0.76}^{+0.87}$. The

Table 2 Event yields in the signal region, after the global fit performed for the $\tilde{d}=0$ hypothesis. The errors include systematic uncertainties

Process	$\tau_{\text {lep }} \tau_{\text {lep }}$	$\tau_{\text {lep }} \tau_{\text {had }}$
Data	54	68
VBF $H \rightarrow \tau \tau / W W$	9.8 ± 2.1	16.7 ± 4.1
$Z \rightarrow \tau \tau$	19.6 ± 1.0	19.1 ± 2.2
Fake lepton $/ \tau$	2.3 ± 0.3	24.1 ± 1.5
$t \bar{t}+$ single-top	3.8 ± 1.0	4.8 ± 0.7
Others	11.5 ± 1.7	5.3 ± 1.6
$g g H / V H, H \rightarrow \tau \tau / W W$	1.6 ± 0.2	2.5 ± 0.7
Sum of backgrounds	38.9 ± 2.3	55.8 ± 3.3

8 Results

The mean value of the Optimal Observable for the signal is expected to be zero for a CP-even case, while there may be deviations in case of CP-violating effects. A mean value of zero is also expected for the background, as has been demonstrated. Hence, the mean value in data should also be consistent with zero if there are no CP -violating effects within the precision of this measurement. The observed values for the mean value in data inside the signal regions are 0.3 ± 0.5 for $\tau_{\text {lep }} \tau_{\text {lep }}$ and -0.3 ± 0.4 for $\tau_{\text {lep }} \tau_{\text {had }}$, fully consistent with zero within statistical uncertainties and thus showing no hint of CP violation.

As described in the previous section, the observed limit on CP-odd couplings is estimated using a global maximumlikelihood fit to the Optimal Observable distributions in data. The observed distribution of $\triangle \mathrm{NLL}$ as a function of the CP-mixing parameter \tilde{d} for the individual channels sepa-

"Other" backgrounds include diboson and $Z \rightarrow \ell \ell$. The error bands include all uncertainties

Fig. 6 Observed and expected Δ NLL as a function of the \tilde{d} values defining the underlying signal hypothesis, for $\tau_{\text {lep }} \tau_{\text {lep }}$ (green), $\tau_{\text {lep }} \tau_{\text {had }}$ (red) and their combination (black). The best-fit values of all nuisance parameters from the combined fit at each \tilde{d} point were used in all cases. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal $(\tilde{d}=0)$, scaled to the best-fit signal-strength value, was used to calculate the expected values, shown in blue. The markers indicate the points where an evaluation was made - the lines are only meant to guide the eye
rately, and for their combination, is shown in Fig. 6. The $\tau_{\text {lep }} \tau_{\text {lep }}$ and $\tau_{\text {lep }} \tau_{\text {had }}$ curves use the best-fit values of all nuisance parameters from the combined fit at each \tilde{d} point. The expected curve is calculated assuming no CP -odd coupling, with the $H \rightarrow \tau \tau$ signal scaled to the signal-strength value ($\mu=1.55_{-0.76}^{+0.87}$) determined from the fit for $\tilde{d}=0$. In the absence of CP violation the curve is expected to have a minimum at $\tilde{d}=0$. Since the first-order Optimal Observable used in the present analysis is only sensitive to small variations in the considered variable, for large \tilde{d} values there is no further

Fig. 7 Expected \triangle NLL for the combination of both channels as a function of the d values defining the underlying signal hypothesis when using the Optimal Observable (black) or the $\Delta \phi_{j j}^{\text {sign }}$ parameter (blue) as the final discriminating variable. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal $(\tilde{d}=0)$ scaled to the SM expectation was used to calculate the expected values in both cases. The markers indicate the points where an evaluation was made - the lines are only meant to guide the eye
discrimination power and thus the Δ NLL curve is expected to flatten out. The observed curve follows this behaviour and is consistent with no CP violation. The regions $\tilde{d}<-0.11$ and $\tilde{d}>0.05$ are excluded at $68 \% \mathrm{CL}$. The expected confidence intervals are $[-0.08,0.08]([-0.18,0.18])$ for an assumed signal strength of $\mu=1.55$ (1.0). The constraints on the CPmixing parameter \tilde{d} based on VBF production can be directly compared to those obtained by studying the Higgs boson decays into vector bosons, as the same relation between the $H W W$ and $H Z Z$ couplings as in Refs. $[14,15]$ is assumed. The 68% CL interval presented in this work is a factor 10 better than the one obtained in Ref. [15].

As a comparison, the same procedure for extracting the CP-mixing parameter \tilde{d} was applied using the $\Delta \phi_{j j}^{\text {sign }}$ observable, previously proposed for this measurement and defined in Eq. 11, rather than the Optimal Observable. The expected Δ NLL curves for a SM Higgs boson signal from the combination of both channels for the two CP -odd observables are shown in Fig. 7, allowing a direct comparison, and clearly indicate the better sensitivity of the Optimal Observable. The observed Δ NLL curve derived from the $\Delta \phi_{j j}^{\text {sign }}$ distribution is also consistent with $\tilde{d}=0$, as shown in Fig. 8, along with the expectation for a signal with $\tilde{d}=0$ scaled to the best-fit signal-strength value $\left(\mu=2.02_{-0.77}^{+0.87}\right)$.

9 Conclusions

A test of CP invariance in the Higgs boson coupling to vector bosons has been performed using the vector-boson fusion

Fig. 8 Observed (black) and expected (red) Δ NLL for the combination of both channels as a function of the \tilde{d} values defining the underlying signal hypothesis when using the $\Delta \phi_{j j}^{\text {sign }}$ parameter as the final discriminating variable. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal $(\tilde{d}=0)$, scaled to the best-fit value of the signal strength in the combined fit when using the $\Delta \phi_{j j}^{\text {sign }}$ parameter ($\mu=2.02_{-0.77}^{+0.87}$) was used to calculate the expected values. The markers indicate the points where an evaluation was made - the lines are only meant to guide the eye
production mode and the $H \rightarrow \tau \tau$ decay. The dataset corresponds to $20.3 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. Event selection, background estimation and evaluation of systematic uncertainties are all very similar to the ATLAS analysis that provided evidence of the $H \rightarrow \tau \tau$ decay. An Optimal Observable is constructed and utilised, and is shown to provide a substantially better sensitivity than the variable traditionally proposed for this kind of study, $\Delta \phi_{j j}^{\text {sign }}$. No sign of CP violation is observed. Using only the dileptonic and semileptonic $H \rightarrow \tau \tau$ channels, and under the assumption $\tilde{d}=\tilde{d}_{B}$, values of \tilde{d} less than -0.11 and greater than 0.05 are excluded at $68 \% \mathrm{CL}$.

This 68% CL interval is a factor of 10 better than the one previously obtained by the ATLAS experiment from Higgs boson decays into vector bosons. In contrast, the present analysis has no sensitivity to constrain a 95\% CL interval with the dataset currently available - however larger data samples in the future and consideration of additional Higgs boson decay channels should make this approach highly competitive.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong

Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Funded by SCOAP ${ }^{3}$.

References

1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 716, 1-29 (2012). arXiv: 1207.7214 [hep-ex]
2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 716, 30-61 (2012). arXiv:1207.7235 [hep-ex]
3. L. Evans, P. Bryant, L.H.C. Machine, JINST 3, S08001 (2008)
4. A.D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5, 32-35 (1967). [Usp. Fiz. Nauk161,61(1991)]
5. A. D. Sakharov, Baryonic asymmetry of the universe. Sov. Phys. JETP. 49, 594-599 (1979). [Zh. Eksp. Teor. Fiz.76,1172(1979)]
6. A.D. Sakharov, Baryon asymmetry of the universe. Sov. Phys. Usp. 34, 417-421 (1991)
7. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531-533 (1963)
8. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652-657 (1973)
9. P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, (2015). arXiv:1502.01589 [astro-ph.CO]
10. P. Huet, E. Sather, Electroweak baryogenesis and standard model CP violation. Phys. Rev. D. 51, 379-394 (1995). arXiv:hep-ph/9404302 [hep-ph]
11. M.B. Gavela et al., Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A. 9, 795-810 (1994). arXiv:hep-ph/9312215 [hep-ph]
12. CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard
model predictions using proton collisions at 7 and 8 TeV . Eur. Phys. J. C. 75, 212 (2015). arXiv:1412.8662 [hep-ex]
13. ATLAS Collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at $\sqrt{s}=7$ and 8 TeV in the ATLAS experiment. Eur. Phys. J. C. 76, 6 (2016). arXiv:1507.04548 [hep-ex]
14. CMS Collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D. 92, 012004 (2015). arXiv:1411.3441 [hep-ex]
15. ATLAS Collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C. 75, 476 (2015). arXiv:1506.05669 [hep-ex]
16. ATLAS Collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the $H \rightarrow \gamma \gamma$ decay channel at $\sqrt{s}=8$ TeV with the ATLAS detector. Phys. Lett. B 753, 69-85 (2016). arXiv:1508.02507 [hep-ex]
17. D. Atwood, A. Soni, Analysis for magnetic moment and electric dipole moment, form-factors of the top quark via $e^{+} e^{-} \rightarrow t \bar{t}$. Phys. Rev. D 45, 2405-2413 (1992)
18. M. Davier et al., The optimal method for the measurement of tau polarization. Phys. Lett. B. 306, 411-417 (1993)
19. M. Diehl, O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in $e^{+} e^{-} \rightarrow W^{+} W^{-}$. Z. Phys. C 62, 397-412 (1994)
20. ATLAS Collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector. JHEP 04, 117 (2015). arXiv: 1501.04943 [hep-ex]
21. W. Buchmuller, D. Wyler, Effective Lagrangian Analysis of new interactions and flavor conservation. Nucl. Phys. B. 268, 621-653 (1986)
22. V. Hankele et al., Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC. Phys. Rev. D. 74, 095001 (2006). arXiv:hep-ph/0609075 [hep-ph]
23. OPAL Collaboration, G. Abbiendi et al., Measurement of W boson polarizations and CP violating triple gauge couplings from $W^{+} W^{-}$production at LEP. Eur. Phys. J. C. 19, 229-240 (2001). arXiv:hep-ex/0009021 [hep-ex]
24. ALEPH Collaboration, S. Schael et al., Improved measurement of the triple gauge-boson couplings gamma WW and ZWW in $e^{+} e^{-}$ collisions. Phys. Lett. B 614, 7-26 (2005)
25. DELPHI Collaboration, J. Abdallah et al., Study of W boson polarisations and Triple Gauge boson Couplings in the reaction $e^{+} e^{-} \rightarrow W^{+} W^{-}$at LEP 2. Eur. Phys. J. C 54, 345-364 (2008). arXiv:0801.1235 [hep-ex]
26. L3 Collaboration, P. Achard et al., Search for anomalous couplings in the Higgs sector at LEP. Phys. Lett. B 589, 89-102 (2004). arXiv:hep-ex/0403037 [hep-ex]
27. M. Diehl, O. Nachtmann, Anomalous three gauge couplings in $e^{+} e^{-} \rightarrow t \bar{t}$ and 'optimal' strategies for their measurement. Eur. Phys. J. C 1, 177-190 (1998). arXiv:hep-ph/9702208 [hep-ph]
28. M. Diehl, O. Nachtmann, F. Nagel, Triple gauge couplings in polarized $e^{+} e^{-} \rightarrow t \bar{t}$ and their measurement using optimal observables. Eur. Phys. J. C 27, 375-397 (2003). arXiv:hep-ph/0209229 [hepph]
29. ALEPH Collaboration, D. Buskulic et al., Measurement of the tau polarization at the Z resonance. Z. Phys. C 59, 369-386 (1993)
30. DELPHI Collaboration, P. Abreu et al., Measurements of the tau polarization in Z0 decays. Z. Phys. C 67, 183-202 (1995)
31. L3 Collaboration, M. Acciarri et al., Measurement of tau polarization at LEP. Phys. Lett. B 429, 387-398 (1998)
32. OPAL Collaboration, G. Abbiendi et al., Precision neutral current asymmetry parameter measurements from the tau polarization at LEP. Eur. Phys. J. C 21 1-21 (2001). arXiv:hep-ex/0103045 [hepex]
33. OPAL Collaboration, R. Akers et al., A test of CP invariance in $Z^{0} \rightarrow \tau^{+} \tau^{-}$using optimal observables. Z. Phys. C 66, 31-44 (1995)
34. OPAL Collaboration, G. Abbiendi et al., Search for $C P$ violation in $Z^{0} \rightarrow \tau^{+} \tau^{-}$and an upper limit on the weak dipole moment of the tau lepton. Z. Phys. C 74, 403-412 (1997)
35. ALEPH Collaboration, R. Barate et al., Measurement of triple gauge boson couplings at $172-\mathrm{GeV}$. Phys. Lett. B 422, 369-383 (1998)
36. DELPHI Collaboration, P. Abreu et al., Measurements of the trilinear gauge boson couplings $W W V(V=$ gamma, $Z)$ in $e^{+} e^{-}$ collisions at $183-\mathrm{GeV}$. Phys. Lett. B 459, 382-396 (1999)
37. L3 Collaboration, M. Acciarri et al., Measurement of triple gauge boson couplings of the W boson at LEP. Phys. Lett. B 467, 171-184 (1999). arXiv:hep-ex/9910008 [hep-ex]
38. OPAL Collaboration, G. Abbiendi et al., $W^{+} W^{-}$production and triple gauge boson couplings at LEP energies up to $183-\mathrm{GeV}$. Eur. Phys. J. C 8, 191-215 (1999). arXiv:hep-ex/9811028 [hep-ex]
39. M. Schumacher, Determination of the CP quantum numbers of the Higgs boson and test of CP invariance in the Higgs-strahlung process at a future $e^{+} e^{-}$linear collider. LC-PHSM-2001-003 (2001)
40. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 79 (2014). arXiv:1405.0301 [hep-ph]
41. M. Ciccolini, A. Denner, S. Dittmaier, Strong and electroweak corrections to the production of Higgs +2 -jets via weak interactions at the LHC. Phys. Rev. Lett. 99, 161803 (2007). arXiv:0707.0381 [hep-ph]
42. M. Ciccolini, A. Denner, S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC. Phys. Rev. D. 77, 013002 (2008). arXiv:0710.4749 [hep-ph]
43. A. Denner, S. Dittmaier, S. Kallweit, A. Möck, HAWK 2.0: a Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders. Comput. Phys. Commun. 195, 161-171 (2015). arXiv:1412.5390 [hep-ph]
44. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D. 82, 074024 (2010). arXiv:1007.2241 [hep-ph]
45. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST. 3 S08003 (2008)
46. ATLAS Collaboration, Performance of the ATLAS Trigger System in 2010, Eur. Phys. J. C. 72, 1849 (2012). arXiv: 1110.1530 [hep-ex]
47. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). arXiv:hep-ph/0409146 [hep-ph]
48. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the Powheg method. JHEP 11, 070 (2007). arXiv:0709.2092 [hep-ph]
49. S. Alioli et al., A general framework for implementing NLO calculations in shower Monte Carlo programs: the Powheg BOX. JHEP 06, 043 (2010). arXiv: 1002.2581 [hep-ph]
50. P. Nason, C. Oleari, Higgs boson production in vector boson fusion. JHEP 02 (037 2010). arXiv:0911.5299 [hep-ph]
51. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to Pythia 8.1. Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]
52. K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons. Comput. Phys. Commun. 180, 1661 (2009). arXiv:0811.4559 [hep-ph]
53. P. Bolzoni et al., Higgs production via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett. 105, 011801 (2010). arXiv:1003.4451 [hep-ph]
54. S. Heinemeyer, C. Mariotti, G. Passarino, R. Tanaka (Eds.) (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004 (CERN, Geneva, 2013). arXiv:1307.1347 [hep-ph]
55. M. Mangano et al., Alpgen, a generator for hard multiparton processes in hadronic collisions. JHEP 07, 001 (2003). arXiv:hep-ph/0206293 [hep-ph]
56. S. Catani et al., Vector boson production at hadron colliders: a fully exclusive QCD calculation at next-to-next-to-leading order. Phys. Rev. Lett. 103, 082001 (2009). arXiv:0903.2120 [hep-ph]
57. S. Catani, M. Grazzini, Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the Large Hadron Collider. Phys. Rev. Lett. 98, 222002 (2007)
58. G. Corcella et al., HERWIG 6.5 release note (2002). arXiv:hep-ph/0210213 [hep-ph]
59. T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02, 007 (2009).arXiv:0811.4622 [hep-ph]
60. M. Cacciari et al., Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys. Lett. B. 710, 612 (2012). arXiv:1111.5869 [hep-ph]
61. P. Bärnreuther, M. Czakon, A. Mitov, Percent level precision physics at the tevatron: first genuine NNLO QCD corrections to $q \bar{q} \rightarrow t \bar{t}+X$. Phys. Rev. Lett. 109, 132001 (2012). arXiv:1204.5201 [hep-ph]
62. M. Czakon, A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP 12, 054 (2012). arXiv:1207.0236 [hep-ph]
63. M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. JHEP 01, 080 (2013). arXiv: 1210.6832 [hep-ph]
64. M. Czakon, P. Fiedler, A. Mitov, The total top quark pair production cross-section at hadron colliders through $\mathcal{O}\left(\alpha_{S}^{4}\right)$. Phys. Rev. Lett. 110, 252004 (2013). arXiv:1303.6254 [hep-ph]
65. M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at Hadron colliders. Comput. Phys. Commun. 185, 2930 (2014). arXiv:1112.5675 [hep-ph]
66. N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W^{-}or H^{-}. Phys. Rev. D. 82, 054018 (2010). arXiv: 1005.4451 [hep-ph]
67. N. Kidonakis, Next-to-next-to-leading logarithm resummation for s-channel single top quark production. Phys. Rev. D. 81, 054028 (2010). arXiv:1001.5034 [hep-ph]
68. B.P. Kersevan, E. Richter-Was, The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun. 184, 919 (2013). arXiv:hep-ph/0405247 [hep-ph]
69. T. Sjöstrand, S. Mrenna, P. Skands, Pythia 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]
70. N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D. 83, 091503 (2011). arXiv: 1103.2792 [hep-ph]
71. J.M. Campbell, K.R. Ellis, C. Williams, Vector boson pair production at the LHC. JHEP 07, 018 (2011). arXiv: 1105.0020 [hep-ph]
72. T. Binoth et al., Gluon-induced W-boson pair production at the LHC. JHEP 12, 046 (2006). arXiv:hep-ph/0611170 [hep-ph]
73. J. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM. JHEP 12, 92 (2012). arXiv: 1202.5475 [hep-ph]
74. K. Hamilton, P. Nason, G. Zanderighi, MINLO: multi-scale improved NLO. JHEP 10, 155 (2012). arXiv: 1206.3572 [hep-ph]
75. A. Djouadi, M. Spira, P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections. Phys. Lett. B. 264, 440 (1991)
76. S. Dawson, Radiative corrections to Higgs boson production. Nucl. Phys. B 359, 283 (1991)
77. M. Spira et al., Higgs boson production at the LHC. Nucl. Phys. B 453, 17 (1995). arXiv:hep-ph/9504378 [hep-ph]
78. R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). arXiv:hep-ph/0201206 [hep-ph]
79. C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B 646, 220 (2002). arXiv:hep-ph/0207004 [hep-ph]
80. V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B 665, 325 (2003). arXiv:hep-ph/0302135 [hep-ph]
81. E. Bagnaschi et al., Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM. JHEP 02, 088 (2012). arXiv:1111.2854 [hep-ph]
82. D. de Florian et al., Higgs boson production at the LHC: transverse momentum resummation effects in the $H \rightarrow 2 \gamma, H \rightarrow W W \rightarrow$ $\ell \nu \ell \nu$ and $H \rightarrow Z Z \rightarrow 4 \ell$ decay modes. JHEP 06, 132 (2012). arXiv:1203.6321 [hep-ph]
83. M. Grazzini, H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC. JHEP 09, 129 (2013). arXiv:1306.4581 [hep-ph]
84. J.M. Campbell, R.K. Ellis, G. Zanderighi, Next-to-Leading order Higgs +2 jet production via gluon fusion. JHEP 10, 028 (2006). arXiv:hep-ph/0608194 [hep-ph]
85. S. Catani et al., Soft gluon resummation for Higgs boson production at hadron colliders. JHEP 07, 028 (2003). arXiv:hep-ph/0306211 [hep-ph]
86. U. Aglietti et al., Two loop light fermion contribution to Higgs production and decays. Phys. Lett. B 595, 432 (2004). arXiv:hep-ph/0404071 [hep-ph]
87. S. Actis et al., NLO electroweak corrections to Higgs boson production at hadron colliders. Phys. Lett. B 670, 12 (2008). arXiv:0809.1301 [hep-ph]
88. S. Dittmaier et al. (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs cross sections: 2. Differential distributions, CERN-2012-002 (CERN, Geneva, 2012). arXiv:1201.3084 [hep-ph]
89. F. Maltoni et al., Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects. Eur. Phys. J. C 74, 2710 (2014). arXiv: 1311.1829 [hep-ph]
90. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [hep-ex]
91. GEANT4 Collaboration, S. Agostinelli et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods A. 506, 250 (2003)
92. Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003 (2012). http://cds.cern.ch/record/1474107. Accessed 22 Aug 2012
93. G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). [Erratum: Eur. Phys. J. C. 73 (2013) 2501]. arXiv:1007.1727 [physics.data-an]

ATLAS Collaboration

G. Aad ${ }^{87}$, B. Abbott ${ }^{114}$, O. Abdinov ${ }^{11}$, J. Abdallah ${ }^{159}$, B. Abeloos ${ }^{118}, \quad$ R. Aben ${ }^{108}$, M. Abolins ${ }^{92}$, R. Aben ${ }^{108}$, M. Abolins ${ }^{92}$, O. S. AbouZeid ${ }^{138}$, N. L. Abraham ${ }^{150}$, H. Abramowicz ${ }^{154}$, H. Abreu ${ }^{153}$, R. Abreu ${ }^{117}$, Y. Abulaiti ${ }^{147 \mathrm{a}}$, 147b , B. S. Acharya ${ }^{163 a, 163 b, a}$, L. Adamczyk ${ }^{39 \mathrm{a}}$, D. L. Adams ${ }^{26}$, J. Adelman ${ }^{109}$, S. Adomeit ${ }^{101}$, T. Adye ${ }^{132}$, A. A. Affolder ${ }^{76}$, T. Agatonovic-Jovin ${ }^{13}$, J. Agricola ${ }^{55}$, J. A. Aguilar-Saavedra ${ }^{127 a, 127 f}$, S. P. Ahlen ${ }^{23}$, F. Ahmadov ${ }^{67, \text {, }}$, G. Aielli ${ }^{134 a, 134 b}$, H. Akerstedt ${ }^{147 \mathrm{a}, 147 \mathrm{~b},} \quad$ T. P. A. Åkesson ${ }^{83}, \quad$ A. V. Akimov ${ }^{97}, \quad$ G. L. Alberghi ${ }^{21 a, 21 \mathrm{~b}}, \quad$ J. Albert ${ }^{168}$, S. Albrand ${ }^{56}$, M. J. Alconada Verzini ${ }^{73}, \quad$ M. Aleksa ${ }^{31}$, I. N. Aleksandrov ${ }^{67}$, \quad C. Alexa ${ }^{276}$, G. Alexander ${ }^{154}$, \quad T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{114}, \quad$ G. Alimonti ${ }^{93 a}$, J. Alison ${ }^{32}, \quad$ S. P. Alkire ${ }^{36}, \quad$ B. M. M. Allbrooke ${ }^{150}$, B. W. Allen ${ }^{117}$, P. P. Allport ${ }^{18}$, A. Aloisio ${ }^{105 a, 105 b}, \quad$ A. Alonso ${ }^{37}, \quad$ F. Alonso ${ }^{73}, \quad$ C. Alpigiani ${ }^{139}$, B. Alvarez Gonzalez ${ }^{31}$, D. Álvarez Piqueras ${ }^{166}$, M. G. Alviggi ${ }^{105 a, 105 b}, \quad$ B. T. Amadio ${ }^{15}, \quad$ K. Amako ${ }^{68}, \quad$ Y. Amaral Coutinho ${ }^{25 a}$, C. Amelung ${ }^{24}$, D. Amidei ${ }^{91}$, S. P. Amor Dos Santos ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, A. Amorim ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, S. Amoroso ${ }^{31}$, N. Amram ${ }^{154}$, G. Amundsen ${ }^{24}$, C. Anastopoulos ${ }^{140}$, L. S. Ancu ${ }^{50}, \quad$ N. Andari ${ }^{109}, \quad$ T. Andeen ${ }^{32}, \quad$ C. F. Anders ${ }^{59 b}, \quad$ G. Anders ${ }^{31}, \quad$ J. K. Anders ${ }^{76}, \quad$ K. J. Anderson ${ }^{32}$, A. Andreazza ${ }^{93 a, 93 b}$, V. Andrei ${ }^{59 \mathrm{a}}, \quad$ S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{108}$, P. Anger ${ }^{45}$, A. Angerami ${ }^{36}$, F. Anghinolfi ${ }^{31}$, A. V. Anisenkov ${ }^{110, \mathrm{c}}, \quad$ N. Anjos ${ }^{12}, \quad$ A. Annovi ${ }^{125 a, 125 b}, \quad$ M. Antonelli ${ }^{48}$, A. Antonov ${ }^{99}$, J. Antos ${ }^{145 \mathrm{~b}}, \quad$ F. Anulli ${ }^{133 \mathrm{a}}$, M. Aoki ${ }^{68}$, L. Aperio Bella ${ }^{18}$, G. Arabidze ${ }^{92}$, Y. Arai ${ }^{68}$, J. P. Araque ${ }^{127 \mathrm{a}}$, A. T. H. Arce ${ }^{46}$, F. A. Arduh ${ }^{73}$, J.-F. Arguin ${ }^{96}$, S. Argyropoulos ${ }^{64}$, M. Arik ${ }^{19 \mathrm{a}}$, A. J. Armbruster ${ }^{31}$, L. J. Armitage ${ }^{78}$, O. Arnaez ${ }^{31}$, H. Arnold ${ }^{49}$, M. Arratia ${ }^{29}$, O. Arslan ${ }^{22}$, A. Artamonov ${ }^{98}$, G. Artoni ${ }^{121}$, S. Artz ${ }^{85}$, S. Asai ${ }^{156}$, N. Asbah ${ }^{43}$, A. Ashkenazi ${ }^{154}$, B. Åsman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Asquith ${ }^{150}$, K. Assamagan ${ }^{26}$, R. Astalos ${ }^{145 a}$, M. Atkinson ${ }^{165}$, N. B. Atlay ${ }^{142}$, K. Augsten ${ }^{129}$, G. Avolio ${ }^{31}$, B. Axen ${ }^{15}$, M. K. Ayoub ${ }^{118}$,
 M. Backhaus ${ }^{31}$, P. Bagiacchi ${ }^{133 a, 133 b}$, P. Bagnaia ${ }^{133 a, 133 b}$, Y. Bai ${ }^{34 \mathrm{a}}$, J. T. Baines ${ }^{132}$, O. K. Baker ${ }^{175}$, E. M. Baldin ${ }^{110, \mathrm{c}}$,
 L. Barak ${ }^{31}$, E. L. Barberio ${ }^{90}$, D. Barberis ${ }^{51 a, 51 b}$, M. Barbero ${ }^{87}$, T. Barillari ${ }^{102}$, M. Barisonzi ${ }^{163 a, 163 b}$, T. Barklow ${ }^{144}$, N. Barlow ${ }^{29}$, S. L. Barnes ${ }^{86}$, B. M. Barnett ${ }^{132}$, R. M. Barnett ${ }^{15}$, Z. Barnovska ${ }^{5}$, A. Baroncelli ${ }^{135 \mathrm{a}}$, G. Barone ${ }^{24}$, A. J. Barr ${ }^{121}$, L. Barranco Navarro ${ }^{166}$, F. Barreiro ${ }^{84}$, J. Barreiro Guimarães da Costa ${ }^{34 \mathrm{a}}$, R. Bartoldus ${ }^{144}$, A. E. Barton ${ }^{74}$, P. Bartos ${ }^{145 a}$, A. Basalaev ${ }^{124}$, A. Bassalat ${ }^{118}$, A. Basye ${ }^{165}$, R. L. Bates ${ }^{54}$, S. J. Batist ${ }^{159}$, J. R. Batley ${ }^{29}$, M. Battaglia ${ }^{138}$, M. Bauce ${ }^{133 a, 133 b}$, F. Bauer ${ }^{137}$, H. S. Bawa ${ }^{144, f}$, J. B. Beacham ${ }^{112}$, M. D. Beattie ${ }^{74}$, T. Beau ${ }^{82}$, P. H. Beauchemin ${ }^{162}$, P. Bechtle ${ }^{22}$, H. P. Beck ${ }^{17, g}$, K. Becker ${ }^{121}$, M. Becker ${ }^{85}$, M. Beckingham ${ }^{169}$, C. Becot 111, A. J. Beddall ${ }^{19 \mathrm{~d}}$, A. Beddall ${ }^{196}$, V. A. Bednyakov ${ }^{67}$, M. Bedognetti ${ }^{108}$, C. P. Bee ${ }^{149}$, L. J. Beemster ${ }^{108}$, T. A. Beermann ${ }^{31}$, M. Begel ${ }^{26}$, J. K. Behr ${ }^{43}$, C. Belanger-Champagne ${ }^{89}$, A. S. Bell ${ }^{80}$, W. H. Bell ${ }^{50}$, G. Bella ${ }^{154}$, L. Bellagamba ${ }^{21 a}$, A. Bellerive ${ }^{30}$, M. Bellomo ${ }^{88}$, K. Belotskiy ${ }^{99}$, O. Beltramello ${ }^{31}$, N. L. Belyaev ${ }^{99}$, O. Benary ${ }^{154}$, D. Benchekroun ${ }^{136 a}$, M. Bender ${ }^{101}$, K. Bendtz ${ }^{147 a, 147 b}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{154}$, E. Benhar Noccioli ${ }^{175}$, J. Benitez ${ }^{64}$, J. A. Benitez Garcia ${ }^{160 b}$, D. P. Benjamin ${ }^{46}$,
J. R. Bensinger ${ }^{24}$, S. Bentvelsen ${ }^{108}$, L. Beresford ${ }^{121}$, M. Beretta ${ }^{48}$, D. Berge ${ }^{108}$, E. Bergeaas Kuutmann ${ }^{164}$, N. Berger ${ }^{5}$, F. Berghaus ${ }^{168}$, J. Beringer ${ }^{15}$, S. Berlendis ${ }^{56}$, N. R. Bernard ${ }^{88}$, C. Bernius ${ }^{111}$, F. U. Bernlochner ${ }^{22}$, T. Berry ${ }^{79}$, P. Berta ${ }^{130}$, C. Bertella ${ }^{85}$, G. Bertoli ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Bertolucci ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, I. A. Bertram ${ }^{74}$, C. Bertsche ${ }^{114}$, D. Bertsche ${ }^{114}$, G. J. Besjes ${ }^{37}$, O. Bessidskaia Bylund ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Bessner ${ }^{43}$, N. Besson ${ }^{137}$, C. Betancourt ${ }^{49}$, S. Bethke ${ }^{102}$, A. J. Bevan ${ }^{78}$, W. Bhimji ${ }^{15}$, R. M. Bianchi ${ }^{126}$, L. Bianchini ${ }^{24}$, M. Bianco ${ }^{31}$, O. Biebel ${ }^{101}$, D. Biedermann ${ }^{16}$, R. Bielski ${ }^{86}$, N. V. Biesuz ${ }^{125 a, 125 b}$, M. Biglietti ${ }^{135 \mathrm{a}}$, J. Bilbao De Mendizabal ${ }^{50}$, H. Bilokon ${ }^{48}$, M. Bindi ${ }^{55}$, S. Binet ${ }^{118}$, A. Bingul ${ }^{19 \mathrm{~b}}$, C. Bini ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, S. Biondi ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, D. M. Bjergaard ${ }^{46}$, C. W. Black ${ }^{151}$, J. E. Black ${ }^{144}$, K. M. Black ${ }^{23}$, D. Blackburn ${ }^{139}$, R. E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{137}$, J. E. Blanco ${ }^{79}$, T. Blazek ${ }^{145 a}$, I. Bloch ${ }^{43}$, C. Blocker ${ }^{24}$, W. Blum ${ }^{85, *}$, U. Blumenschein ${ }^{55}$,
 D. Boerner ${ }^{174}$, J. A. Bogaerts ${ }^{31}$, D. Bogavac ${ }^{13}$, A. G. Bogdanchikov ${ }^{110}$, C. Bohm ${ }^{147 a}$, V. Boisvert ${ }^{79}$, T. Bold ${ }^{39 \mathrm{a}}$, V. Boldea ${ }^{27 b}$, A. S. Boldyrev ${ }^{163 a, 163 c}$, M. Bomben ${ }^{82}$, M. Bona ${ }^{78}$, M. Boonekamp ${ }^{137}$, A. Borisov ${ }^{131}$, G. Borissov ${ }^{74}$, J. Bortfeldt ${ }^{101}$, D. Bortoletto ${ }^{121}$, V. Bortolotto ${ }^{61 \mathrm{a}, 61 \mathrm{~b}, 61 \mathrm{c}}$, K. Bos ${ }^{108}$, D. Boscherini ${ }^{21 \mathrm{a}}$, M. Bosman ${ }^{12}$, J. D. Bossio Sola ${ }^{28}$, J. Boudreau ${ }^{126}$, J. Bouffard ${ }^{2}$, E. V. Bouhova-Thacker ${ }^{74}$, D. Boumediene ${ }^{35}$, C. Bourdarios ${ }^{118}$, S. K. Boutle ${ }^{54}$, A. Boveia ${ }^{31}$, J. Boyd ${ }^{31}$, I. R. Boyko ${ }^{67}$, J. Bracinik ${ }^{18}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{55}$, O. Brandt ${ }^{59 \text { a }}$, U. Bratzler ${ }^{157}$, B. Brau ${ }^{88}$, J. E. Brau ${ }^{117}$, H. M. Braun ${ }^{174, *}$, W. D. Breaden Madden ${ }^{54}$, K. Brendlinger ${ }^{123}$, A. J. Brennan ${ }^{90}$, L. Brenner ${ }^{108}$, R. Brenner ${ }^{164}$, S. Bressler ${ }^{171}$, T. M. Bristow ${ }^{47}$, D. Britton ${ }^{54}$, D. Britzger ${ }^{43}$, F. M. Brochu ${ }^{29}$, I. Brock ${ }^{22}$, R. Brock ${ }^{92}$, G. Brooijmans ${ }^{36}$, T. Brooks ${ }^{79}$, W. K. Brooks ${ }^{33 b}$, J. Brosamer ${ }^{15}$, E. Brost ${ }^{117}$, J. H Broughton ${ }^{18}$, P. A. Bruckman de Renstrom ${ }^{40}$, D. Bruncko ${ }^{145 \mathrm{~b}}$, R. Bruneliere ${ }^{49}$, A. Bruni ${ }^{21 \mathrm{a}}$, G. Bruni ${ }^{21 \mathrm{a}}$, B. H. Brunt ${ }^{29}$, M. Bruschi ${ }^{21 \mathrm{a}}$, N. Bruscino ${ }^{22}$, P. Bryant ${ }^{32}$, L. Bryngemark ${ }^{83}$, T. Buanes ${ }^{14}$, \quad Q. Buat ${ }^{143}$, P. Buchholz ${ }^{142}$, A. G. Buckley ${ }^{54}$, I. A. Budagov ${ }^{67}$, F. Buehrer ${ }^{49}$, M. K. Bugge ${ }^{120}$, O. Bulekov ${ }^{99}$, D. Bullock ${ }^{8}$, H. Burckhart ${ }^{31}$, S. Burdin ${ }^{76}$, C. D. Burgard ${ }^{49}$, B. Burghgrave ${ }^{109}$, K. Burka ${ }^{40}$, S. Burke ${ }^{132}$, I. Burmeister ${ }^{44}$, E. Busato ${ }^{35}$, D. Büscher ${ }^{49}$, V. Büscher ${ }^{85}$, P. Bussey ${ }^{54}$, J. M. Butler ${ }^{23}$, A. I. Butt ${ }^{3}$, C. M. Buttar ${ }^{54}$, J. M. Butterworth ${ }^{80}$, P. Butti ${ }^{108}$, W. Buttinger ${ }^{26}$, A. Buzatu ${ }^{54}$, A. R. Buzykaev ${ }^{110, \mathrm{c}}$, S. Cabrera Urbán ${ }^{166}$, D. Caforio ${ }^{129}$, V. M. Cairo ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, O. Cakir ${ }^{4 \mathrm{a}}$, N. Calace ${ }^{50}$, P. Calafiura ${ }^{15}$, A. Calandri ${ }^{87}$, G. Calderini ${ }^{82}$, P. Calfayan ${ }^{101}$, L. P. Caloba ${ }^{25 a}$, D. Calvet ${ }^{35}$, S. Calvet ${ }^{35}$, T. P. Calvet ${ }^{87}$, R. Camacho Toro ${ }^{32}$, S. Camarda ${ }^{31}$, P. Camarri ${ }^{134 a, 134 b}$, D. Cameron ${ }^{120}$, R. Caminal Armadans ${ }^{165}$, C. Camincher ${ }^{56}$, S. Campana ${ }^{31}$, M. Campanelli ${ }^{80}$, A. Campoverde ${ }^{149}$, V. Canale ${ }^{105 \mathrm{a}, 105 \mathrm{~b}}$, A. Canepa ${ }^{160 \mathrm{a}}$, M. Cano Bret $^{34 \mathrm{e}}$, J. Cantero ${ }^{84}$, R. Cantrill ${ }^{127 \mathrm{a}}$, T. Cao ${ }^{41}$, M. D. M. Capeans Garrido ${ }^{31}$, I. Caprini ${ }^{27 \mathrm{~b}}$, M. Caprini ${ }^{27 \mathrm{~b}}$, M. Capua ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}, \quad$ R. Caputo ${ }^{85}$, \quad R. M. Carbone ${ }^{36}$, R. Cardarelli ${ }^{134 \mathrm{a}}$, F. Cardillo ${ }^{49}$, T. Carli 31, G. Carlino ${ }^{105 a}$, L. Carminati ${ }^{93 a, 93 b}$, S. Caron ${ }^{107}$, E. Carquin ${ }^{33 b}$, G. D. Carrillo-Montoya ${ }^{31}$, J. R. Carter ${ }^{29}$, J. Carvalho ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, D. Casadei ${ }^{80}$, M. P. Casado ${ }^{12, h}$, M. Casolino ${ }^{12}$, \quad D. W. Casper ${ }^{66}$, E. Castaneda-Miranda ${ }^{146 a}$, A. Castelli ${ }^{108}$, V. Castillo Gimenez ${ }^{166}$, N. F. Castro ${ }^{127 \mathrm{a}, \mathrm{i}}$, A. Catinaccio ${ }^{31}$, J. R. Catmore ${ }^{120}$, A. Cattai ${ }^{31}$, J. Caudron ${ }^{85}$, V. Cavaliere ${ }^{165}$, \quad E. Cavallaro ${ }^{12}$, \quad D. Cavalli ${ }^{93 a}$, M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{125 a}$, 125b , F. Ceradini ${ }^{135 a, 135 b}$, L. Cerda Alberich ${ }^{166}$, B. C. Cerio ${ }^{46}$, A. S. Cerqueira ${ }^{25 b}$, A. Cerri ${ }^{150}$, L. Cerrito ${ }^{78}$, F. Cerutti ${ }^{15}$, M. Cerv ${ }^{31}$, A. Cervelli ${ }^{17}$, S. A. Cetin ${ }^{19 \mathrm{c}}$, A. Chafaq ${ }^{136 a}$, D. Chakraborty ${ }^{109}$, I. Chalupkova ${ }^{130}$, S. K. Chan ${ }^{58}$, Y. L. Chan ${ }^{61 \mathrm{a}}$, P. Chang ${ }^{165}$, J. D. Chapman ${ }^{29}$, D. G. Charlton ${ }^{18}$, A. Chatterjee ${ }^{50}$, C. C. Chau ${ }^{159}$, C. A. Chavez Barajas ${ }^{150}$, S. Che ${ }^{112}$, S. Cheatham ${ }^{74}$, A. Chegwidden ${ }^{92}$, S. Chekanov ${ }^{6}$, S. V. Chekulaev ${ }^{160 \mathrm{a}}$, G. A. Chelkov ${ }^{67, j}$, M. A. Chelstowska ${ }^{91}$, C. Chen ${ }^{65}$, H. Chen ${ }^{26}$, K. Chen ${ }^{149}$, S. Chen ${ }^{34 \mathrm{c}}$, S. Chen ${ }^{156}$, X. Chen ${ }^{34 \mathrm{f}}$, Y. Chen ${ }^{69}$, H. C. Cheng ${ }^{91}$, H. J Cheng ${ }^{34 \mathrm{a}}$, Y. Cheng ${ }^{32}$, A. Cheplakov ${ }^{67}$, E. Cheremushkina ${ }^{131}$, R. Cherkaoui El Moursli ${ }^{136 e}$, V. Chernyatin ${ }^{26, *}$, E. Cheu ${ }^{7}$, L. Chevalier ${ }^{137}$, V. Chiarella ${ }^{48}$, G. Chiarelli ${ }^{125 a, 125 b}$, G. Chiodini ${ }^{75 a}$, A. S. Chisholm ${ }^{18}$, A. Chitan ${ }^{27 b}$, M. V. Chizhov ${ }^{67}$, K. Choi ${ }^{62}$, A. R. Chomont ${ }^{35}$, S. Chouridou ${ }^{9}$, B. K. B. Chow ${ }^{101}$, V. Christodoulou ${ }^{80}$, D. Chromek-Burckhart ${ }^{31}$, J. Chudoba ${ }^{128}$, A. J. Chuinard ${ }^{89}$, J. J. Chwastowski ${ }^{40}$, L. Chytka ${ }^{116}$, G. Ciapetti ${ }^{133 a, 133 b}$, A. K. Ciftci ${ }^{4 a}$, D. Cinca ${ }^{54}$, V. Cindro ${ }^{77}$, I. A. Cioara ${ }^{22}$, A. Ciocio ${ }^{15}$, F. Cirotto ${ }^{105 a, 105 b}$, Z. H. Citron ${ }^{171}$, M. Ciubancan ${ }^{27 b}$, A. Clark ${ }^{50}$, B. L. Clark ${ }^{58}$, P. J. Clark ${ }^{47}$, R. N. Clarke ${ }^{15}$, C. Clement ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, Y. Coadou ${ }^{87}$, M. Cobal ${ }^{163 \mathrm{a}, 163 \mathrm{c}}$, A. Coccaro ${ }^{50}$, J. Cochran ${ }^{65}$, L. Coffey ${ }^{24}$, L. Colasurdo ${ }^{107}$, B. Cole ${ }^{36}$, S. Cole ${ }^{109}$, A. P. Colijn ${ }^{108}$, J. Collot ${ }^{56}$, T. Colombo ${ }^{31}$, G. Compostella ${ }^{102}$, P. Conde Muiño ${ }^{127 a, 127 b}$, E. Coniavitis ${ }^{49}$, S. H. Connell ${ }^{146 \mathrm{~b}}$, I. A. Connelly ${ }^{79}$, V. Consorti ${ }^{49}$, S. Constantinescu ${ }^{27 b}$, C. Conta ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, G. Conti ${ }^{31}$, F. Conventi ${ }^{105 a, k}$, M. Cooke ${ }^{15}$, B. D. Cooper ${ }^{80}$, A. M. Cooper-Sarkar ${ }^{121}$, T. Cornelissen ${ }^{174}$, M. Corradi ${ }^{133 a, 133 b}$, F. Corriveau ${ }^{89,1}$, A. Corso-Radu ${ }^{66}$, A. Cortes-Gonzalez ${ }^{12}$, G. Cortiana ${ }^{102}$, G. Costa ${ }^{93 a}$, M. J. Costa ${ }^{166}$, D. Costanzo ${ }^{140}$, G. Cottin ${ }^{29}$, G. Cowan ${ }^{79}$, B. E. Cox ${ }^{86}$, K. Cranmer ${ }^{111}$, S. J. Crawley ${ }^{54}$, G. Cree ${ }^{30}$, S. Crépé-Renaudin ${ }^{56}$, F. Crescioli ${ }^{82}$, W. A. Cribbs ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Crispin Ortuzar ${ }^{121}$, M. Cristinziani ${ }^{22}$, V. Croft ${ }^{107}$, G. Crosetti ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, T. Cuhadar Donszelmann ${ }^{140}$, J. Cummings ${ }^{175}$, M. Curatolo ${ }^{48}$, J. Cúth ${ }^{85}$, C. Cuthbert ${ }^{151}$, H. Czirr ${ }^{142}$, P. Czodrowski ${ }^{3}$, S. D’Auria ${ }^{54}$, M. D’Onofrio ${ }^{76}$, M. J. Da Cunha Sargedas De Sousa ${ }^{127 a, 127 b}$, C. Da Via ${ }^{86}$, W. Dabrowski ${ }^{39 a}$, T. Dai ${ }^{91}$, O. Dale ${ }^{14}$, F. Dallaire ${ }^{96}$, C. Dallapiccola ${ }^{88}, \quad$ M. Dam $^{37}, \quad$ J. R. Dandoy ${ }^{32}, \quad$ N. P. Dang ${ }^{49}, \quad$ A. C. Daniells ${ }^{18}, \quad$ N. S. Dann ${ }^{86}, \quad$ M. Danninger ${ }^{167}$, M. Dano Hoffmann ${ }^{137}$, V. Dao ${ }^{49}$, G. Darbo ${ }^{51 \mathrm{a}}$, S. Darmora ${ }^{8}$, J. Dassoulas ${ }^{3}$, A. Dattagupta ${ }^{62}$, W. Davey ${ }^{22}$, C. David ${ }^{168}$, T. Davidek ${ }^{130}$, M. Davies ${ }^{154}$, P. Davison ${ }^{80}$, Y. Davygora ${ }^{59 \mathrm{a}}$, E. Dawe ${ }^{90}$, I. Dawson ${ }^{140}$, R. K. Daya-Ishmukhametova ${ }^{88}$,
K. De ${ }^{8}$, R. de Asmundis ${ }^{105 a}$, A. De Benedetti ${ }^{114}$, S. De Castro ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, S. De Cecco ${ }^{82}$, N. De Groot ${ }^{107}$, P. de Jong ${ }^{108}$ H. De la Torre ${ }^{84}$, F. De Lorenzi ${ }^{65}$, D. De Pedis ${ }^{133 a}$, A. De Salvo ${ }^{133 a}$, U. De Sanctis ${ }^{150}$, A. De Santo ${ }^{150}$, J. B. De Vivie De Regie ${ }^{118}$, W. J. Dearnaley ${ }^{74}$, R. Debbe ${ }^{26}$, C. Debenedetti ${ }^{138}$, D. V. Dedovich ${ }^{67}$, I. Deigaard ${ }^{108}$, J. Del Peso ${ }^{84}$, T. Del Prete ${ }^{125 a, 125 b}$, D. Delgove ${ }^{118}$, F. Deliot ${ }^{137}$, C. M. Delitzsch ${ }^{50}$, M. Deliyergiyev ${ }^{77}$, A. Dell’Acqua ${ }^{31}$, L. Dell'Asta ${ }^{23}$, M. Dell'Orso ${ }^{125 a, 125 b}$, M. Della Pietra ${ }^{105 a, k}$, D. della Volpe ${ }^{50}$, M. Delmastro ${ }^{5}$, P. A. Delsart ${ }^{56}$, C. Deluca ${ }^{108}$, D. A. DeMarco ${ }^{159}$, S. Demers ${ }^{175}$, M. Demichev ${ }^{67}$, A. Demilly ${ }^{82}$, S. P. Denisov ${ }^{131}$, D. Denysiuk ${ }^{137}$, D. Derendarz ${ }^{40}$, J. E. Derkaoui ${ }^{136 d}$, F. Derue ${ }^{82}$, P. Dervan ${ }^{76}$, K. Desch ${ }^{22}$, C. Deterre ${ }^{43}$, K. Dette ${ }^{44}$, P. O. Deviveiros ${ }^{31}$, A. Dewhurst ${ }^{132}$, S. Dhaliwal ${ }^{24}$, A. Di Ciaccio ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, L. Di Ciaccio ${ }^{5}$, W. K. Di Clemente ${ }^{123}$, A. Di Domenico ${ }^{133 a, 133 b}$, C. Di Donato ${ }^{133 a, 133 b}$, A. Di Girolamo ${ }^{31}$, B. Di Girolamo ${ }^{31}$, A. Di Mattia ${ }^{153}$, B. Di Micco ${ }^{135 a}$, 135b, R. Di Nardo ${ }^{48}$, A. Di Simone ${ }^{49}$, R. Di Sipio ${ }^{159}$, D. Di Valentino ${ }^{30}$, C. Diaconu ${ }^{87}$, M. Diamond ${ }^{159}$, F. A. Dias ${ }^{47}$, M. A. Diaz ${ }^{33 \mathrm{a}}$, E. B. Diehl ${ }^{91}$, J. Dietrich ${ }^{16}$, S. Diglio ${ }^{87}$, A. Dimitrievska ${ }^{13}$, J. Dingfelder ${ }^{22}$, P. Dita ${ }^{27 \mathrm{~b}}$, S. Dita ${ }^{27 \mathrm{~b}}$, F. Dittus ${ }^{31}$, F. Djama ${ }^{87}$, T. Djobava ${ }^{52 \mathrm{~b}}$, J. I. Djuvsland ${ }^{59 \mathrm{a}}$, M. A. B. do Vale ${ }^{25 \mathrm{c}}$, D. Dobos ${ }^{31}$, M. Dobre ${ }^{27 \mathrm{~b}}$, C. Doglioni ${ }^{83}$, T. Dohmae ${ }^{156}$, J. Dolejsi ${ }^{130}$, Z. Dolezal ${ }^{130}$, B. A. Dolgoshein ${ }^{99, *}$, M. Donadelli ${ }^{25 d}$, S. Donati ${ }^{125 a, 125 b}$, P. Dondero ${ }^{122 a, 122 b}$, J. Donini ${ }^{35}$, J. Dopke ${ }^{132}$, A. Doria ${ }^{105 a}$, M. T. Dova ${ }^{73}$, A. T. Doyle ${ }^{54}$, E. Drechsler ${ }^{55}$, M. Dris ${ }^{10}$, Y. Du ${ }^{34 d}$, J. Duarte-Campderros ${ }^{154}$, E. Duchovni ${ }^{171}$, G. Duckeck ${ }^{101}$, O. A. Ducu ${ }^{27 b}$, D. Duda ${ }^{108}$, A. Dudarev ${ }^{31}$, L. Duflot ${ }^{118}$, L. Duguid ${ }^{79}$, M. Dührssen ${ }^{31}$, M. Dunford ${ }^{59 \mathrm{a}}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{53}$, A. Durglishvili ${ }^{52 b}$, D. Duschinger ${ }^{45}$, B. Dutta ${ }^{43}$, M. Dyndal ${ }^{39 \mathrm{a}}$, C. Eckardt ${ }^{43}$, K. M. Ecker ${ }^{102}$, R. C. Edgar ${ }^{91}$, W. Edson ${ }^{2}$, N. C. Edwards ${ }^{47}$, T. Eifert ${ }^{31}$, G. Eigen ${ }^{14}$, K. Einsweiler ${ }^{15}$, T. Ekelof ${ }^{164}$, M. El Kacimi ${ }^{136 c}$, V. Ellajosyula ${ }^{87}$, M. Ellert ${ }^{164}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{174}$, A. A. Elliot ${ }^{168}$, N. Ellis ${ }^{31}$, J. Elmsheuser ${ }^{26}$, M. Elsing ${ }^{31}$, D. Emeliyanov ${ }^{132}$, Y. Enari ${ }^{156}$, O. C. Endner ${ }^{85}$, M. Endo ${ }^{119}$, J. S. Ennis ${ }^{169}$, J. Erdmann ${ }^{44}$, A. Ereditato ${ }^{17}$, G. Ernis ${ }^{174}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{26}$, S. Errede ${ }^{165}$, E. Ertel ${ }^{85}$, M. Escalier ${ }^{118}$, H. Esch ${ }^{44}$, C. Escobar ${ }^{126}$, B. Esposito ${ }^{48}$, A. I. Etienvre ${ }^{137}$, E. Etzion ${ }^{154}$, H. Evans ${ }^{62}$, A. Ezhilov ${ }^{124}$, F. Fabbri ${ }^{21 a, 21 b}$, L. Fabbri ${ }^{21 a, 21 b}$, G. Facini ${ }^{32}$, R. M. Fakhrutdinov ${ }^{131}$, S. Falciano ${ }^{133 a}$, R. J. Falla ${ }^{80}$, J. Faltova ${ }^{130}$, Y. Fang ${ }^{34 a}$, M. Fanti ${ }^{93 a, 93 b}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{135 a}$, C. Farina ${ }^{126}$, T. Farooque ${ }^{12}$, S. Farrell ${ }^{15}$, S. M. Farrington ${ }^{169}$, P. Farthouat ${ }^{31}$, F. Fassi ${ }^{136 e}$, P. Fassnacht ${ }^{31}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{79}$, A. Favareto ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, W. J. Fawcett ${ }^{121}$, L. Fayard ${ }^{118}$, O. L. Fedin ${ }^{124, \mathrm{~m}}$, W. Fedorko ${ }^{167}$, S. Feigl ${ }^{120}$, L. Feligioni ${ }^{87}$, C. Feng ${ }^{34 d}$, E. J. Feng ${ }^{31}$, H. Feng ${ }^{91}$, A. B. Fenyuk ${ }^{131}$, L. Feremenga ${ }^{8}$, P. Fernandez Martinez ${ }^{166}$, S. Fernandez Perez ${ }^{12}$, J. Ferrando ${ }^{54}$, A. Ferrari ${ }^{164}$, P. Ferrari ${ }^{108}$, R. Ferrari ${ }^{122 a}$, D. E. Ferreira de Lima ${ }^{54}$, A. Ferrer ${ }^{166}$, D. Ferrere ${ }^{50}$, C. Ferretti ${ }^{91}$, A. Ferretto Parodi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, F. Fiedler ${ }^{85}$, A. Filipčič ${ }^{77}$, M. Filipuzzi ${ }^{43}$, F. Filthaut ${ }^{107}$, M. Fincke-Keeler ${ }^{168}$, K. D. Finelli ${ }^{151}$, M. C. N. Fiolhais ${ }^{127 a, 127 \mathrm{c}}$, L. Fiorini ${ }^{166}$, A. Firan ${ }^{41}$, A. Fischer ${ }^{2}$, C. Fischer ${ }^{12}$, J. Fischer ${ }^{174}$, W. C. Fisher ${ }^{92}$, N. Flaschel ${ }^{43}$, I. Fleck ${ }^{142}$, P. Fleischmann ${ }^{91}$, G. T. Fletcher ${ }^{140}$, G. Fletcher ${ }^{78}$, R. R. M. Fletcher ${ }^{123}$, T. Flick ${ }^{174}$, A. Floderus ${ }^{83}$, L. R. Flores Castillo ${ }^{61 a}$, M. J. Flowerdew ${ }^{102}$, G. T. Forcolin ${ }^{86}$, A. Formica ${ }^{137}$, A. Forti ${ }^{86}$, A. G. Foster ${ }^{18}$, D. Fournier ${ }^{118}$, H. Fox ${ }^{74}$, S. Fracchia ${ }^{12}$, P. Francavilla ${ }^{82}$, M. Franchini ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, D. Francis ${ }^{31}$, L. Franconi ${ }^{120}$, M. Franklin ${ }^{58}$, M. Frate ${ }^{66}$, M. Fraternali ${ }^{122 a, 122 b}$, D. Freeborn ${ }^{80}$, S. M. Fressard-Batraneanu ${ }^{31}$, F. Friedrich ${ }^{45}$, D. Froidevaux ${ }^{31}$, J. A. Frost ${ }^{121}$, C. Fukunaga ${ }^{157}$, E. Fullana Torregrosa ${ }^{85}$, T. Fusayasu ${ }^{103}$, J. Fuster ${ }^{166}$, C. Gabaldon ${ }^{56}$, O. Gabizon ${ }^{174}$, A. Gabrielli ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, A. Gabrielli ${ }^{15}$, G. P. Gach ${ }^{39 \mathrm{a}}$, S. Gadatsch ${ }^{31}$, S. Gadomski ${ }^{50}$, G. Gagliardi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, L. G. Gagnon ${ }^{96}$, P. Gagnon ${ }^{62}$, C. Galea ${ }^{107}$, B. Galhardo ${ }^{127 a, 127 c}$, E. J. Gallas ${ }^{121}$, B. J. Gallop ${ }^{132}$, P. Gallus ${ }^{129}$, G. Galster ${ }^{37}$, K. K. Gan ${ }^{112}$, J. Gao ${ }^{34 \mathrm{~b}, 87}$, Y. Gao ${ }^{47}$, Y. S. Gao ${ }^{144, f,}$ F. M. Garay Walls ${ }^{47}$, C. García ${ }^{166}$, J. E. García Navarro ${ }^{166}$, M. Garcia-Sciveres ${ }^{15}$, R. W. Gardner ${ }^{32}$, N. Garelli ${ }^{144}$, V. Garonne ${ }^{120}$, A. Gascon Bravo ${ }^{43}$, C. Gatti ${ }^{48}$, A. Gaudiello ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, G. Gaudio ${ }^{122 \mathrm{a}}$, B. Gaur ${ }^{142}$, L. Gauthier ${ }^{96}$, I. L. Gavrilenko ${ }^{97}$, C. Gay ${ }^{167}$, G. Gaycken ${ }^{22}$, E. N. Gazis ${ }^{10}$, Z. Gecse ${ }^{167}$, C. N. P. Gee ${ }^{132}$, Ch. Geich-Gimbel ${ }^{22}$, M. P. Geisler ${ }^{59 \mathrm{a}}$, C. Gemme ${ }^{51 \mathrm{a}}$, M. H. Genest ${ }^{56}$, C. Geng ${ }^{34 \mathrm{~b}, \mathrm{n}}$, S. Gentile ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, S. George ${ }^{79}$, D. Gerbaudo ${ }^{66}$, A. Gershon ${ }^{154}$, S. Ghasemi ${ }^{142}$, H. Ghazlane ${ }^{136 \mathrm{~b}}$, M. Ghneimat ${ }^{22}$, B. Giacobbe ${ }^{21 \mathrm{a}}$, S. Giagu ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, P. Giannetti ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, B. Gibbard ${ }^{26}$, S. M. Gibson ${ }^{79}$, M. Gignac ${ }^{167}$, M. Gilchriese ${ }^{15}$, T. P. S. Gillam ${ }^{29}$, D. Gillberg ${ }^{30}$, G. Gilles ${ }^{174}$, D. M. Gingrich ${ }^{3, \mathrm{~d}}$, N. Giokaris ${ }^{9}$, M. P. Giordani ${ }^{163 a, 163 c}$, F. M. Giorgi ${ }^{21 a}$, F. M. Giorgi ${ }^{16}$, P. F. Giraud ${ }^{137}$, P. Giromini ${ }^{58}$, D. Giugni ${ }^{93 a}$, F. Giuli ${ }^{121}$, C. Giuliani ${ }^{102}$, M. Giulini ${ }^{59 b}$, B. K. Gjelsten ${ }^{120}$, S. Gkaitatzis ${ }^{155}$, I. Gkialas ${ }^{155}$, E. L. Gkougkousis ${ }^{118}$, L. K. Gladilin ${ }^{100}$, C. Glasman ${ }^{84}$, J. Glatzer ${ }^{31}$, P. C. F. Glaysher ${ }^{47}$, A. Glazov ${ }^{43}$, M. Goblirsch-Kolb ${ }^{102}$, J. Godlewski ${ }^{40}$, S. Goldfarb ${ }^{91}$, T. Golling ${ }^{50}$, D. Golubkov ${ }^{131}$, A. Gomes ${ }^{127 \mathrm{a}, 127 \mathrm{~b}, 127 \mathrm{~d}}$, R. Gonçalo ${ }^{127 \mathrm{a}}$, J. Goncalves Pinto Firmino Da Costa ${ }^{137}$, L. Gonella ${ }^{18}$, A. Gongadze ${ }^{67}$, S. González de la Hoz^{166}, G. Gonzalez Parra ${ }^{12}$, S. Gonzalez-Sevilla ${ }^{50}$, L. Goossens ${ }^{31}$, P. A. Gorbounov ${ }^{98}$, H. A. Gordon ${ }^{26}$, I. Gorelov ${ }^{106}$, B. Gorini ${ }^{31}$, E. Gorini ${ }^{75 a, 75 b}$, A. Gorišek ${ }^{77}$, E. Gornicki ${ }^{40}$, A. T. Goshaw ${ }^{46}$, C. Gössling ${ }^{44}$, M. I. Gostkin ${ }^{67}$, C. R. Goudet ${ }^{118}$, D. Goujdami ${ }^{136 c}$, A. G. Goussiou ${ }^{139}$, N. Govender ${ }^{146 b}$, E. Gozani ${ }^{153}$, L. Graber ${ }^{55}$, I. Grabowska-Bold ${ }^{39 \mathrm{a}}$, P. O. J. Gradin ${ }^{164}$, P. Grafström ${ }^{21 a, 21 b}$, J. Gramling ${ }^{50}$, E. Gramstad ${ }^{120}$, S. Grancagnolo ${ }^{16}$, V. Gratchev ${ }^{124}$, H. M. Gray ${ }^{31}$, E. Graziani ${ }^{135 \mathrm{a}}$, Z. D. Greenwood ${ }^{81, \mathrm{o}}$, C. Grefe ${ }^{22}$, K. Gregersen ${ }^{80}$, I. M. Gregor ${ }^{43}$, P. Grenier ${ }^{144}$, K. Grevtsov ${ }^{5}$, J. Griffiths ${ }^{8}$, A. A. Grillo ${ }^{138}$, K. Grimm ${ }^{74}$, S. Grinstein ${ }^{12, p}$, Ph. Gris ${ }^{35}$, J.-F. Grivaz ${ }^{118}$, S. Groh ${ }^{85}$, J. P. Grohs ${ }^{45}$, E. Gross ${ }^{171}$, J. Grosse-Knetter ${ }^{55}$, G. C. Grossi ${ }^{81}$, Z. J. Grout ${ }^{150}$, L. Guan ${ }^{91}$, W. Guan ${ }^{172}$, J. Guenther ${ }^{129}$, F. Guescini ${ }^{50}$,
D. Guest ${ }^{66}$, O. Gueta ${ }^{154}$, E. Guido ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{2}$, U. Gul ${ }^{54}$, C. Gumpert ${ }^{31}$, J. Guo ${ }^{34 e}$, Y. Guo ${ }^{34 b, n}$, S. Gupta ${ }^{121}$, G. Gustavino ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, P. Gutierrez ${ }^{114}$, N. G. Gutierrez Ortiz ${ }^{80}$, C. Gutschow ${ }^{45}$, C. Guyot ${ }^{137}$, C. Gwenlan ${ }^{121}$, C. B. Gwilliam ${ }^{76}$, A. Haas ${ }^{111}$, C. Haber ${ }^{15}$, H. K. Hadavand ${ }^{8}$, N. Haddad ${ }^{136 e}$, A. Hadef ${ }^{87}$, P. Haefner ${ }^{22}$, S. Hageböck ${ }^{22}$, Z. Hajduk ${ }^{40}$, H. Hakobyan ${ }^{176, *}$, M. Haleem ${ }^{43}$, J. Haley ${ }^{115}$, D. Hall ${ }^{121}$, G. Halladjian ${ }^{92}$, G. D. Hallewell ${ }^{87}$, K. Hamacher ${ }^{174}$, P. Hamal ${ }^{116}$, K. Hamano ${ }^{168}$, A. Hamilton ${ }^{146 \mathrm{a}}$, G. N. Hamity ${ }^{140}$, P. G. Hamnett ${ }^{43}$, L. Han ${ }^{34 b}$, K. Hanagaki ${ }^{68, \mathrm{q}}$, K. Hanawa ${ }^{156}$, M. Hance ${ }^{138}$, B. Haney ${ }^{123}$, P. Hanke ${ }^{59 \mathrm{a}}$, R. Hanna ${ }^{137}$, J. B. Hansen ${ }^{37}$, J. D. Hansen ${ }^{37}$, M. C. Hansen ${ }^{22}$, P. H. Hansen ${ }^{37}$, K. Hara ${ }^{161}$, A. S. Hard ${ }^{172}$, T. Harenberg ${ }^{174}$, F. Hariri ${ }^{118}$, S. Harkusha ${ }^{94}, ~ \quad$ R. D. Harrington ${ }^{47}$, P. F. Harrison ${ }^{169}$, F. Hartjes ${ }^{108}$, M. Hasegawa ${ }^{69}$, Y. Hasegawa ${ }^{141}$, A. Hasib ${ }^{114}$, S. Hassani ${ }^{137}$, S. Haug ${ }^{17}$, R. Hauser ${ }^{92}$, L. Hauswald ${ }^{45}$, M. Havranek ${ }^{128}$, C. M. Hawkes ${ }^{18}$, R. J. Hawkings ${ }^{31}$, A. D. Hawkins ${ }^{83}$, D. Hayden ${ }^{92}$, C. P. Hays ${ }^{121}$, J. M. Hays ${ }^{78}$, H. S. Hayward ${ }^{76}$, S. J. Haywood ${ }^{132}$, S. J. Head ${ }^{18}$, T. Heck ${ }^{85}$, V. Hedberg ${ }^{83}$, L. Heelan ${ }^{8}$, S. Heim ${ }^{123}$, T. Heim ${ }^{15}$, B. Heinemann ${ }^{15}$, J. J. Heinrich ${ }^{101}$, L. Heinrich ${ }^{111}$, C. Heinz ${ }^{53}$, J. Hejbal ${ }^{128}$, L. Helary ${ }^{23}$, S. Hellman ${ }^{147 a, 147 \mathrm{~b}}$, C. Helsens ${ }^{31}$, J. Henderson ${ }^{121}$, R. C. W. Henderson ${ }^{74}$, Y. Heng ${ }^{172}$, S. Henkelmann ${ }^{167}$, A. M. Henriques Correia ${ }^{31}$, S. Henrot-Versille ${ }^{118}$, G. H. Herbert ${ }^{16}$, Y. Hernández Jiménez ${ }^{166}$, G. Herten ${ }^{49}$, R. Hertenberger ${ }^{101}$, L. Hervas ${ }^{31}$, G. G. Hesketh ${ }^{80}$, N. P. Hessey ${ }^{108}$, J. W. Hetherly ${ }^{41}$, R. Hickling ${ }^{78}$, E. Higón-Rodriguez ${ }^{166}$, E. Hill ${ }^{168}$, J. C. Hill ${ }^{29}$, K. H. Hiller ${ }^{43}$, S. J. Hillier ${ }^{18}$, I. Hinchliffe ${ }^{15}$, E. Hines ${ }^{123}$, R. R. Hinman ${ }^{15}$, M. Hirose ${ }^{158}$, D. Hirschbuehl ${ }^{174}$, J. Hobbs ${ }^{149}$, N. Hod ${ }^{108}$, M. C. Hodgkinson ${ }^{140}$, P. Hodgson ${ }^{140}$, A. Hoecker ${ }^{31}$, M. R. Hoeferkamp ${ }^{106}$, F. Hoenig ${ }^{101}$, M. Hohlfeld ${ }^{85}$, D. Hohn ${ }^{22}$, T. R. Holmes ${ }^{15}$, M. Homann ${ }^{44}$, T. M. Hong ${ }^{126}$, B. H. Hooberman ${ }^{165}$, W. H. Hopkins ${ }^{117}$, Y. Horii ${ }^{104}$, A. J. Horton ${ }^{143}$, J.-Y. Hostachy ${ }^{56}$, S. Hou ${ }^{152}$, A. Hoummada ${ }^{136 a}$, J. Howard ${ }^{121}$, J. Howarth ${ }^{43}$, M. Hrabovsky ${ }^{116}$, I. Hristova ${ }^{16}$, J. Hrivnac ${ }^{118}$, T. Hryn'ova ${ }^{5}$, A. Hrynevich ${ }^{95}$, C. $\mathrm{Hsu}^{146 \mathrm{c}}$, P. J. Hsu ${ }^{152, r}$, S.-C. Hsu ${ }^{139}$, D. Hu^{36}, Q. Hu ${ }^{34 \mathrm{~b}}$, Y. Huang ${ }^{43}$, Z. Hubacek ${ }^{129}$, F. Hubaut ${ }^{87}$, F. Huegging ${ }^{22}$, T. B. Huffman ${ }^{121}$, E. W. Hughes ${ }^{36}$, G. Hughes ${ }^{74}$, M. Huhtinen ${ }^{31}$, T. A. Hülsing ${ }^{85}$, N. Huseynov ${ }^{67, b}$, J. Huston ${ }^{92}$, J. Huth ${ }^{58}$, G. Iacobucci ${ }^{50}$, G. Iakovidis ${ }^{26}$, I. Ibragimov ${ }^{142}$, L. Iconomidou-Fayard ${ }^{118}$, E. Ideal ${ }^{175}$, Z. Idrissi ${ }^{136 e}$, P. Iengo ${ }^{31}$, O. Igonkina ${ }^{108}$, T. Iizawa ${ }^{170}$, Y. Ikegami ${ }^{68}$, M. Ikeno ${ }^{68}$, Y. Ilchenko ${ }^{32, s}$, D. Iliadis ${ }^{155}$, N. Ilic ${ }^{144}$, T. Ince ${ }^{102}$, G. Introzzi ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, P. Ioannou ${ }^{9,}{ }^{*}$, M. Iodice ${ }^{135 \mathrm{a}}$, K. Iordanidou ${ }^{36}$, V. Ippolito ${ }^{58}$, A. Irles Quiles ${ }^{166}$, C. Isaksson ${ }^{164}$, M. Ishino ${ }^{70}$, M. Ishitsuka ${ }^{158, ~ R . ~ I s h m u k h a m e t o v ~}{ }^{112}$, C. Issever ${ }^{121}$, S. Istin ${ }^{19 a}$, F. Ito ${ }^{161}$, J. M. Iturbe Ponce ${ }^{86}$, R. Iuppa ${ }^{134 a, 134 b}$, J. Ivarsson ${ }^{83}$, W. Iwanski ${ }^{40}$, H. Iwasaki ${ }^{68}$, J. M. Izen ${ }^{42}$, V. Izzo ${ }^{105 a}$, S. Jabbar ${ }^{3}$, B. Jackson ${ }^{123}$, M. Jackson ${ }^{76}$, P. Jackson ${ }^{1}$, V. Jain ${ }^{2}$, K. B. Jakobi ${ }^{85}$, K. Jakobs ${ }^{49}$, S. Jakobsen ${ }^{31}$, T. Jakoubek ${ }^{128}$, D. O. Jamin ${ }^{115}$, D. K. Jana ${ }^{81}$, E. Jansen ${ }^{80}$, R. Jansky ${ }^{63}$, J. Janssen ${ }^{22}$, M. Janus ${ }^{55}$, G. Jarlskog ${ }^{83}$, N. Javadov ${ }^{67, b}$, T. Javůrek ${ }^{49}$, F. Jeanneau ${ }^{137}$, L. Jeanty ${ }^{15}$, J. Jejelava ${ }^{52 a, t}$ G.-Y. Jeng ${ }^{151}$, D. Jennens ${ }^{90}$, P. Jenni ${ }^{49, u}$, J. Jentzsch ${ }^{44}$, C. Jeske ${ }^{169}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{172}$, J. Jia ${ }^{149}$, H. Jiang ${ }^{65}$, Y. Jiang ${ }^{34 b}$, S. Jiggins ${ }^{80}$, J. Jimenez Pena ${ }^{166}$, S. Jin ${ }^{34 \mathrm{a}}$, A. Jinaru ${ }^{27 \mathrm{~b}}$, O. Jinnouchi ${ }^{158}$, P. Johansson ${ }^{140}$, K. A. Johns ${ }^{7}$, W. J. Johnson ${ }^{139}$, K. Jon-And ${ }^{147 a, 147 b}$, G. Jones ${ }^{169}$, R. W. L. Jones ${ }^{74}$, S. Jones ${ }^{7}$, T. J. Jones ${ }^{76}$, J. Jongmanns ${ }^{59 \mathrm{a}}$, P. M. Jorge ${ }^{\text {127a, } 127 \mathrm{~b}}$, J. Jovicevic ${ }^{160 \mathrm{a}}$, X. Ju ${ }^{172}$, A. Juste Rozas ${ }^{12, p}$, M. K. Köhler ${ }^{171}$, A. Kaczmarska ${ }^{40}$, M. Kado ${ }^{118}$, H. Kagan ${ }^{112}$, M. Kagan ${ }^{144}$, S. J. Kahn ${ }^{87}$, E. Kajomovitz ${ }^{46}$, C. W. Kalderon ${ }^{121}$, A. Kaluza ${ }^{85}$, S. Kama ${ }^{41}$, A. Kamenshchikov ${ }^{131}$, N. Kanaya ${ }^{156}$, S. Kaneti ${ }^{29}$, V. A. Kantserov ${ }^{99}$, J. Kanzaki ${ }^{68}$, B. Kaplan ${ }^{111}$, L. S. Kaplan ${ }^{172}$, A. Kapliy ${ }^{32}$, D. Kar ${ }^{146 \mathrm{c}}$, K. Karakostas ${ }^{10}$, A. Karamaoun ${ }^{3}$, N. Karastathis ${ }^{10}$, M. J. Kareem ${ }^{55}$, E. Karentzos ${ }^{10}$, M. Karnevskiy ${ }^{85}$, S. N. Karpov ${ }^{67}$, Z. M. Karpova ${ }^{67}$, K. Karthik ${ }^{111}$, V. Kartvelishvili ${ }^{74}$, A. N. Karyukhin ${ }^{131}$, K. Kasahara ${ }^{161}$, L. Kashif ${ }^{172}$, R. D. Kass ${ }^{112}$, A. Kastanas ${ }^{14}$, Y. Kataoka ${ }^{156}$, C. Kato ${ }^{156}$, A. Katre ${ }^{50}$, J. Katzy ${ }^{43}$, K. Kawade ${ }^{104}$, K. Kawagoe ${ }^{72}$, T. Kawamoto ${ }^{156}$, G. Kawamura ${ }^{55}$, S. Kazama ${ }^{156}$, V. F. Kazanin ${ }^{110, \text { c }, ~ R . ~ K e e l e r ~}{ }^{168}$, R. Kehoe ${ }^{41}$, J. S. Keller ${ }^{43}$, J. J. Kempster ${ }^{79}$, H. Keoshkerian ${ }^{86}$, O. Kepka ${ }^{128}$, B. P. Kerševan ${ }^{77}$, S. Kersten ${ }^{174}$, R. A. Keyes ${ }^{89}$, F. Khalil-zada ${ }^{11}$, H. Khandanyan ${ }^{147 a, 147 b}$, A. Khanov ${ }^{115}$, A. G. Kharlamov ${ }^{110, \mathrm{c}}$, T. J. Khoo ${ }^{29}$, V. Khovanskiy ${ }^{98}$, E. Khramov ${ }^{67}$, J. Khubua ${ }^{52 b, v}$, S. Kido ${ }^{69}$, H. Y. Kim ${ }^{8}$, S. H. Kim ${ }^{161}$, Y. K. Kim ${ }^{32}$, N. Kimura ${ }^{155}$, O. M. Kind ${ }^{16}$, B. T. King ${ }^{76}$, M. King ${ }^{166}$, S. B. King ${ }^{167}$, J. Kirk ${ }^{132}$, A. E. Kiryunin ${ }^{102}$, T. Kishimoto ${ }^{69}$, D. Kisielewska ${ }^{39 a}$, F. Kiss ${ }^{49}$, K. Kiuchi ${ }^{161}$, O. Kivernyk ${ }^{137}$, E. Kladiva ${ }^{145 b}$, M. H. Klein ${ }^{36}$, M. Klein ${ }^{76}$, U. Klein ${ }^{76}$, K. Kleinknecht ${ }^{85}$, P. Klimek ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Klimentov ${ }^{26}$, R. Klingenberg ${ }^{44}$, J. A. Klinger ${ }^{140}$, T. Klioutchnikova ${ }^{31}$, E.-E. Kluge ${ }^{59 a}$, P. Kluit ${ }^{108}$, S. Kluth ${ }^{102}$, J. Knapik ${ }^{40}$, E. Kneringer ${ }^{63}$, E. B. F. G. Knoops ${ }^{87}$, A. Knue ${ }^{54}$, A. Kobayashi ${ }^{156}$, D. Kobayashi ${ }^{158}$, T. Kobayashi ${ }^{156}$, M. Kobel ${ }^{45}$, M. Kocian ${ }^{144}$, P. Kodys ${ }^{130}$, \quad T. Koffas ${ }^{30}$, \quad E. Koffeman ${ }^{108}$, L. A. Kogan ${ }^{121}$, T. Kohriki ${ }^{68}$, T. Koi ${ }^{144}$, H. Kolanoski ${ }^{16}$, M. Kolb $^{59 b}$, I. Koletsou ${ }^{5}$, A. A. Komar ${ }^{97, *}$, Y. Komori ${ }^{156}$, T. Kondo ${ }^{68}$, N. Kondrashova ${ }^{43}$, K. Köneke ${ }^{49}$, A. C. König ${ }^{107}$, T. Kono ${ }^{68, w}$, R. Konoplich ${ }^{111, x}$, N. Konstantinidis ${ }^{80}$, R. Kopeliansky ${ }^{62}$, S. Koperny ${ }^{39 \text { a }}$, L. Köpke ${ }^{85}$, A. K. Kopp ${ }^{49}$, K. Korcyl ${ }^{40}$, K. Kordas ${ }^{155}$, A. Korn ${ }^{80}$, A. A. Korol ${ }^{110, \mathrm{c}}$, I. Korolkov ${ }^{12}$, E. V. Korolkova ${ }^{140}$, O. Kortner ${ }^{102}$, S. Kortner ${ }^{102}$, T. Kosek ${ }^{130}$, V. V. Kostyukhin ${ }^{22}$, V. M. Kotov ${ }^{67}$, A. Kotwal ${ }^{46}$, A. Kourkoumeli-Charalampidi ${ }^{155}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{26}$, A. Koutsman ${ }^{160 a}$, A. B. Kowalewska ${ }^{40}$, R. Kowalewski ${ }^{168}$, T. Z. Kowalski ${ }^{39 a}$, W. Kozanecki ${ }^{137}$, A. S. Kozhin ${ }^{131}$, V. A. Kramarenko ${ }^{100}$, G. Kramberger ${ }^{77}$, \quad D. Krasnopevtsev ${ }^{99}$, M. W. Krasny ${ }^{82}$, A. Krasznahorkay ${ }^{31}$, J. K. Kraus ${ }^{22}$, A. Kravchenko ${ }^{26}$, M. Kretz ${ }^{59 \mathrm{c}}$, J. Kretzschmar ${ }^{76}$, K. Kreutzfeldt ${ }^{53}$, P. Krieger ${ }^{159}$, K. Krizka ${ }^{32}$, K. Kroeninger ${ }^{44}$, H. Kroha ${ }^{102}$, J. Kroll ${ }^{123}$, J. Kroseberg ${ }^{22}$, J. Krstic ${ }^{13}$, U. Kruchonak ${ }^{67}$, H. Krüger ${ }^{22}$,
N. Krumnack ${ }^{65}$, A. Kruse ${ }^{172}$, M. C. Kruse 46, M. Kruskal ${ }^{23}$, T. Kubota ${ }^{90}$, H. Kucuk ${ }^{80}$, S. Kuday ${ }^{4 b}$, J. T. Kuechler ${ }^{174}$, S. Kuehn ${ }^{49}$, A. Kugel ${ }^{59 \text { c }}$, F. Kuger ${ }^{173}$, A. Kuhl ${ }^{138}$, T. Kuhl ${ }^{43}$, V. Kukhtin ${ }^{67}$, R. Kukla ${ }^{137}$, Y. Kulchitsky ${ }^{94}$, S. Kuleshov ${ }^{33 b}$, M. Kuna ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, T. Kunigo ${ }^{70}$, A. Kupco ${ }^{128}$, H. Kurashige ${ }^{69}$, Y. A. Kurochkin ${ }^{94}$, V. Kus ${ }^{128}$, E. S. Kuwertz ${ }^{168}$, M. Kuze ${ }^{158}$, J. Kvita ${ }^{116}$, T. Kwan ${ }^{168}$, D. Kyriazopoulos ${ }^{140}$, A. La Rosa ${ }^{102}$, J. L. La Rosa Navarro ${ }^{25 d}$, L. La Rotonda ${ }^{38 a, 38 \mathrm{~b}}$, C. Lacasta ${ }^{166}$, F. Lacava ${ }^{133 a, 133 b}$, J. Lacey ${ }^{30}$, H. Lacker ${ }^{16}$, D. Lacour ${ }^{82}$, V. R. Lacuesta ${ }^{166}$, E. Ladygin ${ }^{67}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{82}$, T. Lagouri ${ }^{175}$, S. Lai ${ }^{55}$, S. Lammers ${ }^{62}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{137}$, U. Landgraf ${ }^{49}$, M. P. J. Landon ${ }^{78}$, V. S. Lang ${ }^{59 \text { a }}$, J. C. Lange ${ }^{12}$, A. J. Lankford ${ }^{66}$, F. Lanni ${ }^{26}$, K. Lantzsch ${ }^{22}$, A. Lanza ${ }^{122 a}$, S. Laplace ${ }^{82}$, C. Lapoire ${ }^{31}$, J. F. Laporte ${ }^{137}$, T. Lari ${ }^{93 \mathrm{a}}$, F. Lasagni Manghi ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, M. Lassnig ${ }^{31}$, P. Laurelli ${ }^{48}$, W. Lavrijsen ${ }^{15}$, A. T. Law ${ }^{138}$, P. Laycock ${ }^{76}$, T. Lazovich ${ }^{58}$, M. Lazzaroni ${ }^{93 a, 93 b}$, O. Le Dortz ${ }^{82}$, E. Le Guirriec ${ }^{87}$, E. Le Menedeu ${ }^{12}$, E. P. Le Quilleuc ${ }^{137}$, M. LeBlanc ${ }^{168}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{56}$, C. A. Lee ${ }^{26}$, S. C. Lee ${ }^{152}$, L. Lee ${ }^{1}$, G. Lefebvre ${ }^{82}$, M. Lefebvre ${ }^{168}$, F. Legger ${ }^{101}$, C. Leggett ${ }^{15}$, A. Lehan ${ }^{76}$, G. Lehmann Miotto ${ }^{31}$, X. Lei ${ }^{7}$, W. A. Leight ${ }^{30}$, A. Leisos ${ }^{155, y}$, A. G. Leister ${ }^{175}$, M. A. L. Leite ${ }^{25 d}$, R. Leitner ${ }^{130}$, D. Lellouch ${ }^{171}$, B. Lemmer ${ }^{55}$, K. J. C. Leney ${ }^{80}$, T. Lenz ${ }^{22}$, B. Lenzi ${ }^{31}$, R. Leone ${ }^{7}$, S. Leone ${ }^{125 a, 125 b}$, C. Leonidopoulos ${ }^{47}$, S. Leontsinis ${ }^{10}$, G. Lerner ${ }^{150}$, C. Leroy ${ }^{96}$, A. A. J. Lesage ${ }^{137}$, C. G. Lester ${ }^{29}$, M. Levchenko ${ }^{124}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{91}$, L. J. Levinson ${ }^{171}$, M. Levy ${ }^{18}$, A. M. Leyko ${ }^{22}$, M. Leyton ${ }^{42}$, B. Li $^{34 b, z}$, H. Li ${ }^{149}$, H. L. Li 32, L. Li^{46},
 J. Liebal ${ }^{22}$, W. Liebig ${ }^{14}$, C. Limbach 22, A. Limosani ${ }^{151}$, S. C. Lin ${ }^{152, a a}$, T. H. Lin ${ }^{85}$, B. E. Lindquist ${ }^{149}$, E. Lipeles ${ }^{123}$, A. Lipniacka ${ }^{14}$, M. Lisovyi ${ }^{59 b}$, T. M. Liss ${ }^{165}$, D. Lissauer ${ }^{26}$, A. Lister ${ }^{167}$, A. M. Litke ${ }^{138}$, B. Liu ${ }^{152, a b}$, D. Liu ${ }^{152}$, H. Liu ${ }^{91}$, H. Liu ${ }^{26}$, J. Liu ${ }^{87}$, J. B. Liu ${ }^{34 b}$, K. Liu ${ }^{87}$, L. Liu ${ }^{165}$, M. Liu ${ }^{46}$, M. Liu ${ }^{34 b}$, Y. L. Liu ${ }^{34 b}$, Y. Liu ${ }^{34 b}$, M. Livan ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, A. Lleres ${ }^{56}$, J. Llorente Merino ${ }^{84}$, S. L. Lloyd ${ }^{78}$, F. Lo Sterzo ${ }^{152}$, E. Lobodzinska ${ }^{43}$, P. Loch ${ }^{7}$, W. S. Lockman ${ }^{138}$, F. K. Loebinger ${ }^{86}$, A. E. Loevschall-Jensen ${ }^{37}$, K. M. Loew ${ }^{24}$, A. Loginov ${ }^{175}$, T. Lohse ${ }^{16}$, K. Lohwasser ${ }^{43}$, M. Lokajicek ${ }^{128}$, B. A. Long ${ }^{23}$, J. D. Long ${ }^{165}$, R. E. Long ${ }^{74}$, L. Longo ${ }^{75 a, 75 b}, \quad$ K. A. Looper ${ }^{112}$, L. Lopes ${ }^{127 a}$, D. Lopez Mateos ${ }^{58}$, B. Lopez Paredes ${ }^{140}$, I. Lopez Paz ${ }^{12}$, A. Lopez Solis ${ }^{82}$, J. Lorenz ${ }^{101}$, N. Lorenzo Martinez ${ }^{62}$, M. Losada ${ }^{20}$, P. J. Lösel ${ }^{101}$, X. Lou ${ }^{34 \mathrm{a}}$, A. Lounis ${ }^{118}$, J. Love ${ }^{6}$, P. A. Love ${ }^{74}$, H. Lu ${ }^{61 \mathrm{a}}$, N. Lu ${ }^{91}$, H. J. Lubatti ${ }^{139}$, C. Luci ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, A. Lucotte ${ }^{56}$, C. Luedtke ${ }^{49}$, F. Luehring ${ }^{62}$, W. Lukas ${ }^{63}$, L. Luminari ${ }^{133 a}$, O. Lundberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, B. Lund-Jensen ${ }^{148}$, D. Lynn ${ }^{26}$, R. Lysak ${ }^{128}$, E. Lytken ${ }^{83}$, V. Lyubushkin ${ }^{67}$, H. Ma ${ }^{26}$, L. L. Ma ${ }^{34 d}$, Y. Ma ${ }^{34 \mathrm{~d}}$, G. Maccarrone ${ }^{48}$, A. Macchiolo ${ }^{102}$, C. M. Macdonald ${ }^{140}$, \quad B. Maček ${ }^{77}$, J. Machado Miguens ${ }^{123,127 b}$, D. Madaffari ${ }^{87}$, R. Madar ${ }^{35}$, H. J. Maddocks ${ }^{164}$, W. F. Mader ${ }^{45}$, A. Madsen ${ }^{43}$, J. Maeda ${ }^{69}$, S. Maeland ${ }^{14}$, T. Maeno ${ }^{26}$, A. Maevskiy ${ }^{100}$, E. Magradze ${ }^{55}$, J. Mahlstedt ${ }^{108}$, C. Maiani ${ }^{118}$, C. Maidantchik ${ }^{25 a}$, A. A. Maier ${ }^{102}$, T. Maier ${ }^{101}$, A. Maio ${ }^{127 a}, 127 \mathrm{~b}, 127 \mathrm{~d}$, S. Majewski ${ }^{117}$, Y. Makida ${ }^{68}$, N. Makovec ${ }^{118}$, B. Malaescu ${ }^{82}$, Pa. Malecki ${ }^{40}$, V. P. Maleev ${ }^{124}$, F. Malek ${ }^{56}$, U. Mallik ${ }^{64}$, D. Malon ${ }^{6}$, C. Malone ${ }^{144}$, S. Maltezos ${ }^{10}$, V. M. Malyshev ${ }^{110}$, S. Malyukov ${ }^{31}$, J. Mamuzic ${ }^{43}$, G. Mancini ${ }^{48}$, B. Mandelli ${ }^{31}$, L. Mandelli ${ }^{93 a}$, I. Mandić ${ }^{77}$, J. Maneira ${ }^{127 a, 127 b}$, L. Manhaes de Andrade Filho ${ }^{25 b}$, J. Manjarres Ramos ${ }^{160 b}$, A. Mann ${ }^{101}$, B. Mansoulie ${ }^{137}$, R. Mantifel ${ }^{89}$, M. Mantoani ${ }^{55}$, S. Manzoni ${ }^{93 a, 93 b}$, L. Mapelli ${ }^{31}$, G. Marceca ${ }^{28}$, L. March ${ }^{50}$, G. Marchiori ${ }^{82}$, M. Marcisovsky ${ }^{128}$, M. Marjanovic ${ }^{13}$, D. E. Marley ${ }^{91}$, F. Marroquim ${ }^{25 a}$, S. P. Marsden ${ }^{86}$, Z. Marshall ${ }^{15}$, L. F. Marti ${ }^{17}$, S. Marti-Garcia ${ }^{166}$, B. Martin ${ }^{92}$, T. A. Martin ${ }^{169}$, V. J. Martin ${ }^{47}$, B. Martin dit Latour ${ }^{14}$, M. Martinez ${ }^{12, p}$, S. Martin-Haugh ${ }^{132}$, V. S. Martoiu ${ }^{27 b}$, A. C. Martyniuk ${ }^{80}$, M. Marx ${ }^{139}$, F. Marzano ${ }^{133 a}$, A. Marzin ${ }^{31}$, L. Masetti ${ }^{85}$, T. Mashimo ${ }^{156}$, R. Mashinistov ${ }^{97}$, J. Masik ${ }^{86}$, A. L. Maslennikov ${ }^{110, \mathrm{c}}$, I. Massa ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, L. Massa ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, P. Mastrandrea ${ }^{5}$, A. Mastroberardino ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, T. Masubuchi ${ }^{156}$, P. Mättig ${ }^{174}$, J. Mattmann ${ }^{85}$, J. Maurer ${ }^{27 b}$, S. J. Maxfield ${ }^{76}$, D. A. Maximov ${ }^{110, c}$, R. Mazini ${ }^{152}$, S. M. Mazza ${ }^{93 a, 93 b}$, N. C. Mc Fadden ${ }^{106}$, G. Mc Goldrick ${ }^{159}$, S. P. Mc Kee ${ }^{91}$, A. McCarn ${ }^{91}$, R. L. McCarthy ${ }^{149}$, T. G. McCarthy ${ }^{30}$, L. I. McClymont ${ }^{80}$, K. W. McFarlane ${ }^{57, *}$, J. A. Mcfayden ${ }^{80}$, G. Mchedlidze ${ }^{55}$, S. J. McMahon ${ }^{132}$, R. A. McPherson ${ }^{168,1}$, M. Medinnis ${ }^{43}$, S. Meehan ${ }^{139}$, S. Mehlhase ${ }^{101}$, A. Mehta ${ }^{76}$, K. Meier ${ }^{59 a}$, C. Meineck ${ }^{101}$, B. Meirose ${ }^{42}$, B. R. Mellado Garcia ${ }^{146 c}$, F. Meloni ${ }^{17}$, A. Mengarelli ${ }^{21 a}$, 21 b , S. Menke ${ }^{102}$, E. Meoni ${ }^{162}$, K. M. Mercurio ${ }^{58}$, S. Mergelmeyer ${ }^{16}$, P. Mermod ${ }^{50}$, L. Merola ${ }^{105 a, 105 b}$, C. Meroni ${ }^{93 a}$, F. S. Merritt ${ }^{32}$, A. Messina ${ }^{133 a, 133 b}$, J. Metcalfe ${ }^{6}$, A. S. Mete ${ }^{66}$, C. Meyer ${ }^{85}$, C. Meyer ${ }^{123}$, J.-P. Meyer ${ }^{137}$, J. Meyer ${ }^{108}$, H. Meyer Zu Theenhausen ${ }^{59 a}$, R. P. Middleton ${ }^{132}$, S. Miglioranzi ${ }^{163 a, 163 c}$, L. Mijović ${ }^{22}$, G. Mikenberg ${ }^{171}$, M. Mikestikova ${ }^{128}$, M. Mikuž ${ }^{77}$, M. Milesi ${ }^{90}$, A. Milic ${ }^{31}$, D. W. Miller ${ }^{32}$, C. Mills ${ }^{47}$, A. Milov ${ }^{171}$, D. A. Milstead ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. A. Minaenko ${ }^{131}$, Y. Minami ${ }^{156}$, I. A. Minashvili ${ }^{67}$, A. I. Mincer ${ }^{111}$, B. Mindur ${ }^{39 \mathrm{a}}$, M. Mineev ${ }^{67}$, Y. Ming ${ }^{172}$, L. M. Mir ${ }^{12}$, K. P. Mistry ${ }^{123}$, T. Mitani ${ }^{170}$, J. Mitrevski ${ }^{101}$, V. A. Mitsou ${ }^{166}$, A. Miucci ${ }^{50}$, P. S. Miyagawa ${ }^{140}$, J. U. Mjörnmark ${ }^{83}$, T. Moa ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, K. Mochizuki ${ }^{87}$, S. Mohapatra ${ }^{36}$, W. Mohr ${ }^{49}$, S. Molander ${ }^{\text {147a,147b }}$, R. Moles-Valls ${ }^{22}$, R. Monden ${ }^{70}$, M. C. Mondragon ${ }^{92}$, K. Mönig ${ }^{43}$, J. Monk ${ }^{37}$, E. Monnier ${ }^{87}$, A. Montalbano ${ }^{149}$, J. Montejo Berlingen ${ }^{31}$, \quad F. Monticelli ${ }^{73}$, \quad S. Monzani ${ }^{93 a}{ }^{\text {, } 93 b}$, R. W. Moore ${ }^{3}$, N. Morange ${ }^{118}$, D. Moreno ${ }^{20}$, M. Moreno Llácer ${ }^{55}$, P. Morettini ${ }^{51 \mathrm{a}}$, D. Mori ${ }^{143}$, T. Mori ${ }^{156}$, M. Morii ${ }^{58}$, M. Morinaga ${ }^{156}$, V. Morisbak ${ }^{120}$, S. Moritz ${ }^{85}$, A. K. Morley ${ }^{151}$, G. Mornacchi ${ }^{31}$, J. D. Morris ${ }^{78}$, S. S. Mortensen ${ }^{37}$, L. Morvaj ${ }^{149}$, M. Mosidze ${ }^{52 b}$, J. Moss ${ }^{144}$, K. Motohashi ${ }^{158}$, R. Mount ${ }^{144}$, E. Mountricha ${ }^{26}$, S. V. Mouraviev ${ }^{97, *}$, E. J. W. Moyse ${ }^{88}$, S. Muanza ${ }^{87}$, R. D. Mudd ${ }^{18}$, F. Mueller ${ }^{102}$, J. Mueller ${ }^{126}$, R. S. P. Mueller ${ }^{101}$, T. Mueller ${ }^{29}$, D. Muenstermann ${ }^{74}$,
P. Mullen ${ }^{54}$, G. A. Mullier ${ }^{17}$, F. J. Munoz Sanchez ${ }^{86}$, J. A. Murillo Quijada ${ }^{18}$, W. J. Murray ${ }^{132,169 \text {, A. Murrone }{ }^{93 a} \text {,93b, }, ~}$ H. Musheghyan ${ }^{55}$, M. Muskinja ${ }^{77}$, A. G. Myagkov ${ }^{131, a c}$, M. Myska ${ }^{129}$, B. P. Nachman ${ }^{144}$, O. Nackenhorst ${ }^{50}$, J. Nadal ${ }^{55}$, K. Nagai ${ }^{121}$, R. Nagai ${ }^{68, w}$, K. Nagano ${ }^{68}$, Y. Nagasaka ${ }^{60}$, K. Nagata ${ }^{161}$, M. Nagel ${ }^{102}$, E. Nagy ${ }^{87}$, A. M. Nairz ${ }^{31}$, Y. Nakahama ${ }^{31}$, K. Nakamura ${ }^{68}$, T. Nakamura ${ }^{156}$, I. Nakano ${ }^{113}$, H. Namasivayam ${ }^{42}$, R. F. Naranjo Garcia ${ }^{43}$, R. Narayan ${ }^{32}$, D. I. Narrias Villar ${ }^{59 \mathrm{a}}$, I. Naryshkin ${ }^{124}$, T. Naumann ${ }^{43}$, G. Navarro ${ }^{20}$, R. Nayyar ${ }^{7}$, H. A. Neal ${ }^{91}$, P. Yu. Nechaeva ${ }^{97}$, T. J. Neep ${ }^{86}$, P. D. Nef 144, A. Negri ${ }^{122 a, 122 b}$, M. Negrini ${ }^{21 a}$, S. Nektarijevic ${ }^{107}$, C. Nellist ${ }^{118}$, A. Nelson ${ }^{66}$, S. Nemecek ${ }^{128}$, P. Nemethy ${ }^{111}$, A. A. Nepomuceno ${ }^{25 a}$, M. Nessi ${ }^{31, \text { ad }}$, M. S. Neubauer ${ }^{165}$, M. Neumann ${ }^{174}$, R. M. Neves ${ }^{111}$, P. Nevski ${ }^{26}$, P. R. Newman ${ }^{18}$, D. H. Nguyen ${ }^{6}$, R. B. Nickerson ${ }^{121}$, R. Nicolaidou ${ }^{137}$, B. Nicquevert ${ }^{31}$, J. Nielsen ${ }^{138}$, A. Nikiforov ${ }^{16}$, V. Nikolaenko ${ }^{131, \text { ac }}$, I. Nikolic-Audit ${ }^{82}$, K. Nikolopoulos ${ }^{18}$, J. K. Nilsen ${ }^{120}$, P. Nilsson ${ }^{26}$, Y. Ninomiya ${ }^{156}$, A. Nisati ${ }^{133 a}$, R. Nisius ${ }^{102}$, T. Nobe ${ }^{156}$, L. Nodulman ${ }^{6}$, M. Nomachi ${ }^{119}$, I. Nomidis ${ }^{30}$, T. Nooney ${ }^{78}$, S. Norberg ${ }^{114}$, M. Nordberg ${ }^{31}$, N. Norjoharuddeen ${ }^{121}$, O. Novgorodova ${ }^{45}$, S. Nowak ${ }^{102}$, M. Nozaki ${ }^{68}$, L. Nozka ${ }^{116}$, K. Ntekas ${ }^{10}$, E. Nurse ${ }^{80}$, F. Nuti ${ }^{90}$, F. O'grady ${ }^{7}$, D. C. O’Neil ${ }^{143}$, A. A. O’Rourke ${ }^{43}$, V. O’Shea ${ }^{54}$, F. G. Oakham ${ }^{30, \mathrm{~d}}$, H. Oberlack ${ }^{102}$, T. Obermann ${ }^{22}$, J. Ocariz ${ }^{82}$, A. Ochi ${ }^{69}$, I. Ochoa ${ }^{36}$, J. P. Ochoa-Ricoux ${ }^{33 \mathrm{a}}$, S. Oda ${ }^{72}$, S. Odaka ${ }^{68}$, H. Ogren ${ }^{62}$, A. Oh ${ }^{86}$, S. H. Oh ${ }^{46}$, C. C. Ohm ${ }^{15}$, H. Ohman ${ }^{164}$, H. Oide ${ }^{31}$, H. Okawa ${ }^{161}$, Y. Okumura ${ }^{32}$, T. Okuyama ${ }^{68}$, A. Olariu ${ }^{27 b}$, L. F. Oleiro Seabra ${ }^{127 a}$, S. A. Olivares Pino ${ }^{47}$, D. Oliveira Damazio ${ }^{26}$, A. Olszewski ${ }^{40}$, J. Olszowska ${ }^{40}$, A. Onofre ${ }^{127 a, 127 e}$, K. Onogi ${ }^{104}$, P. U. E. Onyisi ${ }^{32, \mathrm{~s}}$, C. J. Oram ${ }^{160 \mathrm{a}}$, M. J. Oreglia ${ }^{32}$, Y. Oren ${ }^{154}$, D. Orestano ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, N. Orlando ${ }^{61 \mathrm{~b}}$, R. S. Orr ${ }^{159}$, B. Osculati ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, R. Ospanov ${ }^{86}$, G. Otero y Garzon ${ }^{28}$, H. Otono ${ }^{72}$, M. Ouchrif ${ }^{136 d}$, F. Ould-Saada ${ }^{120}$, A. Ouraou ${ }^{137}$, K. P. Oussoren ${ }^{108}$, Q. Ouyang ${ }^{34 \mathrm{a}}$, A. Ovcharova ${ }^{15}$, M. Owen ${ }^{54}$, R. E. Owen ${ }^{18}$, V. E. Ozcan ${ }^{19}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{143}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, M. Pagáčová ${ }^{49}$, S. Pagan Griso ${ }^{15}$, F. Paige ${ }^{26}$, P. Pais ${ }^{88}$, K. Pajchel ${ }^{120}$, G. Palacino ${ }^{160 \mathrm{~b}}$, S. Palestini ${ }^{31}$, M. Palka ${ }^{39 b}$, D. Pallin ${ }^{35}$, A. Palma ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, E. St. Panagiotopoulou ${ }^{10}$, C. E. Pandini ${ }^{82}$, J. G. Panduro Vazquez ${ }^{79}$, P. Pani ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}, \quad$ S. Panitkin ${ }^{26}$, \quad D. Pantea ${ }^{27 \mathrm{~b}}, \quad$ L. Paolozzi ${ }^{50}$, Th. D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{155}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{175}$, A. J. Parker ${ }^{74}$, M. A. Parker ${ }^{29}$, K. A. Parker ${ }^{140}$,
 Fr. Pastore ${ }^{79}$, G. Pásztor ${ }^{30}$, S. Pataraia ${ }^{174}$, N. D. Patel ${ }^{151}$, J. R. Pater ${ }^{86}$, T. Pauly ${ }^{31}$, J. Pearce ${ }^{168}$, B. Pearson ${ }^{114}$, L. E. Pedersen ${ }^{37}$, M. Pedersen ${ }^{120}$, S. Pedraza Lopez ${ }^{166}$, R. Pedro ${ }^{127 a, 127 b}$, S. V. Peleganchuk ${ }^{110, \text { c }}$, D. Pelikan ${ }^{164}$, O. Penc ${ }^{128}$, C. Peng ${ }^{34 \mathrm{a}}$, H. Peng ${ }^{34 \mathrm{~b}}$, J. Penwell ${ }^{62}$, B. S. Peralva ${ }^{25 b}$, M. M. Perego ${ }^{137}$, D. V. Perepelitsa ${ }^{26}$, E. Perez Codina ${ }^{160 \mathrm{a}}$, L. Perini ${ }^{93 a, 93 b}$, H. Pernegger ${ }^{31}$, S. Perrella ${ }^{105 a, 105 b}$, R. Peschke ${ }^{43}$, V. D. Peshekhonov ${ }^{67}$, K. Peters ${ }^{31}$, R. F. Y. Peters ${ }^{86}$, B. A. Petersen ${ }^{31}$, T. C. Petersen ${ }^{37}$, E. Petit ${ }^{56}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{155}$, P. Petroff ${ }^{118}$, E. Petrolo ${ }^{133 a}$, M. Petrov ${ }^{121}$, F. Petrucci ${ }^{135 a}, 135 b$, N. E. Pettersson ${ }^{158}$, A. Peyaud ${ }^{137}$, R. Pezoa ${ }^{33 b}$, P. W. Phillips ${ }^{132}$, G. Piacquadio ${ }^{144}$, E. Pianori ${ }^{169}$, A. Picazio ${ }^{88}$, E. Piccaro ${ }^{78}$, M. Piccinini ${ }^{21 a, 21 b}$, M. A. Pickering ${ }^{121}$, R. Piegaia ${ }^{28}$, J. E. Pilcher ${ }^{32}$, A. D. Pilkington ${ }^{86}$, A. W. J. Pin 86, J. Pina ${ }^{127 a, 127 b, 127 d}$, M. Pinamonti ${ }^{163 a, 163 c, a e}$, J. L. Pinfold ${ }^{3}$, A. Pingel ${ }^{37}$, S. Pires ${ }^{82}$, H. Pirumov ${ }^{43}$, M. Pitt 171, L. Plazak $^{145 \mathrm{a}}$, M.-A. Pleier ${ }^{26}$, V. Pleskot ${ }^{85}$, E. Plotnikova ${ }^{67}$, P. Plucinski ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Pluth ${ }^{65}$, R. Poettgen ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Poggioli ${ }^{118}$, D. Pohl ${ }^{22}$, G. Polesello ${ }^{122 \mathrm{a}}$, A. Poley ${ }^{43}$, A. Policicchio ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, R. Polifka ${ }^{159}$, A. Polini ${ }^{21 \mathrm{a}}$, C. S. Pollard ${ }^{54}$, V. Polychronakos ${ }^{26}$, K. Pommès ${ }^{31}$, L. Pontecorvo ${ }^{133 a}$, B. G. Pope ${ }^{92}$, G. A. Popeneciu ${ }^{27 c}$, D. S. Popovic ${ }^{13}$, A. Poppleton ${ }^{31}$, S. Pospisil ${ }^{129}$, K. Potamianos ${ }^{15}$, I. N. Potrap ${ }^{67}$, C. J. Potter ${ }^{29}$, C. T. Potter ${ }^{117}$, G. Poulard ${ }^{31}$, J. Poveda ${ }^{31}$, V. Pozdnyakov ${ }^{67}$, M. E. Pozo Astigarraga ${ }^{31}$, P. Pralavorio ${ }^{87}$, A. Pranko ${ }^{15}$, S. Prell ${ }^{65}$, D. Price ${ }^{86}$, L. E. Price ${ }^{6}$, M. Primavera ${ }^{75 a}$, S. Prince ${ }^{89}$, M. Proissl ${ }^{47}$, K. Prokofiev ${ }^{61 c}$, F. Prokoshin ${ }^{33 b}$, S. Protopopescu ${ }^{26}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{39 a}$, D. Puddu ${ }^{135 a, 135 b}$, D. Puldon ${ }^{149}$, M. Purohit ${ }^{26, a f}$, P. Puzo ${ }^{118}$, J. Qian ${ }^{91}$, G. Qin ${ }^{54}$, Y. Qin ${ }^{86}$, A. Quadt ${ }^{55}$, W. B. Quayle ${ }^{163 a, 163 b}$, M. Queitsch-Maitland ${ }^{86}$, D. Quilty ${ }^{54}$, S. Raddum ${ }^{120}$, V. Radeka ${ }^{26}$, V. Radescu ${ }^{59 b}$, S. K. Radhakrishnan ${ }^{149}$, P. Radloff ${ }^{117}$, P. Rados ${ }^{90}$, F. Ragusa ${ }^{93 a, 93 b}$, G. Rahal ${ }^{177}$, J. A. Raine ${ }^{86}$, S. Rajagopalan ${ }^{26}$, M. Rammensee ${ }^{31}$, C. Rangel-Smith ${ }^{164}$, M. G. Ratti ${ }^{93 a, 93 b}$, F. Rauscher ${ }^{101}$, S. Rave ${ }^{85}$, T. Ravenscroft ${ }^{54}$, M. Raymond ${ }^{31}$, A. L. Read ${ }^{120}$, N. P. Readioff ${ }^{76}$, D. M. Rebuzzi ${ }^{122 a, 122 b}$, A. Redelbach ${ }^{173}$, G. Redlinger ${ }^{26}$, R. Reece ${ }^{138}$, K. Reeves ${ }^{42}$, L. Rehnisch ${ }^{16}$, J. Reichert ${ }^{123}$, H. Reisin ${ }^{28}$, C. Rembser 31, H. Ren ${ }^{34 a}$, M. Rescigno ${ }^{133 a}$, S. Resconi ${ }^{93 a}$, O. L. Rezanova ${ }^{110, \mathrm{c}}$, P. Reznicek ${ }^{130}$, R. Rezvani ${ }^{96}$, R. Richter ${ }^{102}$, S. Richter ${ }^{80}$, E. Richter-Was ${ }^{39 b}$, O. Ricken ${ }^{22}$, M. Ridel ${ }^{82}$, P. Rieck ${ }^{16}$, C. J. Riegel ${ }^{174}$, J. Rieger ${ }^{55}$, O. Rifki ${ }^{114}$, M. Rijssenbeek ${ }^{149}$, A. Rimoldi ${ }^{122 a, 122 b}$, L. Rinaldi ${ }^{21 a}$, B. Ristic ${ }^{50}$, E. Ritsch ${ }^{31}$, I. Riu ${ }^{12}$, F. Rizatdinova ${ }^{115}$, E. Rizvi ${ }^{78}$, C. Rizzi ${ }^{12}$, S. H. Robertson ${ }^{89,1}$, A. Robichaud-Veronneau ${ }^{89}$, D. Robinson ${ }^{29}$, J. E. M. Robinson ${ }^{43}$, A. Robson ${ }^{54}$, C. Roda ${ }^{125 a}, 125 \mathrm{~b}$, Y. Rodina ${ }^{87}$, A. Rodriguez Perez ${ }^{12}$, D. Rodriguez Rodriguez ${ }^{166}$, S. Roe ${ }^{31}$, C. S. Rogan ${ }^{58}$, O. Røhne ${ }^{120}$, A. Romaniouk ${ }^{99}$, M. Romano ${ }^{21 a, 21 b}$, S. M. Romano Saez ${ }^{35}$, E. Romero Adam ${ }^{166}$, N. Rompotis ${ }^{139}$, M. Ronzani ${ }^{49}$, L. Roos ${ }^{82}$, E. Ros ${ }^{166}$, S. Rosati ${ }^{133 \mathrm{a}}$, K. Rosbach ${ }^{49}$, P. Rose ${ }^{138}$, O. Rosenthal ${ }^{142}$, V. Rossetti ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, E. Rossi ${ }^{105 a}$, 105b , L. P. Rossi ${ }^{51 \mathrm{a}}$, J. H. N. Rosten ${ }^{29}$, R. Rosten ${ }^{139}$, M. Rotaru ${ }^{27 b}$, I. Roth ${ }^{171}$, J. Rothberg ${ }^{139}$, D. Rousseau ${ }^{118}$, C. R. Royon ${ }^{137}$, A. Rozanov ${ }^{87}$, Y. Rozen ${ }^{153}$, X. Ruan ${ }^{146 c}$, F. Rubbo ${ }^{144}$, I. Rubinskiy ${ }^{43}$, V. I. Rud ${ }^{100}$, M. S. Rudolph ${ }^{159}$, F. Rühr ${ }^{49}$, A. Ruiz-Martinez ${ }^{31}$, Z. Rurikova ${ }^{49}$, N. A. Rusakovich ${ }^{67}$, A. Ruschke ${ }^{101}$, H. L. Russell ${ }^{139}$, J. P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{31}$, Y. F. Ryabov ${ }^{124}$, M. Rybar ${ }^{165}$, G. Rybkin ${ }^{118}$, S. Ryu ${ }^{6}$, A. Ryzhov ${ }^{131}$, A. F. Saavedra ${ }^{151}$, G. Sabato ${ }^{108}$, S. Sacerdoti ${ }^{28}$, H. F.-W. Sadrozinski ${ }^{138}$,
R. Sadykov ${ }^{67}$, F. Safai Tehrani ${ }^{133 a}$, P. Saha ${ }^{109}$, M. Sahinsoy ${ }^{59 a}$, M. Saimpert ${ }^{137}$, T. Saito ${ }^{156}$, H. Sakamoto ${ }^{156}$, Y. Sakurai ${ }^{170}$, G. Salamanna ${ }^{135 a, 135 b}$, A. Salamon ${ }^{134 a, 134 b}$, J. E. Salazar Loyola ${ }^{33 b}$, D. Salek ${ }^{108}$, P. H. Sales De Bruin ${ }^{139}$, D. Salihagic ${ }^{102}$, A. Salnikov ${ }^{144}$, J. Salt ${ }^{166}$, D. Salvatore ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, F. Salvatore ${ }^{150}$, A. Salvucci ${ }^{61 \mathrm{a}}$, A. Salzburger ${ }^{31}$, D. Sammel ${ }^{49}$, D. Sampsonidis ${ }^{155}$, A. Sanchez ${ }^{105 a, 105 b, ~ J . ~ S a ́ n c h e z ~}{ }^{166}$, V. Sanchez Martinez ${ }^{166}$, H. Sandaker ${ }^{120}$, R. L. Sandbach ${ }^{78}$, H. G. Sander ${ }^{85}$, M. P. Sanders ${ }^{101}$, M. Sandhoff ${ }^{174}$, C. Sandoval ${ }^{20}$, R. Sandstroem ${ }^{102}$, D. P. C. Sankey ${ }^{132}$, M. Sannino ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, A. Sansoni ${ }^{48}$, C. Santoni ${ }^{35}$, R. Santonico ${ }^{134 a, 134 b}$, H. Santos ${ }^{127 a}$, I. Santoyo Castillo ${ }^{150}$, K. Sapp ${ }^{126}$, A. Sapronov ${ }^{67}$, J. G. Saraiva ${ }^{127 a, 127 d}$, B. Sarrazin ${ }^{22}$, O. Sasaki ${ }^{68}$, Y. Sasaki ${ }^{156}$, K. Sato ${ }^{161}$, G. Sauvage ${ }^{5, *}$, E. Sauvan ${ }^{5}$, G. Savage ${ }^{79}$, P. Savard ${ }^{159, d}$, C. Sawyer ${ }^{132}$, L. Sawyer ${ }^{81, \mathrm{o}}$, J. Saxon ${ }^{32}$, C. Sbarra ${ }^{21 \mathrm{a}}$, A. Sbrizzi ${ }^{21 a, 21 b}$, T. Scanlon ${ }^{80}$, D. A. Scannicchio ${ }^{66}$, M. Scarcella ${ }^{151}$, V. Scarfone ${ }^{38 a, 38 b}$, J. Schaarschmidt ${ }^{171}$, P. Schacht ${ }^{102}$, D. Schaefer ${ }^{31}$, R. Schaefer ${ }^{43}$, J. Schaeffer ${ }^{85}$, S. Schaepe ${ }^{22}$, S. Schaetzel ${ }^{59 b}$, U. Schäfer ${ }^{85}$, A. C. Schaffer ${ }^{118}$, D. Schaile ${ }^{101}$, R. D. Schamberger ${ }^{149}$, V. Scharf ${ }^{59 a}$, V. A. Schegelsky ${ }^{124}$, D. Scheirich ${ }^{130}$, M. Schernau ${ }^{66}$, C. Schiavi ${ }^{51 a, 51 b}$, C. Schillo ${ }^{49}$, M. Schioppa ${ }^{38 a, 38 b}$, S. Schlenker ${ }^{31}$, K. Schmieden ${ }^{31}$, C. Schmitt ${ }^{85}$, S. Schmitt ${ }^{43}$, S. Schmitz ${ }^{85}$, B. Schneider ${ }^{160 a}$, Y. J. Schnellbach ${ }^{76}$, U. Schnoor ${ }^{49}$, L. Schoeffel ${ }^{137}$, A. Schoening ${ }^{59 b}$, B. D. Schoenrock ${ }^{92}$, E. Schopf ${ }^{22}$, A. L. S. Schorlemmer ${ }^{44}$, M. Schott ${ }^{85}$, J. Schovancova ${ }^{8}$, S. Schramm ${ }^{50}$, M. Schreyer ${ }^{173}$, N. Schuh ${ }^{85}$, M. J. Schultens ${ }^{22}$, H.-C. Schultz-Coulon ${ }^{59 a}$, H. Schulz ${ }^{16}$, M. Schumacher ${ }^{49}$, B. A. Schumm ${ }^{138}$, Ph. Schune ${ }^{137}$, C. Schwanenberger ${ }^{86}$, A. Schwartzman ${ }^{144}$, T. A. Schwarz ${ }^{91}$, Ph. Schwegler ${ }^{102}$, H. Schweiger ${ }^{86}$, Ph. Schwemling ${ }^{137}$, R. Schwienhorst ${ }^{92}$, J. Schwindling ${ }^{137}$, T. Schwindt ${ }^{22}$, G. Sciolla ${ }^{24}$, F. Scuri ${ }^{125 a, 125 b}$, F. Scutti ${ }^{90}$, J. Searcy ${ }^{91}$, P. Seema ${ }^{22}$, S. C. Seidel ${ }^{106}$, A. Seiden ${ }^{138}$, F. Seifert ${ }^{129}$, J. M. Seixas ${ }^{25 a}$, G. Sekhniaidze ${ }^{105 a}$, K. Sekhon ${ }^{91}$, S. J. Sekula ${ }^{41}$, D. M. Seliverstov ${ }^{124, *}$, N. Semprini-Cesari ${ }^{21 a, 21 b}$, C. Serfon ${ }^{31}$, L. Serin ${ }^{118}$, L. Serkin ${ }^{163 a, 163 b}$, M. Sessa ${ }^{135 a, 135 b}$, R. Seuster ${ }^{160 a}$, H. Severini ${ }^{114}$, T. Sfiligoj ${ }^{77}$, F. Sforza ${ }^{31}$, A. Sfyrla ${ }^{50}$, E. Shabalina ${ }^{55}$, N. W. Shaikh ${ }^{147 a, 147 b}$, L. Y. Shan ${ }^{34 a}$, R. Shang ${ }^{165}$, J. T. Shank ${ }^{23}$, M. Shapiro ${ }^{15}$, P. B. Shatalov ${ }^{98}$, K. Shaw ${ }^{163 a, 163 b}$, S. M. Shaw ${ }^{86}$, A. Shcherbakova ${ }^{147 a, 147 b}$, C. Y. Shehu ${ }^{150}$, P. Sherwood ${ }^{80}$, L. Shi ${ }^{152, a g, ~ S . ~ S h i m i z u ~}{ }^{69}$, C. O. Shimmin ${ }^{66}$, M. Shimojima ${ }^{103}$, M. Shiyakova ${ }^{67, \text { ah }}$, A. Shmeleva ${ }^{97}$, D. Shoaleh Saadi ${ }^{96}$, M. J. Shochet ${ }^{32}$, S. Shojaii ${ }^{93 a, 93 b}$, S. Shrestha ${ }^{112}$, E. Shulga ${ }^{99}$, M. A. Shupe ${ }^{7}$, P. Sicho ${ }^{128}$, P. E. Sidebo ${ }^{148}$, O. Sidiropoulou ${ }^{173}$, D. Sidorov ${ }^{115}$, A. Sidoti ${ }^{21 a, 21 b}$, F. Siegert ${ }^{45}$, Dj. Sijacki ${ }^{13}$, J. Silva ${ }^{127 a, 127 d}$, S. B. Silverstein ${ }^{147 a}$, V. Simak ${ }^{129}$, O. Simard ${ }^{5}$, Lj. Simic ${ }^{13}$, S. Simion ${ }^{118}$, E. Simioni ${ }^{85}$, B. Simmons ${ }^{80}$, D. Simon 35, M. Simon ${ }^{85}$, P. Sinervo ${ }^{159}$, N. B. Sinev ${ }^{117}$, M. Sioli ${ }^{21 a, 21 b, ~}$ G. Siragusa ${ }^{173}$, S. Yu. Sivoklokov ${ }^{100}$, J. Sjölin ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T. B. Sjursen ${ }^{14}$, M. B. Skinner ${ }^{74}$, H. P. Skottowe ${ }^{58}$, P. Skubic ${ }^{114}$, M. Slater ${ }^{18}$, T. Slavicek ${ }^{129}$, M. Slawinska ${ }^{108}$, K. Sliwa ${ }^{162}$, R. Slovak ${ }^{130}$, V. Smakhtin ${ }^{171}$, B. H. Smart ${ }^{5}$, L. Smestad ${ }^{14}$, S. Yu. Smirnov ${ }^{99}$, Y. Smirnov ${ }^{99}$, L. N. Smirnova ${ }^{100, a i}$, O. Smirnova ${ }^{83}$, M. N. K. Smith ${ }^{36}$, R. W. Smith ${ }^{36}$, M. Smizanska ${ }^{74}$,
 G. Sokhrannyi ${ }^{77}$, C. A. Solans Sanchez ${ }^{31}$, M. Solar ${ }^{129}$, \quad E. Yu. Soldatov ${ }^{99}$, U. Soldevila ${ }^{166}$, A. A. Solodkov ${ }^{131}$, A. Soloshenko ${ }^{67}$, O. V. Solovyanov ${ }^{131}$, V. Solovyev ${ }^{124}$, P. Sommer ${ }^{49}$, H. Son ${ }^{162}$, H. Y. Song ${ }^{34 b, z}$, A. Sood ${ }^{15}$, A. Sopczak ${ }^{129}$, V. Sopko ${ }^{129}$, V. Sorin ${ }^{12}$, D. Sosa ${ }^{59 b}$, C. L. Sotiropoulou ${ }^{125 a, 125 b}$, R. Soualah ${ }^{163 a, 163 c}$, A. M. Soukharev ${ }^{110, c}$, D. South ${ }^{43}$, B. C. Sowden ${ }^{79}$, S. Spagnolo ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, M. Spalla ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, M. Spangenberg ${ }^{169}$, F. Spanò ${ }^{79}$, D. Sperlich ${ }^{16}$, F. Spettel ${ }^{102}$, R. Spighi ${ }^{21 a}$, G. Spigo ${ }^{31}$, L. A. Spiller ${ }^{90}$, M. Spousta ${ }^{130}$, R. D. St. Denis ${ }^{54, *}$, A. Stabile ${ }^{93 a}$, S. Staerz ${ }^{31}$, J. Stahlman ${ }^{123}$, R. Stamen ${ }^{59 a}$, S. Stamm ${ }^{16}$, E. Stanecka ${ }^{40}$, R. W. Stanek ${ }^{6}$, C. Stanescu ${ }^{135 a}$, M. Stanescu-Bellu ${ }^{43}$, M. M. Stanitzki ${ }^{43}$, S. Stapnes ${ }^{120}$, E. A. Starchenko ${ }^{131}$, G. H. Stark ${ }^{32}$, J. Stark ${ }^{56}$, P. Staroba ${ }^{128}$, P. Starovoitov ${ }^{59 a}$, R. Staszewski ${ }^{40}$, P. Steinberg ${ }^{26}$, B. Stelzer ${ }^{143}$, H. J. Stelzer ${ }^{31}$, O. Stelzer-Chilton ${ }^{160 a}$, H. Stenzel ${ }^{53}$, G. A. Stewart ${ }^{54}$, J. A. Stillings ${ }^{22}$, M. C. Stockton ${ }^{89}$, M. Stoebe ${ }^{89}$, G. Stoicea ${ }^{27 b}$, P. Stolte ${ }^{55}$, S. Stonjek ${ }^{102}$, A. R. Stradling ${ }^{8}$, A. Straessner ${ }^{45}$, M. E. Stramaglia ${ }^{17}$, J. Strandberg ${ }^{148}$, S. Strandberg ${ }^{147 a, 147 b}$, A. Strandlie ${ }^{120}$, M. Strauss ${ }^{114}$, P. Strizenec ${ }^{145 b}$, R. Ströhmer ${ }^{173}$, D. M. Strom ${ }^{117}$, R. Stroynowski ${ }^{41}$, A. Strubig ${ }^{107}$, S. A. Stucci ${ }^{17}$, B. Stugu ${ }^{14}$, N. A. Styles ${ }^{43}$, D. Su 144, J. Su ${ }^{126}$, R. Subramaniam ${ }^{81}$, S. Suchek ${ }^{59 a}$, Y. Sugaya ${ }^{119}$, M. Suk ${ }^{129}$, V. V. Sulin ${ }^{97}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{70}$, S. Sun ${ }^{58}$, X. Sun ${ }^{34 a}$, J. E. Sundermann ${ }^{49}$, K. Suruliz ${ }^{150}$, G. Susinno ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, M. R. Sutton ${ }^{150}$, S. Suzuki ${ }^{68}$, M. Svatos ${ }^{128}$, M. Swiatlowski ${ }^{32}$, I. Sykora ${ }^{145 a}$, T. Sykora ${ }^{130}$, D. Ta ${ }^{49}$, C. Taccini ${ }^{135 a}, 135 b$, K. Tackmann ${ }^{43}$, J. Taenzer ${ }^{159}$, A. Taffard ${ }^{66}$, R. Tafirout ${ }^{160 a}$, N. Taiblum ${ }^{154}$, H. Takai ${ }^{26}$, R. Takashima ${ }^{71}$, H. Takeda ${ }^{69}$, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{68}$, M. Talby ${ }^{87}$, A. A. Talyshev ${ }^{110, \mathrm{c}}$, J. Y. C. Tam ${ }^{173}$, K. G. Tan ${ }^{90}$, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{118}$, S. Tanaka ${ }^{68}$, B. B. Tannenwald ${ }^{112}$, S. Tapia Araya ${ }^{33 b}$, S. Tapprogge ${ }^{85}$, S. Tarem ${ }^{153}$, G. F. Tartarelli ${ }^{93 a}$, P. Tas ${ }^{130}$, M. Tasevsky ${ }^{128}$, T. Tashiro ${ }^{70}$, E. Tassi ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, A. Tavares Delgado ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, Y. Tayalati ${ }^{136 \mathrm{~d}}$, A. C. Taylor ${ }^{106}$, G. N. Taylor ${ }^{90}$, P. T. E. Taylor ${ }^{90}$, W. Taylor ${ }^{160 \mathrm{~b}}$, F. A. Teischinger ${ }^{31}$, P. Teixeira-Dias ${ }^{79}$, K. K. Temming ${ }^{49}$, D. Temple ${ }^{143}$, H. Ten Kate ${ }^{31}$, P. K. Teng ${ }^{152}$, J. J. Teoh ${ }^{119}$, F. Tepel ${ }^{174}$, S. Terada ${ }^{68}$, K. Terashi ${ }^{156}$, J. Terron ${ }^{84}$, S. Terzo ${ }^{102}$, M. Testa ${ }^{48}$, R. J. Teuscher ${ }^{159,1}$, T. Theveneaux-Pelzer ${ }^{87}$, J. P. Thomas ${ }^{18}$, J. Thomas-Wilsker ${ }^{79}$, E. N. Thompson ${ }^{36}$, P. D. Thompson ${ }^{18}$, R. J. Thompson ${ }^{86}$, A. S. Thompson ${ }^{54}$, L. A. Thomsen ${ }^{175}$, E. Thomson ${ }^{123}$, M. Thomson ${ }^{29}$, M. J. Tibbetts ${ }^{15}$, R. E. Ticse Torres ${ }^{87}$, V. O. Tikhomirov ${ }^{97, \text { aj }, ~ Y u . ~ A . ~ T i k h o n o v ~}{ }^{110, \mathrm{c}}$, S. Timoshenko ${ }^{99}$, \quad P. Tipton ${ }^{175}$, S. Tisserant ${ }^{87}$, K. Todome ${ }^{158}$, T. Todorov ${ }^{5, *}$, S. Todorova-Nova ${ }^{130}$, J. Tojo ${ }^{72}$, S. Tokár ${ }^{145 \text { a }}$, K. Tokushuku ${ }^{68}$, E. Tolley ${ }^{58}$, L. Tomlinson ${ }^{86}$, M. Tomoto ${ }^{104}$, L. Tompkins ${ }^{144, a k}$, K. Toms ${ }^{106}$, B. Tong ${ }^{58}$, E. Torrence ${ }^{117}$, H. Torres ${ }^{143}$, E. Torró Pastor ${ }^{139}$, J. Toth ${ }^{87, \text { al }}$,
F. Touchard ${ }^{87}$, D. R. Tovey ${ }^{140}$, T. Trefzger ${ }^{173}$, L. Tremblet ${ }^{31}$, A. Tricoli ${ }^{31}$, I. M. Trigger ${ }^{160 a}$, S. Trincaz-Duvoid ${ }^{82}$, M. F. Tripiana ${ }^{12}$, W. Trischuk ${ }^{159}$, B. Trocmé ${ }^{56}$, A. Trofymov ${ }^{43}$, C. Troncon ${ }^{93 a}$, M. Trottier-McDonald ${ }^{15}$, M. Trovatelli ${ }^{168}$, L. Truong ${ }^{163 a, 163 b}$, M. Trzebinski ${ }^{40}$, A. Trzupek ${ }^{40}$, J. C.-L. Tseng ${ }^{121}$, P. V. Tsiareshka ${ }^{94}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{12}$, V. Tsiskaridze ${ }^{49}$, E. G. Tskhadadze ${ }^{52 \mathrm{a}}$, K. M. Tsui ${ }^{61 \mathrm{a}}$, I. I. Tsukerman ${ }^{98}$, V. Tsulaia ${ }^{15}$, S. Tsuno ${ }^{68}$, D. Tsybychev ${ }^{149}$, A. Tudorache ${ }^{27 \mathrm{~b}}$, V. Tudorache ${ }^{27 \mathrm{~b}}, \quad$ A. N. Tuna ${ }^{58}, \quad$ S. A. Tupputi ${ }^{21 \mathrm{a}, 2 \mathrm{~b}}, \quad$ S. Turchikhin ${ }^{100, a i}$, D. Turecek ${ }^{129}$, D. Turgeman ${ }^{171}$, R. Turra ${ }^{93 a, 93 b}$, A. J. Turvey ${ }^{41}$, P. M. Tuts ${ }^{36}$, M. Tyndel ${ }^{132}$, G. Ucchielli ${ }^{21 a}$, 21b, I. Ueda ${ }^{156}$, R. Ueno ${ }^{30}$, M. Ughetto ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Ukegawa ${ }^{161}$, G. Unal ${ }^{31}$, A. Undrus ${ }^{26}$, G. Unel ${ }^{66}$, F. C. Ungaro ${ }^{90}$, Y. Unno ${ }^{68}$, C. Unverdorben ${ }^{101}$, J. Urban ${ }^{145 b}$, P. Urquijo ${ }^{90}$, P. Urrejola ${ }^{85}$, G. Usai ${ }^{8}$, A. Usanova ${ }^{63}$, L. Vacavant ${ }^{87}$, V. Vacek ${ }^{129}$, B. Vachon ${ }^{89}$, C. Valderanis ${ }^{101}$, E. Valdes Santurio ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Valencic ${ }^{108}$, S. Valentinetti ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, A. Valero ${ }^{166}$, L. Valery ${ }^{12}$, S. Valkar ${ }^{130}$, S. Vallecorsa ${ }^{50}$, J. A. Valls Ferrer ${ }^{166}$, W. Van Den Wollenberg ${ }^{108}$, P. C. Van Der Deij1 ${ }^{108}$, R. van der Geer ${ }^{108}$, H. van der Graaf ${ }^{108}$, N. van Eldik ${ }^{153}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{143}$, I. van Vulpen ${ }^{108}$, M. C. van Woerden ${ }^{31}$, M. Vanadia ${ }^{133 a, 133 b}$, W. Vandelli ${ }^{31}$, R. Vanguri ${ }^{123}$, A. Vaniachine ${ }^{6}$, P. Vankov ${ }^{108}$, G. Vardanyan ${ }^{176}$, R. Vari ${ }^{133 a}$, E. W. Varnes ${ }^{7}$, T. Varol ${ }^{41}$, D. Varouchas ${ }^{82}$, A. Vartapetian ${ }^{8}$, K. E. Varvell ${ }^{151}$, J. G. Vasquez ${ }^{175}$, F. Vazeille ${ }^{35}$, T. Vazquez Schroeder ${ }^{89}$, J. Veatch ${ }^{7}$, L. M. Veloce ${ }^{159}$, F. Veloso ${ }^{127 a, 127 c}$, S. Veneziano ${ }^{133 a}$, A. Ventura ${ }^{75 a}$, 75 b , M. Venturi ${ }^{168}$, N. Venturi ${ }^{159}$, A. Venturini ${ }^{24}$, V. Vercesi ${ }^{122 \mathrm{a}}$, M. Verducci ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, W. Verkerke ${ }^{108}$, J. C. Vermeulen ${ }^{108}$, A. Vest ${ }^{45, \mathrm{am} \text {, }}$ M. C. Vetterli ${ }^{143, \mathrm{~d}}$, O. Viazlo ${ }^{83}$, I. Vichou ${ }^{165}$, T. Vickey ${ }^{140}$, O. E. Vickey Boeriu ${ }^{140}$, G. H. A. Viehhauser ${ }^{121}$, S. Viel ${ }^{15}$, L. Vigani ${ }^{121}$, R. Vigne ${ }^{63}$, M. Villa ${ }^{21 a, 21 b}$, M. Villaplana Perez ${ }^{93 a, 93 b}$, E. Vilucchi ${ }^{48}$, M. G. Vincter ${ }^{30}$, V. B. Vinogradov ${ }^{67}$, C. Vittori ${ }^{21 a, 21 b}$, I. Vivarelli ${ }^{150}$, S. Vlachos ${ }^{10}$, M. Vlasak ${ }^{129}$, M. Vogel 174, P. Vokac ${ }^{129}$, G. Volpi ${ }^{125 a, 125 b}$, M. Volpi ${ }^{90}$, H. von der Schmitt ${ }^{102}$, E. von Toerne ${ }^{22}$, V. Vorobel ${ }^{130}$, K. Vorobev ${ }^{99}$, M. Vos ${ }^{166}$, R. Voss ${ }^{31}$, J. H. Vossebeld ${ }^{76}$, N. Vranjes ${ }^{13}$, M. Vranjes Milosavljevic ${ }^{13}$, V. Vrba ${ }^{128}$, M. Vreeswijk ${ }^{108}$, R. Vuillermet ${ }^{31}$, I. Vukotic ${ }^{32}$, Z. Vykydal ${ }^{129}$, P. Wagner ${ }^{22}$, W. Wagner ${ }^{174}$, H. Wahlberg ${ }^{73}$, S. Wahrmund ${ }^{45}$, J. Wakabayashi ${ }^{104}$, J. Walder ${ }^{74}$, R. Walker ${ }^{101}$, W. Walkowiak ${ }^{142}$, V. Wallangen ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Wang ${ }^{152}$, C. Wang ${ }^{34 \mathrm{~d}, 87}$, F. Wang ${ }^{172}$, H. Wang ${ }^{15}$, H. Wang ${ }^{41}$, J. Wang ${ }^{43}$, J. Wang ${ }^{151}$, K. Wang ${ }^{89}$, R. Wang ${ }^{6}$, S. M. Wang ${ }^{152}$, T. Wang ${ }^{22}$, T. Wang ${ }^{36}$, X. Wang ${ }^{175}$, C. Wanotayaroj ${ }^{117}$, A. Warburton ${ }^{89}$, C. P. Ward ${ }^{29}$, D. R. Wardrope ${ }^{80}$, A. Washbrook ${ }^{47}$, P. M. Watkins ${ }^{18}$, A. T. Watson ${ }^{18}$, I. J. Watson ${ }^{151}$, M. F. Watson ${ }^{18}$, G. Watts ${ }^{139}$, S. Watts ${ }^{86}$, B. M. Waugh ${ }^{80}$, S. Webb ${ }^{85}$, M. S. Weber ${ }^{17}$, S. W. Weber ${ }^{173}$, J. S. Webster ${ }^{6}$, A. R. Weidberg ${ }^{121}$, B. Weinert ${ }^{62}$, J. Weingarten ${ }^{55}$, C. Weiser ${ }^{49}$, H. Weits ${ }^{108}$, P. S. Wells ${ }^{31}$, T. Wenaus ${ }^{26}$, T. Wengler ${ }^{31}$, S. Wenig ${ }^{31}$, N. Wermes ${ }^{22}$, M. Werner ${ }^{49}$, P. Werner ${ }^{31}$, M. Wessels ${ }^{59 \mathrm{a}}$, J. Wetter ${ }^{162}$, K. Whalen ${ }^{117}$, N. L. Whallon ${ }^{139}$, A. M. Wharton ${ }^{74}$, A. White ${ }^{8}$, M. J. White ${ }^{1}$, R. White ${ }^{33 b}$, S. White ${ }^{125 a, 125 b}$, D. Whiteson ${ }^{66}$, F. J. Wickens ${ }^{132}$, W. Wiedenmann ${ }^{172}$, M. Wielers ${ }^{132}$, P. Wienemann ${ }^{22}$, C. Wiglesworth ${ }^{37}$, L. A. M. Wiik-Fuchs ${ }^{22}$, A. Wildauer ${ }^{102}$, F. Wilk ${ }^{86}$, H. G. Wilkens ${ }^{31}$, H. H. Williams ${ }^{123}$, S. Williams ${ }^{108}$, C. Willis ${ }^{92}$, S. Willocq ${ }^{88}$, J. A. Wilson ${ }^{18}$, I. Wingerter-Seez ${ }^{5}$, F. Winklmeier ${ }^{117}$, O. J. Winston ${ }^{150}$, B. T. Winter ${ }^{22}$, M. Wittgen ${ }^{144}$, J. Wittkowski ${ }^{101}$, S. J. Wollstadt ${ }^{85}$, M. W. Wolter ${ }^{40}$, H. Wolters ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, B. K. Wosiek ${ }^{40}$, J. Wotschack ${ }^{31}$, M. J. Woudstra ${ }^{86}$, K. W. Wozniak ${ }^{40}$, M. Wu ${ }^{56}$, M. Wu ${ }^{32}$, S. L. Wu ${ }^{172}$, X. Wu ${ }^{50}$, Y. Wu ${ }^{91}$, T. R. Wyatt ${ }^{86}$, B. M. Wynne ${ }^{47}$, S. Xella ${ }^{37}$, D. Xu ${ }^{34 a}$, L. X^{26}, \quad B. Yabsley ${ }^{151}$, S. Yacoob ${ }^{146 a}$, R. Yakabe ${ }^{69}$, D. Yamaguchi ${ }^{158}$, Y. Yamaguchi ${ }^{119}$, A. Yamamoto ${ }^{68}$, S. Yamamoto ${ }^{156}$, T. Yamanaka ${ }^{156}$, K. Yamauchi ${ }^{104}$, Y. Yamazaki ${ }^{69}$, Z. Yan ${ }^{23}$, H. Yang ${ }^{34 e}$, H. Yang ${ }^{172}$, Y. Yang ${ }^{152}$, Z. Yang ${ }^{14}$, W-M. Yao ${ }^{15}$, Y. C. Yap ${ }^{82}$, Y. Yasu ${ }^{68}$, E. Yatsenko ${ }^{5}$, K. H. Yau Wong ${ }^{22}$, J. Ye ${ }^{41}$, S. Ye ${ }^{26}$, I. Yeletskikh ${ }^{67}$, A. L. Yen ${ }^{58}$, E. Yildirim ${ }^{43}$, K. Yorita ${ }^{170}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{123}$, C. Young ${ }^{144}$, C. J. S. Young ${ }^{31}$, S. Youssef ${ }^{23}$, D. R. Yu ${ }^{15}$, J. Yu ${ }^{8}$, J. M. Yu ${ }^{91}$, J. Yu ${ }^{65}$, L. Yuan ${ }^{69}$, S. P. Y. Yuen ${ }^{22}$, I. Yusuff ${ }^{29, \text { an }}$, B. Zabinski ${ }^{40}$, R. Zaidan ${ }^{34 d}$, A. M. Zaitsev ${ }^{131, a c}$, N. Zakharchuk ${ }^{43}$, J. Zalieckas ${ }^{14}$, A. Zaman ${ }^{149}$, S. Zambito ${ }^{58}$, L. Zanello ${ }^{133 a, 133 b}$, D. Zanzi ${ }^{90}$, C. Zeitnitz ${ }^{174}$, M. Zeman ${ }^{129}$, A. Zemla ${ }^{39 a}$, J. C. Zeng ${ }^{165}$, Q. Zeng ${ }^{144}$, K. Zengel ${ }^{24}$, O. Zenin ${ }^{131}$, T. Ženiš ${ }^{145 a}$, D. Zerwas ${ }^{118}$, D. Zhang ${ }^{91}$, F. Zhang ${ }^{172}$, G. Zhang ${ }^{34 \mathrm{~b}, \mathrm{z}}$, H. Zhang ${ }^{34 \mathrm{c}}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{49}$, R. Zhang ${ }^{22}$, R. Zhang ${ }^{34 \mathrm{~b}, \mathrm{ao}}$, X. Zhang ${ }^{34 \mathrm{~d}}$, Z. Zhang ${ }^{118}$, X. Zhao ${ }^{41}$, Y. Zhao ${ }^{34 d, 118, ~ Z . ~ Z h a o ~}{ }^{34 b}$, A. Zhemchugov ${ }^{67}$, J. Zhong ${ }^{121}$, B. Zhou ${ }^{91}$, C. Zhou ${ }^{46}$, L. Zhou ${ }^{36}$, L. Zhou ${ }^{41}$, M. Zhou ${ }^{149}$, N. Zhou ${ }^{34 f}$, C. G. Zhu ${ }^{34 \mathrm{~d}}$, H. Zhu ${ }^{34 \mathrm{a}}$, J. Zhu ${ }^{91}$, Y. Zhu ${ }^{34 \mathrm{~b}}$, X. Zhuang ${ }^{34 \mathrm{a}}$, K. Zhukov ${ }^{97}$, A. Zibell ${ }^{173}$, D. Zieminska ${ }^{62}$, N. I. Zimine ${ }^{67}$, C. Zimmermann ${ }^{85}$, S. Zimmermann ${ }^{49}$, Z. Zinonos ${ }^{55}$, M. Zinser ${ }^{85}$, M. Ziolkowski ${ }^{142}$, L. Živković ${ }^{13}$, G. Zobernig ${ }^{172}$, A. Zoccoli ${ }^{21 a, 21 b}$, M. zur Nedden ${ }^{16}$, G. Zurzolo ${ }^{105 a}$, 105b , L. Zwalinski ${ }^{31}$

[^3]${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington, TX, USA
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{12}$ Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
${ }^{13}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{15}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
${ }^{16}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{17}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{18}$ School of Physics and Astronomy, University of Birmingham, Birmingham, UK
19 (a) Department of Physics, Bogazici University, Istanbul, Turkey; ${ }^{(b)}$ Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey; ${ }^{(c)}$ Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey; ${ }^{(d)}$ Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
${ }^{20}$ Centro de Investigaciones, Universidad Antonio Narino, Bogotá, Colombia
21 (a) INFN Sezione di Bologna, Bologna, Italy; ${ }^{(b)}$ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }^{22}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{23}$ Department of Physics, Boston University, Boston, MA, USA
${ }^{24}$ Department of Physics, Brandeis University, Waltham, MA, USA
25 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; ${ }^{(b)}$ Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), São João del Rei, Brazil; ${ }^{\text {(d) }}$ Instituto de Fisica, Universidade de Sao Paulo, São Paulo, Brazil
${ }^{26}$ Physics Department, Brookhaven National Laboratory, Upton, NY, USA
27 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; ${ }^{(c)}$ Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; ${ }^{(d)}$ University Politehnica Bucharest, Bucharest, Romania; ${ }^{(e)}$ West University in Timisoara, Timisoara, Romania
${ }^{28}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{29}$ Cavendish Laboratory, University of Cambridge, Cambridge, UK
${ }^{30}$ Department of Physics, Carleton University, Ottawa, ON, Canada
${ }^{31}$ CERN, Geneva, Switzerland
${ }^{32}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
33 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; ${ }^{\text {(b) }}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
34 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; ${ }^{(c)}$ Department of Physics, Nanjing University, Nanjing, Jiangsu, China; ${ }^{(\mathrm{d})}$ School of Physics, Shandong University, Jinan, Shandong, China; ${ }^{(\mathrm{e})}$ Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University (also affiliated with PKU-CHEP), Shanghai, China; ${ }^{(f)}$ Physics Department, Tsinghua University, Beijing 100084, China
${ }^{35}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }^{36}$ Nevis Laboratory, Columbia University, Irvington, NY, USA
${ }^{37}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
38 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
$39{ }^{(a)}$ Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
${ }^{40}$ Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
${ }^{41}$ Physics Department, Southern Methodist University, Dallas, TX, USA
${ }^{42}$ Physics Department, University of Texas at Dallas, Richardson, TX, USA
${ }^{43}$ DESY, Hamburg and Zeuthen, Germany
${ }^{44}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{45}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{46}$ Department of Physics, Duke University, Durham, NC, USA
${ }^{47}$ SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
${ }^{48}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{49}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{50}$ Section de Physique, Université de Genève, Geneva, Switzerland
51 (a) INFN Sezione di Genova, Genoa, Italy; ${ }^{\text {b }}$ Dipartimento di Fisica, Università di Genova, Genoa, Italy
$52\left({ }^{(a)}\right.$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; ${ }^{(b)}$ High Energy
Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{53}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{54}$ SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
${ }^{55}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{56}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
${ }^{57}$ Department of Physics, Hampton University, Hampton VA, USA
${ }^{58}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
$59{ }^{(a)}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ${ }^{(b)}$ Physikalisches Institut,
Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ${ }^{(c)}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{60}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
$61{ }^{(a)}$ Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ${ }^{(b)}$ Department of Physics,
The University of Hong Kong, Hong Kong, China; ${ }^{(c)}$ Department of Physics, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong, China
${ }^{62}$ Department of Physics, Indiana University, Bloomington, IN, USA
${ }^{63}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{64}$ University of Iowa, Iowa City, IA, USA
${ }^{65}$ Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
${ }^{66}$ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
${ }^{67}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{68}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{69}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{70}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{71}$ Kyoto University of Education, Kyoto, Japan
${ }^{72}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{73}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{74}$ Physics Department, Lancaster University, Lancaster, UK
$75{ }^{(a)}$ INFN Sezione di Lecce, Lecce, Italy; ${ }^{\text {(b) }}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
${ }^{76}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
${ }^{77}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{78}$ School of Physics and Astronomy, Queen Mary University of London, London, UK
${ }^{79}$ Department of Physics, Royal Holloway University of London, Surrey, UK
${ }^{80}$ Department of Physics and Astronomy, University College London, London, UK
${ }^{81}$ Louisiana Tech University, Ruston, LA, USA
${ }^{82}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{83}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{84}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{85}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{86}$ School of Physics and Astronomy, University of Manchester, Manchester, UK
${ }^{87}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{88}$ Department of Physics, University of Massachusetts, Amherst, MA, USA
${ }^{89}$ Department of Physics, McGill University, Montreal, QC, Canada
${ }^{90}$ School of Physics, University of Melbourne, Melbourne, VIC, Australia
${ }^{91}$ Department of Physics, The University of Michigan, Ann Arbor, MI, USA
${ }^{92}$ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
93 (a) INFN Sezione di Milano, Milan, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milan, Italy
${ }^{94}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
${ }^{95}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
${ }^{96}$ Group of Particle Physics, University of Montreal, Montreal, QC, Canada
${ }^{97}$ P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
98 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{99}$ National Research Nuclear University MEPhI, Moscow, Russia
${ }^{100}$ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{101}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
${ }^{102}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
${ }^{103}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{104}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
105 (a) INFN Sezione di Napoli, Naples, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Naples, Italy
${ }^{106}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
${ }^{107}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
${ }^{108}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
${ }^{109}$ Department of Physics, Northern Illinois University, DeKalb, IL, USA
${ }^{110}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{111}$ Department of Physics, New York University, New York, NY, USA
112 Ohio State University, Columbus, OH, USA
${ }^{113}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{114}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
${ }^{115}$ Department of Physics, Oklahoma State University, Stillwater, OK, USA
${ }^{116}$ Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{117}$ Center for High Energy Physics, University of Oregon, Eugene, OR, USA
${ }^{118}$ LAL, University of Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
${ }^{119}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{120}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{121}$ Department of Physics, Oxford University, Oxford, UK
122 (a) INFN Sezione di Pavia, Pavia, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
${ }^{123}$ Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
${ }^{124}$ National Research Centre "Kurchatov Institute" B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
125 (a) INFN Sezione di Pisa, Pisa, Italy; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{126}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
127 (a) Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; ${ }^{(b)}$ Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; ${ }^{(c)}$ Department of Physics, University of Coimbra, Coimbra, Portugal; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; ${ }^{(e)}$ Departamento de Fisica, Universidade do Minho, Braga, Portugal; ${ }^{(f)}$ Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; ${ }^{(\mathrm{g})}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
${ }^{128}$ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
${ }^{129}$ Czech Technical University in Prague, Prague, Czech Republic
${ }^{130}$ Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
${ }^{131}$ State Research Center Institute for High Energy Physics (Protvino), NRC KI, Protvino, Russia
${ }^{132}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
133 (a) INFN Sezione di Roma, Rome, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
$135{ }^{(a)}$ INFN Sezione di Roma Tre, Rome, Italy; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy

136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat, Morocco; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; ${ }^{(\mathrm{e})}$ Faculté des Sciences, Université Mohammed V, Rabat, Morocco
${ }^{137}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
${ }^{138}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
${ }^{139}$ Department of Physics, University of Washington, Seattle, WA, USA
${ }^{140}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
${ }^{141}$ Department of Physics, Shinshu University, Nagano, Japan
${ }^{142}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
${ }^{143}$ Department of Physics, Simon Fraser University, Burnaby, BC, Canada
${ }^{144}$ SLAC National Accelerator Laboratory, Stanford, CA, USA
$145{ }^{(a)}$ Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; ${ }^{(b)}$ Department of Physics, University of Johannesburg, Johannesburg, South Africa; ${ }^{(c)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University, Stockholm, Sweden; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
${ }_{148}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
${ }^{149}$ Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
${ }^{150}$ Department of Physics and Astronomy, University of Sussex, Brighton, UK
${ }^{151}$ School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{153}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{154}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
${ }^{155}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{156}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{157}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{158}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{159}$ Department of Physics, University of Toronto, Toronto, ON, Canada
160 (a) TRIUMF, Vancouver, BC, Canada; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto, ON, Canada
${ }^{161}$ Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
${ }^{162}$ Department of Physics and Astronomy, Tufts University, Medford, MA, USA
163 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ${ }^{(b)}$ ICTP, Trieste, Italy; ${ }^{(c)}$ Dipartimento di Chimica Fisica e Ambiente, Università di Udine, Udine, Italy
${ }^{164}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{165}$ Department of Physics, University of Illinois, Urbana, IL, USA
${ }^{166}$ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
${ }^{167}$ Department of Physics, University of British Columbia, Vancouver, BC, Canada
${ }^{168}$ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
${ }^{169}$ Department of Physics, University of Warwick, Coventry, UK
${ }^{170}$ Waseda University, Tokyo, Japan
${ }^{171}$ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison, WI, USA
${ }^{173}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{174}$ Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{175}$ Department of Physics, Yale University, New Haven, CT, USA
${ }^{176}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{177}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{\text {a }}$ Also at Department of Physics, King's College London, London, UK
${ }^{\text {b }}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{\text {c }}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{\mathrm{d}}$ Also at TRIUMF, Vancouver BC, Canada
${ }^{\mathrm{e}}$ Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA
${ }^{\mathrm{f}}$ Also at Department of Physics, California State University, Fresno, CA, USA
${ }^{\mathrm{g}}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
${ }^{\text {h }}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
${ }^{i}$ Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
${ }^{j}$ Also at Tomsk State University, Tomsk, Russia
${ }^{\mathrm{k}}$ Also at Universita di Napoli Parthenope, Naples, Italy
${ }^{1}$ Also at Institute of Particle Physics (IPP), Vancouver BC, Canada
${ }^{m}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
${ }^{n}$ Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA
${ }^{\circ}$ Also at Louisiana Tech University, Ruston LA, USA
p Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
${ }^{\mathrm{q}}$ Also at Graduate School of Science, Osaka University, Osaka, Japan
${ }^{r}$ Also at Department of Physics, National Tsing Hua University, Hsinchu City, Taiwan
${ }^{s}$ Also at Department of Physics, The University of Texas at Austin, Austin TX, USA
${ }^{t}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
${ }^{\mathrm{u}}$ Also at CERN, Geneva, Switzerland
${ }^{v}$ Also at Georgian Technical University (GTU), Tbilisi, Georgia
${ }^{w}$ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
${ }^{x}$ Also at Manhattan College, New York NY, USA
${ }^{y}$ Also at Hellenic Open University, Patras, Greece
${ }^{\mathrm{z}}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{\text {aa }}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{\text {ab }}$ Also at School of Physics, Shandong University, Shandong, China
${ }^{\text {ac }}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{\text {ad }}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{\text {ae }}$ Also at International School for Advanced Studies (SISSA), Trieste, Italy
${ }^{\text {af }}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA
${ }^{\text {ag }}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
${ }^{\text {ah }}$ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{\text {ai }}$ Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
${ }^{\text {aj }}$ Also at National Research Nuclear University MEPhI, Moscow, Russia
${ }^{\text {ak }}$ Also at Department of Physics, Stanford University, Stanford CA, USA
${ }^{\text {al }}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{a m}$ Also at Flensburg University of Applied Sciences, Flensburg, Germany
${ }^{\text {an }}$ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
${ }^{\text {ao }}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

* Deceased

[^0]: *e-mail: atlas.publications@cern.ch

[^1]: 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$.

[^2]: ${ }^{2}$ The same BDTs trained in the context of the analysis in Ref. [20] are used here, unchanged.
 ${ }^{3}$ The transverse mass is defined as $m_{\mathrm{T}}=\sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} \cdot(1-\cos \Delta \phi)}$, where $\Delta \phi$ is the azimuthal separation between the directions of the lepton and the missing transverse momentum.

[^3]: ${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
 ${ }^{2}$ Physics Department, SUNY Albany, Albany, NY, USA
 ${ }^{3}$ Department of Physics, University of Alberta, Edmonton, AB, Canada
 4 (a) Department of Physics, Ankara University, Ankara, Turkey; ${ }^{(b)}$ Istanbul Aydin University, Istanbul, Turkey; ${ }^{(c)}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
 ${ }^{5}$ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
 ${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
 ${ }^{7}$ Department of Physics, University of Arizona, Tucson, AZ, USA

