
Available online atwww.sciencedirect.com

*•? ScienceDirect
Discrete Applied Mathematics 155 (2007) 686-694

DISCRETE 
APPLIED 
MATHEMATICS

www.elsevier.com/locate/dam

Tree loop graphs
Liliana Alcon1 * 3, Marcia R. Ceriolib, Celina M.H. de Figueiredob, Marisa Gutierrez3, 

Joào Meidanis0

1. Introduction

Interval graphs are graphs that represent the intersections among a set of intervals in the real line. In many cir­
cumstances, a DNA molecule can be viewed as part of a real line, and contiguous fragments of the molecule can 
be seen as intervals in this line. As a result, many problems involving DNA can be modeled by interval graphs. For 
instance, problems related to fragment assembly and problems related to physical mapping of DNA are both amenable 
to modeling through interval graphs [10].

However, a DNA molecule is in fact a sequence. One consequence of this fact is the existence of repeats, which 
are long contiguous sections identical or almost identical to other sections in the same molecule. Repeats often bring 
additional challenges in many DNA-related problems. For instance, a direct repeat with three or more copies, or an 
inverted repeat, if long enough, introduce ambiguities in fragment assembly, so that extra information is needed to 
assemble a DNA stretch correctly [10]. In physical mapping, when probes are used to help find the relative positioning 
of long clones, there are efficient algorithms if the probes are unique. But if a probe falls into distinct copies of a repeat, 
it is not unique, and more sophisticated algorithms have to be used [10].
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Abstract

Many problems involving DNA can be modeled by families of intervals. However, traditional interval graphs do not take into 
account the repeat structure of a DNA molecule. In the simplest case, one repeat with two copies, the underlying line can be seen 
as folded into a loop. We propose a new definition that respects repeats and define loop graphs as the intersection graphs of arcs 
of a loop. The class of loop graphs contains the class of interval graphs and the class of circular-arc graphs. Every loop graph has 
interval number 2. We characterize the trees that are loop graphs. The characterization yields a polynomial-time algorithm which 
given a tree decides whether it is a loop graph and. in the affirmative case, produces a loop representation for the tree.
© 2006 Elsevier B.V. All rights reserved.
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Fig. 1. Map of repeats for HUMHBB. Regions X i and Xi share a 70% similarity. Regions Z\ and Zs are 87%' similar. Moreover, A'| and Xi are 
similar, at levels ranging from 68-73%, to a block occurring inside both Z| and Zi, marked as a black box in the figure. The two occurrences of this 
block are almost identical (> 99% similarity). The similarity between Vki and Wi is 89%. All these are direct repeats. There is an inverted repeat, 
represented here by Tj and IS. which share an 87% similarity. The region T' is similar to blocks inside Kj and Yi. with similarities around 80% 
among Y' and the two blocks, and between the blocks. The figure is drawn to scale. The entire sequence is 73308 base pairs long, and the sizes of 
the regions in base pairs are: region Xj = 606, region Zj = 3931. region Zs = 3766, region Xi = 678, region W] = 593. region Wi = 602. region 
Fl = 2096. region Y' = 462. and region Yi =2101.

The repeat structure of a DNA sequence can be very complicated. For instance, take the 73 kilonucleotide sequence 
identified as HUMHBB stored in the public database GenBank [1] under accession number U01317.1 (or GI:455025). 
This sequence corresponds to a region on human chromosome 11 coding for several proteins involved with hemoglobin, 
the oxygen-carrier molecule of our blood red cells. The repeat structure of HUMHBB is shown in Fig. 1.

Most DNA problems come in the following form: find an interval model compatible with the adjacencies revealed 
by some kind of sequence comparison or lab experiment. In general, repeats cause problems because they introduce 
additional adjacencies, which make interval graphs look like noninterval graphs. However, DNA molecules with repeats 
can be modeled by families of intervals if we modify the "adjacency" definition for interval graphs. Meidanis and Takaki 
[8] adjust the adjacency definition to suit DNA assembly. Here we adopt an alternative definition, more suitable for 
physical mapping problems.

We begin our investigation in this line of research by attacking first the simplest case: one repeat with exactly two 
copies. We looked into the recognition problem for this new class of graphs, which are intersection graphs of families of 
intervals, but where the adjacency relation takes the repeats into account. Since the intervals can be seen as continuous 
lines over a topological entity that resembles a loop, we call them loop graphs. However, we were not able to solve this 
recognition problem fully. The class of loop graphs properly contains circular-arc graphs and is properly contained in 
the class of two-interval graphs (intersection graphs of sets that are unions of at most two intervals). The characterization 
of circular-arc graphs by a family of forbidden induced subgraphs is a known open problem in intersection graph theory. 
The recognition of two-interval graphs is a difficult problem. In this paper, we solve the recognition problem for tree 
loop graphs, that is, loop graphs that are trees. The solution is based on a characterization of tree loop graphs that yields 
both its family of forbidden minimal induced subgraphs and a polynomial-time recognition algorithm.

Section 2 contains definitions of graph classes and inclusion relations that motivate the proposed characterization of 
tree loop graphs. Section 3 contains some general results about loop graphs that will be useful in the proof of the main 
theorem. Section 4 contains the statement and the proof of the main result. In Section 5, we present our final remarks 
concerning the corresponding recognition algorithm for tree loop graphs.

2. Definitions

A graph G is called an interval graph if to each vertex u of G there is a closed interval Iu of the real line, so that 
distinct vertices u, u of G are adjacent if and only if Z„ Fl I, / 0. Structural characterizations of interval graphs have 
been provided by Lekkerkerker and Boland [6] in terms of forbidden subgraphs, by Gilmore and Hoffman [4] in terms 
of transitive orientations, and by Fulkerson and Gross [3] in terms of matrices. The class of interval graphs has been 
much studied and has been generalized in many ways motivated by scheduling and allocation problems that arise when 
a graph is used to model constraints on interactions between components of a large scale system.

One generalization of interval graphs are circular-arc graphs, obtained by replacing the real line by a circle, and 
intervals by arcs on the circle. Another generalization is obtained by considering the interval number of G, denoted 
i(G), as the smallest positive integer t such that for each vertex u of G there exists a subset Su of the real line R 
which is the union of t (not necessarily disjoint) closed intervals of R and distinct vertices u, v of G are adjacent if 
and only if Slt 0 Sv 0. The family {5l)}l)sV(G) is called a t-representation of G. Thus interval graphs are precisely 
the graphs having interval number 1. Every graph G with n vertices has interval number i (G) < n — 1, and thus z (G) 
is well defined. Trotter and Harary [11] proved that every tree T satisfies i(T)<2; Scheinerman and West [9] proved 
that every planar graph P satisfies i(P) < 3. In both cases, the bound was shown to be best possible.
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Fig. 2. A loop graph and a loop representation of it.

A loop is a pair (A.B) of two closed intervals A = [«i, a21 and B = [bi,b2\ of the real line such that «1 < b\^b2
and b2 - bi = a2 - ai. Denote bi - «1 by I. Given an interval C = [ci, c2] we define C + I = [ci + I, c2 + f] and 
C — I = [ci -l,c2 - £].

A loop representation of a graph G consists of a loop together with a family of closed intervals of the real line 
(A, B, {Iv}veV(G'i'> such tlaat distinct vertices 11, v of G are adjacent if and only if (i) I„ A Iv £ 0 ; or (ii) ((/„ A A) + 
I) n Iv 7^ 0 or ((Iu A B) -1) A Iv 7^ 0. A loop graph is a graph that admits a loop representation. Hence every induced 
subgraph of a loop graph is also a loop graph.

Fig. 2 shows on the left a graph T that is not an interval graph, and on the right a loop representation of T. We 
represent the loop (A, B) by two vertical strips. Note that adjacent vertices 6 and 3 correspond to intervals I<s and I3 
satisfying Ch A A) + f) A I3 0-

The next two results show that loop graphs are a limited generalization of interval graphs.

Lemma 1. Every circular-arc graph is a loop graph.

Proof. Let G be a circular-arc graph and consider a representation of G in an oriented circle of radius 1, ^={Av}veV(G), 
where each arc Av is given by its initial point av, 0^av < 2zt, and its length lv, 0 < /v < In. Notice that if 
then t> and w are adjacent if and only if av + lv^aw or aw + lw - In > av. We construct a loop representation for G 
as follows. Let h = max [lv :veV (G)}. Consider the loop with A = [0, /z] and B = [In, In + 7z], and the family of 
intervals {[«„, av + 7v]}v6v(g)- In this 1°°P representation, if t> and w are adjacent, with then av + lv Caw or
aw + /w — 2n^av. Conversely, if av + lv aw then, clearly, t> and w are adjacent. And in the other case, if av+lv < aw 
and aw + lw — 2n'..tav, then t> and w are also adjacent because, in this situation, 2n^aw + /w<2zt + h, since 
lw^h. □

Lemma 2. Every loop graph admits a 2-representation.

Proof. Let (A, B, SF} be a loop representation of G. Define a 2-representation of G as follows: Let Iv = [j„, vv] be 
the interval of corresponding to vertex t>. If Iv A (A U B) = 0 or, Iv A A 7^ 0 and I„ A B 0, then Sv = Iv. If 

n A 7^ 0 but 4, A B = 0, then Sv = Iv U Ch A A) + f). If IvnB 7^ 0 but Iv A A = 0, then Sv = Iv U ((/v A B) - f).
Now uv is an edge of G if and only if S„ A Sv 7^ 0. □

West and Shmoys [13] showed that for a fixed value of t • 2 it is NP-complete to determine whether the graph has 
interval number at most t. Every tree [11] and, by Lemma 2, every loop graph admit a 2-representation. This motivates 
the study of tree loop graphs. Lemma 1 proves that loop graphs generalize circular-arc graphs, which can be recognized 
in polynomial time by a classical algorithm of Tucker [12], and by more recent algorithms of Eschen and Spinrad 
[2], and of McConnell [7], The recognition problem for circular-arc graphs is harder than the recognition problem for 
interval graphs and other classes of intersection graphs. One reason is the absence of the Helly property in the families 
of arcs of a circle; this property is essential to construct a canonical representation. In other words, the consecutive 
clique arrangements of interval graphs do not generalize to circular clique arrangements. The difficulty of circular-arc 
graph recognition and the fact that no characterization of circular-arc graphs by a forbidden family is known motivate 
the study of recognition algorithms and forbidden families for related classes of graphs such as loop graphs.
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3. More definitions and basic results

In what follows, we assume without loss of generality that the endpoints of any interval used in a loop representation 
are not «i, «2, &i, or Z?2—the interval can always be lengthened to avoid this.

Definition 3. Let (A, B) be a loop and let I = [v, v] be an interval with endpoints x and y. The virtual part I* of I is 
the smallest union of closed intervals containing ((7 Fl A) + £) U ((7 Cl B) -7) - I.

Definition 4. Let (A, B) be a loop, I an interval, and z e R. The interval I covers the point z if z e I U I*.

Clearly if I contains z then I covers z. Notice that distinct vertices u and t> of a loop graph are adjacent if and only 
if Iu and Iv cover a common point of the real line, i.e., there exists z e R such that z e (7„ U I*) n (Iv U 7*).

Fig. 3 illustrates all possible different positions of an interval with respect to a loop. For each interval I the virtual 
part I* is represented. Notice that I* consists of zero, one, or two closed intervals; we will refer to these intervals as 
the intervals of I*. If I Cl I* 0, then I n I* is {v}, {v}, or {v, v}, and the latter case implies that I* consists of two 
intervals. In addition, if I Cl I* 0 then IU I* is an interval of the real line containing the interval [«i, Z^l- In Lemma 
5 below, we show that the cases where I n I* 0 (cases 4, 9 and 10 of Fig. 3) may be omitted.

Lemma 5. Every loop graph admits a loop representation (A, B. where every ! r / satisfies I n I* = 0.

Proof. Let I be an interval in d? such that I Cl 7* 0. Define J = 7 U 7*. Since 7 Cl 7* 0, J is an interval containing
[«i, b2] and we have J* = 0 and J n J* = 0. TaketF' consisting of the intervals in 3F except for 7, which has been 
replaced by J. It follows that (A, B, is also a loop representation of G. Repeat the process until there is no interval 
7 such that I n I* 0. □

Definition 6. Let (A, 7?) be a loop. An interval 7 = [v, y] is a loop interval if v, y {«i, «2, &i, b2} and I A 7* = 0.

In what follows, we assume without loss of generality that the intervals used in any loop representation are loop 
intervals. Notice that for such intervals 7* = 0 (cases 1, 5, 11 and 16 of Fig. 3) or 7* = ((7 n A) + 7) U ((7 n B) - 7) 
(any other case of Fig. 3).

type 0
type 1
type 1-2
non loop interval
type 0
type 0
type 2
type 1-2
non loop interval 
non loop interval 
type 0
type 1
type 1-2
type 0
type 2

• • typeO

The intervals The virtual part • The gates

Fig. 3. Intervals in a loop.
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Definition 7. Let I = [x, v] be a loop interval. The endpoints v and v of I are also called the real gates of I. The 
virtual gates of I are the points belonging to I* A {«i, «2, bi, bf\. Refer to a point that is a real gate or a virtual gate 
of I simply as a gate of I.

Definition 8. A loop interval I is type 0 if I has no virtual gate. I is type 1 if I has exactly one virtual gate and it is 
«1 or b\. I is type 2 if I has exactly one virtual gate and it is «2 or Z?2- I is types 1-2 if I has exactly two virtual gates.

Notice that if I is types 1-2, the virtual gates of I must be «1 and «2, or bi and ¿2, or «1 and &2- Fig- 3 also illustrates 
all the cases according to this classification of loop intervals into types.

The proof of the next three facts about gates are trivial. See Fig. 3.

Fact 9. Let I be a loop interval. The total number of gates of I is two, three or four

Fact 10. Let I be a loop interval. If an interval J contains any endpoint of an interval of I*, then J covers a gate of
I .If J contains both endpoints of an interval of I*, then J covers two different gates of I.

Fact 11. Let I be a loop interval not of type 0 andx = ai, «2, bi, orb2. Ifx e I A {«1, «2}, then x + £ is a gate of L,
ifx e 7 A {bi, b2}, then x - £ is a gate of I.

Definition 12. Let t> and it be adjacent vertices of a graph. Vertex t> is dominated by vertex u if every vertex adjacent 
to t> is also adjacent to u.

In an interval representation, if two intervals Iu and Iv of the real line intersect, then one contains the two endpoints 
of the other, or each one contains one endpoint of the other. In addition, if Iv does not contain an endpoint of Iu, then 
t> is dominated by u. In the sequel, we prove that in a loop representation analogous results are true for loop intervals, 
by replacing "contain" by "cover", and "endpoint" by "gate".

Lemma 13. If two loop intervals cover a common point then one of the loop intervals covers two gates of the other, 
or each loop interval covers one gate of the other.

Proof. Let I and J be loop intervals covering a common point z. Hence, z e (I U I*) A (J U 7*), and consider the 
following four possible cases:

Case (i): If z e I A J, then I contains the two endpoints of J, or J contains the two endpoints of I, or each loop 
interval contains one endpoint of the other. Thus the result follows because the endpoints of the intervals are gates, and 
containing a point implies covering the point.

Case (ii): If z e I A J*, then there exists an interval J' of J* such that I A J' 0. As in the previous case, 
J' contains the two endpoints of I, or I contains the two endpoints of J', or each interval contains one endpoint of the 
other. In all three cases the result follows because the endpoints of I are gates of I and by Fact 10.

Case (iii): The case z e I* A J is analogous to the previous case.
Case (iv): Finally, if z e I* A J*, then z e A (so z + £ e I A J) or z e B (so z - £ e I A J), and the result follows 

as in the first case. □

Corollary 14. Let I and J be two loop intervals not of type 0. If I and J are both of the same type, or if one of them 
is types 1-2, then one of the loop intervals covers two gates of the other.

Lemma 15. Let u and t> be adjacent vertices in a loop graph. If Iv does not cover a gate of Iu, then t> is dominated 
by it.

Proof. Assume that

Iv covers no gate of Iu. (1)

We are going to prove that t> is dominated by u. Since u and t> are adjacent, let z e (Iu U I*) A (Iv U I*), and consider, 
as we have considered in the proof of Lemma 13, the following four possible cases:
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Case (i): z e IUC\ Iv. By hypothesis (1), we must have Iv c and so clearly v is dominated by u.
Case (ii): z e Itl J, J an interval of I*. By hypothesis (1) and Fact 10, we must have J c Iu. We consider two 

possibilities: J A {«i, «2, &i, b2} = 0 or J A {«1, «2, bi, b2} 0. If J A {«1, «2, b\, ¿2} = 0 (cases 6 or 14 of Fig. 3),
then J = I* c and Iv c /*, and so clearly t> is dominated by u. If J A {«1, «2, bi, ¿2} 7^ 0, assume for instance 
that «1 e J. Then «1 e . By Fact 11, Iu is of type 0 or «1 + I is a gate of Iu, but in this latter case Iv covers a gate of 
Iu, a contradiction. We conclude that Iu is type 0, and since it contains a virtual part, Iu must be as in case 5 of Fig. 3. 
Now, clearly, Iv U 1* c and so t> is dominated by it.

Case (iii): z e J A Iv, J an interval of I*. By hypothesis (1), we must have c ./ c /*, which implies 1* c Iu, 
and so t> is dominated by u.

Case (iv): z e J' A J, J' c /*, and JQI*. By hypothesis (1), we must have J c J' c I*. As in case (ii), by Fact 
11, if J A {«1, «2, b\, b2} 7^ 0, then Iv covers agate of Iu, a contradiction. Thus J A {«1, «2, b\, b2} = 0, which implies 
J = I* c I* and Iv c ltl, and so t> is dominated by u. □

Apath(i>i........v„) is an induced P„ in a graph G if t>,- e V (G), and the only edges e E(G) are g E(G),
for 1 < 1 < n. We say that P„ has length n - 1. If n = Ik - 1, we say that vt is the central vertex of P„.

Corollary 16. Letfu, i>, w) bean induced P? in a loop graph G. Then Iv covers a gate of Iu in every loop representation 
ofG.

Definition 17. Let G be an interval graph and t> a vertex of G. Vertex t> is external in G if there exists an interval 
representation D of G having Iv = [xv, vv] such that xv or _vv is not contained in another interval of D. In this case, 
interval Iv has a free endpoint.

It is clear that if there is an interval representation of G having xv as a free endpoint, then there exists another 
representation having _vv as a free endpoint.

A tree is a graph where each pair of vertices is connected by precisely one path. A trivial tree contains just one 
vertex. The following definition of ramification vertex is motivated by the forbidden induced tree for interval graphs, 
depicted in Fig. 2. The trees that are interval graphs are precisely the trees with no ramification vertex [6],

Definition 18. A vertex t> in a tree T is a ramification vertex if its removal gives a graph T - v containing at least three 
nontrivial trees. The ramification degree of a ramification vertex t> is the number of nontrivial trees in T — t>.

Lemma 19. Let T be a tree and an interval graph. A vertex of T is external if and only if

(1) it is not the central vertex of an induced P5 in T, and
( 2) it is not a vertex dominated by the central vertex of an induced P5.

Proof. Note that an interval representation of T is also a loop representation. Let (u, v, w, vf u') be an induced P5 in 
T. By Corollary 16, in any interval representation of T both Iv and /,< contain an endpoint of Iw. Since t> and v' are not 
adjacent, each one of Iv and Iv> contains a different endpoint of Iw. It follows that w is not an external vertex, which 
establishes (1). Now let z be a vertex dominated by w. Since T is a tree, z is neither adjacent to t> nor to v'. Since we 
have just proved that in any interval representation of T, lv contains one endpoint of Iw and /„■ contains the other, it 
follows that in any interval representation of T, L must be contained in Iw. Hence L does not have a free endpoint, 
which establishes (2).

We prove the converse by induction on n, the number of vertices in T. The case n = 1 is trivial. Let T be a tree and 
an interval graph with n > 1 vertices, and t> a vertex of T satisfying (1) and (2). Consider two cases:

Case (a): Vertex v has a neighbor u of degree 1. Let T' be the tree and an interval graph T — u, obtained from 
T by the removal of vertex it. It is clear that t> satisfies (1) with respect to T'. Vertex t> satisfies (2) with respect to 
T', because if t> is dominated by the central vertex of a P5 in T', then in T there is a ramification vertex, which is a 
contradiction. It follows by the induction hypothesis that there exists an interval representation D' of T' such that the 
interval has a free endpoint. An interval representation of T is obtained from D' by adding an interval Iu included in
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Case (b): Vertex v does not have a neighbor of degree 1. Since v satisfies (1), the degree of v is 1. Let u be the 
unique neighbor of v, and note that u dominates t>. Let T' be the tree and an interval graph T — v. Now u must satisfy 
(1) and (2) with respect to T', and so by the induction hypothesis there exists an interval representation D' of T', such 
that the interval Iu has a free endpoint. An interval representation of T is obtained from D' by adding an interval Iv 
overlapping Iu, i.e., Iv and Iu intersect without either containing the other. It is clear that Iv has one free endpoint. □

4. Trees that are loop graphs

In the present paper, the recognition of loop graphs is left as a problem. We solve the particular case of trees, 
characterizing the trees that are loop graphs: they must not have many ramification vertices and those vertices must not 
have large ramification degree.

The characterization leads to a polynomial-time algorithm that decides whether a given tree is a loop graph and, in 
the affirmative case, also gives a loop representation. Our result also leads to a characterization by forbidden induced 
subgraphs.

Theorem 20. A tree T is a loop graph if and only if one of the following conditions holds'.

(i) T has no ramification vertex.
(ii) T has exactly one ramification vertex and it has ramification degree 3 or 4.

(iii) T has exactly two ramification vertices and they have ramification degree 3.

Proof. The necessity is proved by the following three claims:

Claim 21. If T has a vertex u with ramification degree 5 or more, then T is not a loop graph.

Proof. Let ty, i = 1......... 5, be five vertices adjacent to u, such that each t>,- belongs to a nontrivial tree of T — u. By
Corollary 16, each IVj covers a gate of Iu, and these gates must be all different because the vertices t>,- are not adjacent. 
Thus Iu must have at least five gates, which contradicts Fact 9. □

Claim 22. If T has two ramification vertices and one of them has ramification degree 4, then T is not a loop graph.

Proof. Let u and t> be two ramification vertices, and assume u has ramification degree 4. Thus, by Corollary 16, Iu is 
types 1-2 and Iv is type 1, type 2, or types 1-2. Clearly it and t> are adjacent and, by Corollary 14, Iu covers two gates 
of Iv or Iv covers two gates of Iu. Label by 1, 2, 3 the three neighbors of u that are distinct from and nonadjacent to v, 
have degree at least 2, and are mutually nonadjacent. Label by 4 and 5 two neighbors of t> that are distinct from and 
nonadjacent to u, have degree at least 2, and are mutually nonadjacent.

Each of Iv, Ii, h, h covers a distinct gate of Iu and so Iv covers «i or «2 but not both; assume Iv covers «2 (so it 
is type 2) and one of the intervals I\, I2, or L covers «1. Now, by Corollary 14, either Iv covers two different gates of 
Iu, which contradicts t> not being adjacent to 1, 2, 3, or Iu covers two gates of Iv, and these two gates of Iv are distinct 
from the two gates covered by A, C. which says Iv is types 1-2, again a contradiction. □

Claim 23. If T has three ramification vertices with ramification degree 3, then T is not a loop graph.

Proof. Let u, v, w be three ramification vertices with ramification degree 3. Since these three vertices cannot be 
mutually adjacent, assume that u and w are not adjacent, and with no loss of generality assume further that Iu is type 
1 and Iw is type 2. Suppose now that Iv is type 1. Then u and t> are adjacent and Corollary 14 says that Iu covers two 
gates of Iv or Iv covers two gates of Iu. In either case we get a contradiction, since u and t> are ramification vertices 
and their intervals Iu, Iv are assumed to have each one only three gates. We conclude that Iv must be types 1-2. Now 
Corollary 14 says that Iv covers two gates of Iu, which contradicts u being a ramification vertex and its interval Iu 
having only three gates, or Iu covers two gates of Iv. We conclude that Iu covers two gates of Iv, and Iw covers two 
gates of Iv. Note that those are the four distinct gates of the types 1-2 loop interval Iv as u and w are not adjacent. 
Finally, Iv has its four gates covered by Iu and Iw, which contradicts t> being a ramification vertex. □
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Fig. 4. A loop representation of a tree with a vertex of ramification degree 4.

The sufficiency is proved by the following two claims and by the fact that a tree without a ramification vertex is an 
interval graph and hence a loop graph.

Claim 24. A tree with only one ramification vertex u and such that u has ramification degree 3 or 4 is a loop graph.

Proof. Without loss of generality, assume u is a vertex of ramification degree 4 in a tree T. Let I <'/ <'4. he the 
nontrivial trees in T — u. Let t>,- be the vertex of T} that is adjacent to u in T. Since there is no other ramification vertex, 
Tf is an interval graph. In addition, t>,- and satisfy conditions (1) and (2) of Lemma 19. Hence there exists an interval 
representation D, of with IVi having a free endpoint. Define a loop representation (A, B. of T as follows. Take 
a loop (A, B) with A = [«i, «2] and B = [bi, ¿»2]- Define Iu = [v, v] with x < «1 and «2 < y < bi. Since Iu is types 
1-2, it has four gates which may be covered by each IVj, such that no other intersection occurs, as shown in Fig. 4. 
The vertices of degree 1 adjacent to u in T (if they exist) can be represented by a family of pairwise disjoint intervals 
appropriately included in Iu n A. □

Claim 25. A tree with only two ramification vertices v and w both having ramification degree 3 is a loop graph.

Proof. Let (t> = t>o, t>i........vP-i, vp = w) be the path between t> and w in T. Let T' be the nontrivial tree obtained
by identifying t> and w into vertex it in the graph T — {t>i........D>-i}. Let (A, B, be the loop representation of T'
obtained as in Claim 24. To obtain a loop representation of T it is enough to break the interval Iu into p + 1 intervals 
IVi, i = 0........p, corresponding to an interval representation of the path (t>o, t>i......... vp). The vertices of degree 1
adjacent to some t>,- in this path can be represented by a family of pairwise disjoint intervals included in the respective 

□

This concludes the proof of Theorem 20. □

The following corollary is obtained by examining the adjacencies of the ramification vertices in a tree that is not a 
loop graph.

Corollary 26. A tree is a loop graph if and only if it does not contain an induced subgraph isomorphic to the graph 
of Fig. 5.

5. Final remarks

Both the characterization in terms of ramification vertices given in Theorem 20, and the characterization in terms of 
an infinite family of forbidden induced subgraphs given in Corollary 26 lead to polynomial-time recognition algorithms 
for tree loop graphs. Given a tree, we can either look at its ramification vertices and their corresponding ramification 
degrees, or we can look for the forbidden configuration presented in Fig. 5. Both tasks can be done in polynomial time. 
Moreover, when the tree is a loop graph, the proof of Theorem 20 constructs a corresponding loop representation in 
polynomial time.
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e * w

Fig. 5. The forbidden configuration for a tree loop graph. Bold lines are paths of any length.
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