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ABSTRACT

Aims. We analyze INTEGRAL-ISGRI data in order to probe the hard X-ray emission (above 20 keV) from point sources in the 
CygOB2 region and to investigate the putative non-thermal high-energy emission from early-type stars (Wolf-Rayet and O-type 
stars). Among the targets located in the held of view, we focus on the still unidentified EGRET source 3EG 2033+4118 that may be 
related to massive stars known to produce non-thermal emission in the radio domain, and on the wide colliding-wind binary WR 140. 
Methods. Using a large set of data obtained with the IBIS-ISGRI imager onboard INTEGRAL, we run the OSA software package in 
order to find point sources in the fully coded field of view of the instrument.
Results. Our data do not allow the detection of a lower-energy counterpart of 3EGJ2033+4118 nor of any other new point sources in 
the field of view, and we derive upper limits on the high-energy flux for a few targets: 3EG J2033+4118, TeV J2032+4130, WR 140, 
WR 146 and WR 147. The results are discussed in the context of the multiwavelength investigation of these objects.
Conclusions. The upper limits derived are valuable constraints for models aimed at understanding the acceleration of particles in 
non-thermal emitting massive stars, and of the still unidentified very-high gamma-ray source TeV J2032+4130.

Key words, stars: early-type - radiation mechanisms: non-thermal - X-rays: stars - gamma rays: observations - 
acceleration of particles

1. Introduction
With the advent of the Energetic Gamma Ray Experiment 
Telescope (EGRET) onboard the Compton satellite, our vi­
sion of the gamma-ray sky improved significantly. However, 
among the 271 point sources listed in the third EGRET cata­
logue (Hartman et al. 1999), most are still unidentified. Many of 
these high-energy sources can be associated to supernova rem­
nants, active galactic nuclei, pulsars and High-Mass or Low- 
Mass X-Ray Binaries (respectively HMXRB and LMXRB), but 
it has also been shown that a few may be coincident with early- 
type stars (see e.g. Romero et al. 1999). A good example is the 
EGRET source 3EGJ2033+4118 that is located in CygOB2, 
one of the richest OB associations of the Galaxy (Knodlseder 
2000).

CygOB2 is also interesting in the sense that it harbours 
3 O-type stars (CygOB2#5, #8A and #9) known to produce 
non-thermal radio emission, revealing therefore that these stars 
are able to accelerate electrons up to relativistic energies. The

existence of such a population of relativistic particles opens 
up the possibility that other non-thermal emission processes 
are at work in the high-energy domain. For this reason, non- 
thermal radio emitting early-type stars are considered as can­
didates for the emission of non-thermal radiation in the hard 
X-rays and in the y-rays (see e.g. De Becker 2005). The pu­
tative contribution of some of these early-type stars to the 
y-ray source 3EGJ2033+4118 has already been discussed by 
Benaglia et al. (2001) and De Becker et al. (2005b). In addi­
tion, a few long-period Wolf-Rayet binaries ( WR 140, WR 146, 
and WR 147) located close to Cyg OB2 are also classified as 
non-thermal radio emitters, and may therefore be non-thermal 
high-energy sources. In the context of the so-called "standard" 
model for the non-thermal emission from massive stars, the elec­
trons are accelerated through the Diffusive Shock Acceleration 
mechanism (DSA, Pittard & Dougherty 2006) by hydrodynamic 
shocks produced by colliding winds in binary systems. The high- 
energy emission is expected to arise from the inverse Compton 
(IC) scattering of UV photons emitted by the stars of the system, 
even though hadronic processes such as neutral pion decay may 
also contribute to the y-rays. However, there are many uncer­
tain parameters in current models which require observations to
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Fig. 1. IBIS-ISGRI mosaic image constructed on the basis of the 715 science windows (FCFOV) between 20 and 60 keV. The point sources 
detected in the held of view are individually pointed out. The large structures centered on CygX-1 are artificial. The coordinate grid specifies the 
right ascension and the declination.

further constrain the nature of the acceleration process and the 
efficiency of leptonic and hadronic emission processes. Recent 
observations with XMM-Newton (between 0.5 and 10.0 keV) of 
non-thermal radio emitting early-type stars failed to detect un- 
ambigously a non-thermal soft (i.e. below 10 keV) X-ray emis­
sion component (Rauw et al. 2002; De Becker et al. 2004a, 
2005a, 2006). This non-detection may be explained by the lim­
ited availability of UV photons for IC scattering in binary sys­
tems characterized by somewhat large separations, and mostly 
by the fact that the faint putative non-thermal emission may be 
overwhelmed by the thermal emission from these systems that 
is much stronger in soft X-rays. For this reason, an investigation 
of the higher energy domain - where there is no more thermal 
emission from colliding-winds - is strongly needed.

The existence of the very high-energy y-rav source 
TeV J2032+4130 (Aharonian et al. 2005; Konopelko et al. 2007) 
in the direction of Cyg OB2 - discovered using Cherenkov tele­
scopes - should also be considered. The nature of this source is 
still unknown, even though it has been proposed that it may be 
related to the rich population of massive stars in the Cyg OB2 
region (Butt et al. 2003; Torres et al. 2004). The putative re­
lation of TeV J2032+4130 with 3EGJ2033+4118 is also worth 
considering, even though their error boxes are only marginally 
consistent.

On the basis of a large set of data obtained with the 
International Gamma-Ray Laboratory (INTEGRAL), De Becker 
(2005) searched for the presence of high-energy sources related 
to the massive star population of Cyg OB2, but failed to detect 
the targets mentioned above. In this paper, we discuss a larger set 
of INTEGRAL-ISGRI data in order to investigate the hard X-ray 
emission from the Cyg OB2 region, with the purpose to constrain 
the flux of the targets mentioned above in the ISGRI bandpass, 
i.e. between about 20 keV and 1 MeV. The results are also con­
sidered in the context of the multiwavelength investigation of the 
non-thermal emission of radiation from astrophysical sources.

2. Observations and data processing

Time was granted (PI: G. Rauw) to observe the Cyg OB2 region 
with the IBIS imager (Ubertini et al. 2003) onboard INTEGRAL 
during revolutions 0080 ( Announcement of Opportunity num­
ber 1, AO1), and in revolutions 0191, 0210, 0211, 0212, 0213, 
0214, 0215, 0216, 0218, 0251, 0252, 0253, 0254 and 0255 
(AO2), and these data were analyzed by De Becker (2005). In 
addition, the same field was observed on the request of many 
teams, including in the context of the Guaranteed Time.

The data set (observing group) discussed in this paper is con­
stituted of all public science windows (up to revolution 340) 
where the position of 3EGJ2033+4118 appears in the Fully 
Coded Field of View (FCFOV). We did not consider the Partially 
Coded Field of View (PCFOV) in order to reduce the impact 
of noise in our data set, therefore optimizing the efficiency of 
the source detection procedure. This observing group contains 
715 science windows of about 50 min each on average, leading 
to a total effective observation time of about 2120 ks. We applied 
the standard ISGRI1 data analysis procedure using the OSA soft­
ware (v6.0) provided by the Integral Science Data Center (ISDC, 
Courvoisier et al. 2003) in order to build a mosaic image and to 
detect sources. We distributed the events into three energy bands: 
(1) 20-60 keV, (2) 60-100 keV, and (3) 100-1000 keV. The mo­
saic image obtained between 20 and 60 keV is shown in Fig. 1.

1 As we were interested mainly in a priori rather soft faint sources, 
we did not consider PICsIT data in our analysis.

The detection threshold was fixed at 3a. We forced the de­
tection procedure to search only for the sources included in 
an input catalogue containing a restricted number of potential 
sources. This approach is useful when dealing with noisy sci­
ence windows and prevents detection of artificial sources due 
to ghosts of the bright sources CygX-1 and CygX-3. The input
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Table 1. Input catalogue used for the high-level analysis of the FCFOV around the expected position of 3EG J2033+4118. The sources are sorted 
by decreasing detection signi(icance level in the first energy band. The last three columns provide the sigm (icance of the detection of the sources 
respectively in the three energy bands selected for the data analysis. In the last three columns. " indicates a non detection. References to previous 
INTEGRAL observations of most of these sources are given below.

Source Nature Ref. O'(.12000) 6 (J2000) Status cr\ cr2 0-3
CygX-1 HMXRB 2 19h58m21.7s +35° 12' 06" Detected 4204 1492 480
Cyg X-3 Microquasar 5 20h 32m 26.6s +40° 57' 09" Detected 1252 110 20

EXO 2030+375 Be/X-ray binary 4.6 20h32m 15.2s +37° 38' 15" Detected 177 21 -
CygX-2 EMXRB 7 21h44m41.2s +38° 19' 18" Detected 65 - -

SAXJ2103.5+4545 HMXRB 8 21h03m33.0s +45° 45' 00" Detected 62 7 -
KS 1947+300 Be/X-ray binary 9 19h49m35.6s +30° 12'31" Detected 47 10 -

QSOB1957+405 Seyfert 1 galaxy 1 19h 59m 28.4s +40° 44' 02" Detected 30 11 -
IGR J21247+5058 gamma-ray source 10 21h 24m 42.0s +50° 59' 00" Detected 22 7 -

SSCyg Dwarf nova 3 211142m 48.0s +43° 34'36" Detected 12 - -
IGR J21335+5105 gamma-ray source - 21h33m50.1s +51° 09' 22" Not detected - - -
3EGJ2033+4118 gamma-ray source - 201133m 36.0s +41° 19' 00" Not detected - - -
TeV J2032+4130 gamma-ray source - 20h 32m 07.0s +41° 30' 30" Not detected - - -

WR140 Wolf-Rayet binary - 201120m 28.0s +43° 51' 16" Not detected - - -
WR146 Wolf-Rayet binary - 20h 35m 45. Is +41° 22' 44" Not detected - - -
WR147 Wolf-Rayet binary - 20h 36m 43.7s +40° 21'07" Not detected - - -

(1) Bassani et al. (2006); (2) Bazzano et al. (2003); (3) Bird et al. (2004); (4) Camero Arranz et al. (2005); (5) Goldoni et al. (2003); (6) Kuznetsov 
et al. (2003); (7) Natalucci et al. (2003); (8) Sidoliet al. (2005); (9) Tsygankov & Eutovinov (2005); (10) Walter et al. (2004).

catalogue (see Table 1) contains 11 previously known sources2. 
In addition, we included 3EG J2033+4118, the three Wolf-Rayet 
stars discussed in Sect. 1 and TeV J2032+4130. The coordinates 
we used for the TeV source are those proposed by Konopelko 
et al. (2007) whose analysis of Whipple Observatory data led to 
a shift of about 9 arcmin with respect to the position initially 
given by the High Energy Gamma Ray Astronomy consortium 
(Aharonian et al. 2005).

2 These sources are those that were already detected by De Becker 
(2005), along with IGRJ21223+5105 and SSCyg that were apparent 
point sources quoted as “si" and “s2" by De Becker (2005) although 
they were not detected with a significance above 3a.

3 Every science window image in the FCFOV was carefully inspected 
in order to reject those presenting the strongest artefacts (chessboard 
structures, bright ghosts, noisy structures). However, this selection (up 
to 60% of the data rejected) did not reduce the large scale arti(icial struc­
tures centered around CygX-1 that are still seen in the mosaic image 
obtained with the data set discussed in this paper (see Fig. 1).

4 Without these structures and artefacts, the background would be 
dominated by a diffuse extragalactic emission in the soft part of 
the ISGRI bandpass, and by the internal background due to the de­
excitation of nuclei produced by spallation reactions of cosmic rays on 
the instrument material at higher energies (Eebrun et al. 2003).

3. Results and discussion
The analysis of our data did not allow us to detect any of the 
targets that motivated this study. A closer view of the intensity 
map between 20 and 60 keV - where the expected position of 
the undetected sources is indicated - is shown in Fig. 2. A sum­
mary of the source detection results is given in Table 1, where 
the significance of the detection is specified for the three energy 
bands. The main reason for this non-detection could be that we 
are dealing with a priori faint high-energy sources located in a 
field populated by several bright sources, among which the very 
bright High Mass X-Ray Binary CygX-1 is dominant. The ef­
ficiency of the detection procedure is indeed hampered by the 
artificial large scale structures due to the presence of CygX-13 
that heterogeneously increase the level of the background4.

On the basis of the mosaic image of the FCFOV, we esti­
mated upper limits on the high-energy flux in the three energy
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Fig-2. Fraction of the IBIS-ISGRI mosaic image between 20 and 
60 keV (see Fig. 1). The position of our main targets is specified. The 
bright source on this image is Cyg X-3. The coordinate grid specifies 
the right ascension and the declination.

bands specified in Sect. 2 using the mosaic_spec task. We first 
fitted a Gaussian (half width at half maximum fixed at 6 arcmin) 
at the expected position of each target in order to measure a count 
rate. We repeated the same procedure by shifting the position 
of the Gaussian by 12 arcmin, i.e. the expected angular resolu­
tion of IBIS. Four shifts were applied respectively in the North, 
South, East and West directions in order to check for the consis­
tency of the results of the fit across the typical positional error 
box of IBIS. Variations are indeed expected if the background is 
not homogeneous in that part of the image.

3.1. 3EGJ2033+4118

The upper limits on the count rates obtained in the three energy 
bands for 3EG J2033+4118 are very consistent across the typical 
error box of IBIS. This suggests that the background is rather 
homogeneous in this part of the image even though the target 
position is very close to that of CygX-3.
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Table 2. Upper limits at 3cr on the count rate and on the fluxes in three 
energy bands for 3EGJ2033+4118 and WR 140.

Energy band 
(keV)

Upper limits (3cr)
Count rate
(ctss 1)

Photon flux
(ph cm 2 s')

Flux
(erg cm 2 s')

3EGJ2033+4118
20-60 0.087 1.1 x 10 4 6.1 X 10 12
60-100 0.051 3.4 x 10 s 4.2 X 10 12
100-1000 0.069 7.9 X 10 s 4.0 X 10 1
WR140
20-60 0.090 1.1 xl0~4 6.3 xl0~12
60-100 0.054 3.5 X 10 s 4.4 X 10 12
100-1000 0.072 8.2 X 10 s 4.2 X 10 1

5 We note that the position of WR 140 is coincident with the error box 
of the EGRET source 3EG J2022+4317 (Romero et al. 1999; Benaglia
& Romero 2003).

6 The approach developed by Pittard & Dougherty (2006) consists in
fitting models to radio data in order to determine the population and spa­
tial distribution of relativistic electrons without an a priori knowledge
of the magnetic field strength.

As a second step, we converted these upper limits on 
the count rates into fluxes expressed in erg cm-2 s_1 and in 
ph cm-2 s“1. It is therefore necessary at this stage to make an 
assumption on the model of the high-energy emission in the en­
ergy bands used in our ISGRI data analysis. Considering that 
the high-energy emission is produced by IC scattering, we may 
expect an emission spectrum in the form of a power law with a 
photon index equal to 1.5 (this value is expected for IC emission 
produced by a population of relativistic electrons accelerated by 
the DSA mechanism in the presence of strong shocks, see e.g. 
De Becker 2005). We built a synthetic model by folding such a 
power law affected by an arbitrary normalization parameter with 
the response matrices of ISGRI (response matrix and ancillary 
response) using the xspec software. We then scaled the normal­
ization parameter of the model in order to match the count rate 
of the fake spectrum with the upper limit on the count rate in 
the complete ISGRI bandpass. The flux was then estimated on 
the basis of this scaled synthetic model in each energy band. 
The upper limits on the fluxes are given in Table 2.

As mentioned in the introduction, this unidentified y-ray 
source may be related to the population of O-type stars located 
in Cyg OB2. In such a scenario, the high-energy emission may 
be explained by the combined IC emission from the three non­
thermal radio emitting stars CygOB2#5, #8A and #9. In or­
der to disentangle the putative high-energy contributions from 
these objects, we need to determine accurately their stellar, wind, 
and orbital parameters. The best known system is undoubtedly 
Cyg OB2 #8A whose orbital solution (De Becker et al. 2004b) 
has been further validated by radio and X-ray observations re­
vealing strong phase-locked variations with the same ephemeris 
(Blomme 2005; De Becker et al. 2006). Cyg OB2 #5 is known to 
be a triple system (Contreras et al. 1997) but no orbital solution 
exists for the third component. For Cyg OB2 #9, the existence of 
a companion has not yet been revealed even though strong varia­
tions of the radio flux are in agreement with a long period binary 
scenario (Van Loo 2005). An optical campaign is currently under 
way aiming at the investigation of the multiplicity of this latter 
target. Provided detailed information are gathered on these ob­
jects, state-of-the-art models (see e.g. Pittard & Dougherty 2006) 
may be applied in order to estimate the respective contributions 
to the expected non-thermal high-energy emission from these 
O-type stars. This constitutes the obvious next step in the study 
of the non-thermal phenomena related to these early-type stars.

It should be noted that the power law model generally used to 
reproduce the expected non-thermal high-energy emission from 
colliding-wind binaries does not necessarily hold in the EGRET 
bandpass. On the one hand, the emission process at work above 
100 MeV may be different form IC scattering, as it may be due 

to a hadronic process such as neutral pion decay. On the other 
hand, assuming that the y-ravs detected by EGRET come from 
IC emission, the index of the power law at these energies may be 
very different from that characterizing the spectrum at a few tens 
of keV. The extrapolation to keV energies of the EGRET emis­
sion level measured above 100 MeV is therefore not expected to 
carry any relevant physical meaning.

3.2. WR stars

We also estimated the upper limits on the flux following the same 
procedure as above in the case of the WR stars included in our 
catalogue. The first target worth considering here is the long pe­
riod binary WR 140 (WC7 + 04-5). According to the ephemeris 
published by Marchenko et al. (2003), our data set covers orbital 
phases between 0.23 and 0.56, even though most of the science 
windows (~65%) have been obtained between phases 0.41 and 
0.48. For WR 1405, the upper limits are slightly different to those 
obtained for 3EG J2033+4118 (see Table 2). We note that these 
values are indeed larger than the level of high energy emission 
predicted by several colliding-wind binary models developed by 
Pittard & Dougherty (2006)6 * * * * for WR 140. However, the fluxes 
predicted by some models used by Pittard & Dougherty (2006) 
are larger than the upper limits deduced from the data. In particu­
lar, the predicted flux in the 60-100 keV energy band of model H 
of Pittard & Dougherty (2006) is 4.2 x 10“5 ph cm-2 s_1 (5.6 x 
10“12 erg cm-2 s_1). The predicted flux for model J of 2.8 x 
10“5 ph cm-2 s“1 is just below the upper limit in the 60-100 keV 
band.

In models G-J of Pittard & Dougherty (2006), it is consid­
ered that the Razin effect is the cause of the turndown of the ra­
dio spectrum at GHz frequencies. The fact that these models are 
rejected - considering our upper limits - invalidates this latter 
scenario, and favors a scenario where the turndown is due to the 
free-free absorption by the circumstellar winds (models A-F). 
This model selection implies also that the B-fleld at the apex 
of the wind collision region is of order 1 G at the orbital phase 
examined (0.837) by Pittard & Dougherty (2006), rather than 
a factor of 10 lower (models A-F consider larger magnetic en­
ergy densities than models G-J). To place more stringent con­
straints on the B-fleld will require actual detection of IC emis­
sion. Unfortunately, the predicted IC fluxes from models A-F 
are typically two orders of magnitude below the upper limits 
presented here. They are therefore completely our of reach of 
INTEGRAL even considering several tens of Ms of observation.

We note that this comparison between predictions and ob­
servations is based on the assumption that the relativistic elec­
tron properties at the time of the radio observation considered by 
Pittard & Dougherty (2006) are similar at the orbital phases cov­
ered by the INTEGRAL observations. However, as we are deal­
ing with an eccentric binary, the properties of the colliding-wind 
region are expected to vary with the orbital phase. In order to 
lift this assumption, simultaneous radio and improved sensitiv­
ity X-ray observations are needed.

We also investigated the case of the two very long pe­
riod colliding-wind binaries WR 146 (WC5 + 08) and WR 147 
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(WN8h + B0.5V) (see respectively Dougherty et al. 2000 and 
Williams et al. 1997). Their observational upper limits are the 
same as for 3EGJ2033+4118, suggesting that the background 
reaches a rather uniform level in the region of the image where 
these targets are located. In the case of WR 147, we note that 
much better radio observations are needed in order to apply 
correctly a model such as that of Pittard & Dougherty (2006) 
and make detailed predictions on their non-thermal high-energy 
emission level to be confronted to our upper limits. Using pre­
liminary fits of radio data for WR 146 and WR 147, we predict 
high-energy fluxes at least one order of magnitude below the 
observational upper limits. But it is worth noting that the uncer­
tainty on the power law index of the relativistic electron popula­
tion derived from the fit of radio data is too large to lead too any 
firm conclusion. We note also that the non detection of WR 147 
is in agreement with the prediction by Reimer et al. (2006) who 
argued that several Ms of observation with INTEGRAL may be 
needed to detect it.

We note also that these three WR systems were considered 
in the study of Benaglia & Romero (2003) of the y-ray emission 
from WR binaries. According to their model, IC fluxes of about 
8 x 10“4,1 x 10“4 and 1 x 10“3 ph cm-2 s_1 are expected respec­
tively for WR 140, WR 146 and WR 147 in the INTEGRAL-IBIS 
energy range, i.e. between 15 keV and 10 MeV. Using the same 
power law model, we estimated the photon fluxes in the three 
energy bands used for our data analysis. We obtain predicted 
values that are larger than our observational upper limits for 
WR 140 and WR 147. As a result, our upper limits for WR 140 
and WR 147 are inconsistent with the model of Benaglia & 
Romero (2003).

3.3. TeV2032+4130

According to Konopelko et al. (2007), the angular extent of 
this target is less than 6 arcmin and it can therefore be consid­
ered as a point source (the IBIS point spread function is about 
12 arcmin). The upper limits on the flux that we derived for 
the TeV source are the same as those of 3EGJ2033+4118 in 
the three energy bands. This is not surprising as the background 
seems rather homogeneous in the sky region where these two 
sources - along with WR 146 and WR 147 - are located (see 
Fig. 2). The improved upper limits on the hard X-ray flux from 
this unidentified object are expected to constitute helpful con­
straints for future studies aiming at unveiling the nature of re­
cently discovered very-high energy sources. As the process re­
sponsible for the high-energy emission is still a completely open 
issue, we did not make any hypothesis on the emission model to 
convert the upper limits into energy or photon fluxes. We note 
that the recent analysis by Butt et al. (2006) of public ISGRI 
data (including PCFOV data, in addition to the FCFOV data set 
used in this study) below 300 keV did not lead to a detection of 
TeV 2032+4130 neither.

3.4. Other sources

As mentioned in Table 1, several point sources have been de­
tected with our data. It is not the purpose of this paper to go 
through the details for these sources. Most of them are rather 
bright sources that have been discussed in several papers (see 
references in Table 1), except for the dwarf nova SS Cyg. This 
target is interesting in the sense that not so many dwarf novae 
have been detected in hard X-rays. The detection of this cat­
aclysmic variable with INTEGRAL has already been reported 

in the soft ISGRI bandpass with a detection significance of 7<r 
and a count rate of 0.71 ± 0.10 cts s_1 between 20 and 40 keV 
(Bird et al. 2004), but SS Cyg was not detected at higher en­
ergies. The count rate we report here between 20 and 60 keV is 
0.77 ± 0.06 cts s“1 with a detection significance of I2a. The 3-a 
upper limits we derived in the 60-100 keV and 100-1000 keV 
energy bands are respectively 0.11 and 0.14 cts s_1. In order to 
compare the count rates obtained by Bird et al. (2004), we ran 
the OSA software in narrower energy bands, i.e. 20-40 keV and 
40-60 keV, and we derived a count rate of 0.69 ± 0.05 cts s_1 in 
the former band, with a detection significance of I3a. SS Cyg is 
still not detected at the 3a level above 40 keV.

4. Conclusions
Our investigation of the high energy emission in the ISGRI band­
pass did not lead to the detection of point sources related to non- 
thermal radio emitting massive stars in the CygOB2 region. We 
however derived upper limits on the count rate of these sources 
in three energy bands in order to constrain the high energy emis­
sion level of these targets.

These upper limits provide significant constraints on mod­
elling efforts related to the non-thermal emission processes 
likely to be at work in massive star environments. Several 
model fits to the synchrotron radio emission from WR140 yield 
IC fluxes which are inconsistent with the INTEGRAL upper lim­
its presented here, although the use of isotropic formulae for the 
IC emission means that there is some uncertainty attached to 
these predictions (see Reimer et al. 2006; Pittard & Dougherty 
2006). A key theme of the Pittard & Dougherty (2006) mod­
els which remain viable is that the non-thermal electron energy 
spectrum is flatter than the canonical value expected from DSA. 
It is possible that such a spectrum may be achieved by the further 
acceleration of particles within a highly turbulent wind-wind 
collision region, as arises when the stellar winds are structured 
(Pittard 2007). The spectral slope of any future detected IC emis­
sion will allow much tighter constraints to be placed on the un­
derlying population of relativistic particles in these systems and 
the physical mechanisms behind their acceleration. The advent 
of future high-energy observatories such as GLAST in y-rays, 
and NeXT or SYMBOL-X in the hard X-ray domain, is expected 
to open up new prospects in this context.
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