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Abstract

In this work we report on the effects of short-range correlations upon the matrix elements of neutrinoless double beta decay (Ov/f/1). We focus 
on the calculation of the matrix elements of the neutrino-mass mode of decays of 48Ca and 76Ge. The nuclear-structure components of the 
calculation, that is the participant nuclear wave functions, have been calculated in the shell-model scheme for 48Ca and in the proton-neutron 
quasiparticle random-phase approximation (pnQRPA) scheme for 76Ge. We compare the traditional approach of using the Jastrow correlation 
function with the more complete scheme of the unitary correlation operator method (UCOM). Our results indicate that the Jastrow method vastly 
exaggerates the effects of short-range correlations on the nuclear matrix elements.
© 2007 Elsevier B.V. Open access under CC BY license.
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A good knowledge of the nuclear matrix elements govern
ing the decay rates of neutrinoless double beta (Ov/l/J) decay is 
mandatory if one wants to extract information about the neu
trino mass from the current experimental limits for the half
lives of Qvfifi-decay transitions [1,2]. The standard theoretical 
methods which are suitable for the calculation of the relevant 
nuclear matrix elements can be found in the literature, e.g. in 
[3,4]. Although many of the formalisms are well established, 
difficulties arise from the approximations which are needed in 
order to perform the actual calculations.

In the mass mode of the Qvfif} decay the involved two nucle
ons exchange a light Majorana neutrino [5]. Average value of 
the exchanged momentum is of the order of 100-200 MeV/c 
and thus the involved nucleons are on average at close distance 
from each other. There is, however, a minimum relative dis
tance of the order of 1 fm after which the two nucleons may 
eventually overlap. In nuclear matter this overlapping cannot 
happen and in theoretical description of the decay one
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needs to take into account this fact. Based on this it has been ar
gued [6] that special measures have to be taken when perform
ing nuclear-structure calculations using the mean-field picture 
with residual two-body interactions between the two interact
ing nucleons. In the case of the OvfiP decay these measures 
boil down to introducing an explicit Jastrow type of correla
tion function into the involved two-body transition matrix ele
ments [3]. Using this method in the numerical calculations of 
Oi’/3/3-decay matrix elements considerable corrections to the in
volved Fermi and Gamow-Teller nuclear matrix elements were 
reported [3,7].

In [8] a different method was used to explicitly take into ac
count the short-range correlations. This approach is based on 
the use of the Horie-Sasaki method to evaluate the involved ra
dial form factors and the short-range correlations were consid
ered to arise from the m exchange in the nucleon-nucleon inter
action [9,10]. Contrary to [3,7], in this approach only relatively 
small corrections to the involved nuclear matrix elements were 
obtained [8,11]. Instead of using the above described methods, 
one can use the more complete new concept of unitary corre
lation operator method (UCOM) [12] to take into account the 
short-range effects in Ov/J/J decay. In this method a unitary cor
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relation operator moves a pair of nucleons away from each other 
whenever they start to overlap. This method also conserves the 
probability normalization of the relative wave function.

In this work we address the important issue of short-range 
correlations in the computation of nuclear matrix elements in
volved in the neutrinoless double beta decay. We have used both 
the UCOM and Jastrow methods and we compare the results 
for the ground-state-to-ground-state decays of 4SCa and 
76Ge. For 4SCa we calculate the relevant nuclear wave functions 
in the solid theoretical framework of the nuclear shell model. In 
order to accomplish this we have used the OXBASH code [13], 
which is actually available to any practitioner in the field. For 
76Ge we have used the framework of the proton-neutron qua
siparticle random-phase approximation (pnQRPA), suitable for 
calculations of nuclear properties of medium-heavy and heavy 
nuclei.

Our calculated results show that the reduction caused by the 
inclusion of the short range correlations depends on the multi
pole which contributes to the (h'flfl matrix element. In addition, 
the strength distributions of the multipoles are practically unal
tered by the short-range correlations, suggesting the effect to be 
just an overall multipole-dependent scaling. This scaling factor 
is close to unity for all multipoles in the UCOM scheme, but 
acquires strongly reduced values for high multipoles in case of 
the Jastrow method.

We start the quantitative scrutiny of the effects of short-range 
correlations by briefly presenting the central ideas behind our 
computations. By assuming the neutrino mass mechanism to be 
the dominant one in the decay one can write as a good 
approximation the inverse of the half-life as [4]

where me is the mass of the electron and

= ^2xyp/ny|Uey|2 
j

(2)

is the effective mass of the neutrino, being the CP phase. 
Furthermore, the quantity GyOv) of Eq. (1) is the leptonic phase
space factor defined in [4]. The double Gamow-Teller and dou
ble Fermi nuclear matrix-elements in (1) are defined as [5]

a

mgt = E(0/■ CT«)ll°ib)-
a

(3)

(4)

Here the summation runs over all states a of the intermediate 
nucleus, which in this case are 48Sc and 76As. The definition of 
the neutrino potential h+(rmn, Ea) can be found in Refs. [3-5],

The traditional way [3] to include the short-range correla
tions in the matrix elements is by introducing the Jastrow 
correlation function /j(r). It has to be noted that this partic
ular variant of the Jastrow function is a rudimentary one and 
does not do full justice to the name Jastrow correlations. For 
example, in light nuclei accurate Monte Carlo calculations are 

based on Jatrow-like correlations which are variationally deter
mined and have different ansatz functions in different isospin 
channels. This fact notwithstanding we choose to call here the 
rudimentary approach of [3] as Jastrow method since this is the 
term adopted by the double-beta-decay community.

Tie Jastrow function depends on the relative distance r = 
|ri - r2| of two nucleons, and in the Jastrow scheme one re
places the bare operator O by a correlated operator (?j by 
the simple procedure

A typical choice for the function /j is

/J(r) = l-e-fl'(l-&r2), (6)

with a = 1.1 fm2 and b = 0.68 fm2. As a result, the Jastrow 
function effectively cuts out the small r part from the relative 
wave function of the two nucleons. For this reason, the tradi
tionally adopted Jastrow procedure does not conserve the norm 
of the relative wave function and one should use, in principle, 
the operator

Oj = —(7) 

when the initial and final states are the same, here denoted 
by |'J'). For different initial and final states normalization is 
even more problematic. Even a proper normalization does not 
guarantee that the short-range correlations would be correctly 
treated by the Jastrow procedure.

To circumvent the difficulties associated with the use of a 
Jastrow function one can adopt the more refined unitary cor
relation operator method (UCOM) [12] when discussing short- 
range effects in the Gvftfl decay. In the UCOM one obtains the 
correlated many-particle state |^) from the uncorrelated one as 

|^) = C|^), (8)

where C is the unitary correlation operator. Tire operator C 
is a product of two unitary operators: C = CqC,-, where Cq 
describes short-range tensor correlations and Cr central cor
relations. Due to unitarity of the operator C, the norm of the 
correlated state is conserved. Moreover, one finds for the ma
trix element of an operator A

^\A\P} = (V\C'AC\V'} = {<P\A\<I''}, (9)

so that it is equivalent to use either correlated states or corre
lated operators.

Tire exact form of the operator C is gained by finding the 
minimum of the Hamiltonian matrix element HC^}.
Therefore, the choice of the two-body interaction in H affects 
also the form of C. Explicit expressions for the operators Cr 
and Cq can be found in Refs. [12,14], Application of these 
expressions to the double Gamow-Teller and Fermi matrix ele
ments shows that the tensor correlations of Cq vanish and we 
are left with only the central correlations.

For 48Ca the nuclear-structure calculations were handled by 
the shell-model code OXBASH [13], In our calculations we 
have used the FPBP two-body interaction of [15], which was
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Table 1
Multipole decomposition and the total value of the matrix element ' for 
48Ca. The cases are: no short-range correlations included (bare), with Jastrow 
correlations and with UCOM correlations using Bonn-A and Argonne V18 
parametrizations

J” Bare Jastrow UCOM

Bonn-A AV18

1+ -0.330 -0.305 -0.322 -0.319
2+ -0.117 -0.092 -0.108 -0.104
3+ -0.327 -0.246 -0.302 -0.293
4+ -0.066 -0.035 -0.054 -0.051
5+ -0.246 -0.121 -0.212 -0.199
6+ -0.042 -0.008 -0.030 -0.027
7+ -0.150 -0.029 -0.120 -0.107
Sum -1.278 -0.835 -1.150 -1.101

Table 2
The same as Table 1 but for Mp0'’1

J” Bare Jastrow UCOM

Bonn-A AV18

1 + 0.000 0.000 0.000 0.000
2+ 0.185 0.145 0.174 0.169
3+ 0.000 0.000 -0.001 -0.001
4+ 0.116 0.061 0.102 0.096
5+ 0.000 0.000 -0.002 -0.002
6+ 0.061 0.012 0.050 0.045
7+ 0.000 0.000 -0.002 -0.002
Sum 0.367 0.221 0.324 0.308

1 In all other numerical applications of the UCOM we have used correlated
operators without involving any approximations.

obtained by fitting the Kuo-Brown interaction to experimental 
data. Due to the fact that we have limited our model space to 
the pf shell, the Qvfif} matrix elements are composed of only 
positive-parity states. The shell-model calculations had to be 
truncated by requiring that the minimum number of particles in 
the O/7/2 orbital be 4.

Our main results for 48Ca are presented in Tables 1 and 2. In 
these tables we list the calculated multipole decomposition and 
total values of the matrix elements and MpOv> for four dif
ferent cases. In the first case, which we refer to as bare matrix 
elements, we have not taken into account any short-range corre
lations. In the second case the short-range effects were handled 
by the use of the Jastrow function (6) and the replacement (5). 
In the third and fourth cases we have used the UCOM to account 
for the short-range effects. The Kuo-Brown interaction was not 
derived via UCOM. as it should be if it were to be used in the 
same calculation as the UCOM-derived double-beta operator. 
To access the magnitude of the resulting effect, we have adopted 
two different UCOM parameter sets in the present calculation. 
These two parameter sets were obtained by minimizing the en
ergy for the Bonn-A and Argonne V18 potentials. Both of the 
used UCOM parameter sets can be found in [16].

As the results in Tables 1 and 2 indicate, the differences be
tween the results obtained by the use of the two UCOM parame
ter sets are small. Therefore, we expect that the results obtained 
by the use of the Kuo-Brown UCOM parameters do not deviate 
significantly from the Bonn-A or Argonne V18 results. We also 
note that there exist a small UCOM contribution to the double 
Fermi matrix element A/1."'' coming from the odd-J intermedi-

bare
0 UCOM Bonn
O UCOM AV 18
a Jastrow

Fig. 1. Multipole decomposition of the total Ovfip decay matrix element 
^Gt'1 “ (gv/gA)2^0'’1 for 48Ca. The cases are: no short-range correlations 
included (bare), with Jastrow correlations and with UCOM correlations using 
the Bonn-A and Argonne V18 parametrizations.

ate states. This is explained by the fact that in Ref. [16] slightly 
different parameters were given to the S — 0 and S — 1 chan
nels.

In Fig. 1 we show graphically the multipole decomposi
tion of the total matrix element A/gy’1 — (gv/gA)2^01’1 of 
(1) for the four different cases of Tables 1 and 2. The ratio 
gA/gv — —1.254 was used in this plot. As can be seen, the re
sults obtained by using the two different UCOM parameter sets 
do not differ significantly. Also, one can see that the effects of 
the Jastrow or UCOM correlations grow with increasing J of 
the intermediate states. For the extreme case of the 7+ contri
butions the switching on of the Jastrow correlations changes the 
value of the matrix element Af^y’)(7+) from —0.150 to —0.029, 
roughly corresponding to a factor of 5 reduction. At the same 
time the UCOM correlations produce only a 20%-30% reduc
tion from the bare matrix element. It seems that in a situation 
like this blind use of Jastrow correlations cuts out relevant parts 
of the nuclear many-body wave function. From the tables one 
deduces that the Jastrow correlations cause some 35 % -40% re
duction to the magnitudes of the total matrix elements, whereas 
the UCOM causes a reduction of 10%-16%. It is worth point
ing out that our numbers for the Jastrow case coincide with the 
numbers of the corresponding earlier calculation performed by 
the Strasbourg group [17].

To trace the source of differences between the Jastrow and 
UCOM corrected matrix elements we show for the 48Ca decay 
in Fig. 2 the radial dependence of the two-particle Gamow- 
Teller 0i.// matrix element in the special case of p = p’ = 
n = n' — O/7/2 and J =1 (this is the contribution to Eq. (4.16) 
of [3] without including the one-body transition densities and 
the overlap of the two complete sets of pnQRPA states). The os
cillator parameter value b = 2.0 fm was used in the plot. For the 
case of UCOM contribution we have used the correlated wave 
functions and the approximation r — R-(r) & R+(r) — r for il
lustrative purpose.1 Thus, the UCOM plot should be taken only 
as a schematic one. From the figure one can see that the Jas-
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Fig. 2. Radial dependence of the two-particle Gamow-Teller Ovflfl matrix ele
ment for p = p' = n = n' = O f-j¡s and J = 7 in the case of 48Ca decay. Shown 
are the bare matrix element and Jastrow and UCOM correlated matrix elements.

Fig. 3. The same as Fig. 1 for the decay of 76Ge calculated by using the pn- 
QRPA. Only the Bonn-A parametrization has been used for UCOM.

trow correlations cut out a significant part of the matrix element 
at small r. This leads to a situation, where the total integrated 
areas under the radial curve almost cancel out. In the case of 
UCOM correlations the cancellation is not as severe due to the 
fact that not so much amplitude is lost for small r.

Our results for the decay of 76Ge are summarized in 
Fig. 3 and Table 3. The results have been obtained by using the 
framework of the proton-neutron quasiparticle random-phase 
approximation (pnQRPA) [4.18]. The related calculations, in
cluding the BCS and the pnQRPA calculations for 76Ge and 
76Se, were done in the model space consisting of the single
particle lp-0f-2s-\d-0g-0h[i/2 orbitals, both for protons 
and neutrons. The single-particle energies were obtained from a 
spherical Woods-Saxon potential. Slight adjustment was done 
for some of the energies at the vicinity of the proton and neu
tron Fermi surfaces to reproduce better the low-energy spectra 
of the neighboring odd-A nuclei and the low-energy spectrum 
of 76As. The Bonn-A G-matrix [19] was used as a two-body 
interaction and it was renormalized in the standard way, as 
discussed e.g. in Refs. [20-22]. Due to this phenomenologi-

Table 3
Gamow-Teller (Mq^), Fermi (A/p014) and total matrix elements derived from 

pnQRPA calculations for the Ovfifl decay of 76Ge. The cases ‘bare’. ‘Jastrow’ 
and ‘UCOM’ are as in Table 1. Only the Bonn-A parametrization has been used 
for UCOM

Bare Jastrow UCOM Bonn-A

4°t’ -6.755 -4.681 -6.265
A/p0'4 2.474 1.778 2.310
Total -8.328 -5.811 -7.734

cal renormalization we did not perform an additional UCOM 
renormalization of the two-body interaction. In the present cal
culations we have used the ’default value’ gpp = 1.0 for the 
particle-particle interaction parameter of the pnQRPA.

In Fig. 3 we display for 76Ge decay the multipole decompo
sition of the total Oi’/3/3 matrix element ’ — (gv/gA)2Afp0r) 
as derived from the pnQRPA calculations. The used symbols 
are the same as in Fig. 1. The ratio gv/gA = —1.254 was 
used in the calculations. Since the nuclear wave functions have 
been calculated by the use of the Bonn potential, we have 
used only the Bonn-A parametrization for the UCOM. Here 
one can see a pattern similar to the case of 48Ca: the ef
fect of the Jastrow correlations grows strongly with increas
ing value of the angular momentum of the intermediate states. 
As in the case of the 48Ca decay the effect is the largest for 
the unnatural-parity states 1 + .2“,3+.4“,... in an odd-odd 
nucleus. Contrary to the Jastrow-corrected multipole contribu
tions, the UCOM-corrected ones stay close to the bare contri
butions for all intermediate multipoles J~.

We summarize our results on the matrix elements of 
the 76Ge decay in Table 3, where we give the bare, Jastrow- 
corrected and UCOM-corrected Gamow-Teller, Fermi and to
tal matrix elements. For the total matrix element the Jastrow 
corrections amount to 30% reduction from the bare matrix el
ement, whereas the UCOM corrections are some 7%. This, 
again, suggests that in the earlier calculations [3,7] the effect 
of the short-range correlations has been considerably overesti
mated.

In this Letter we have addressed the important issue of 
short-range correlations in the context of neutrinoless dou
ble beta decay. We have calculated the related nuclear matrix 
by the nuclear shell model for 48Ca and by the pnQRPA for 
76Ge. The short-range correlations have been calculated by 
the use of the simple Jastrow function and the more refined 
UCOM method. Our computed results indicate that the Jastrow 
method cuts off relevant parts of the many-body wave func
tion for high values of angular momentum of the intermediate 
states. This leads to the excessive reduction of 30%-40% in 
the magnitudes of the nuclear matrix elements. At the same 
time the UCOM reduces the magnitudes of the matrix elements 
only by 7%—16%, roughly equally for all multipoles. Our re
sults put to question the recent calculations where short-range 
and tensor correlations cause large effects on the nuclear ma
trix elements of neutrinoless double beta decay [7]. Study of 
the effects of the UCOM procedure upon heavier nuclei is in 
progress.
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