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Abstract

We analyze the existence of localized finite energy topological excitations on top of the perturbative pion vacuum within the Skyrme model at 
finite isospin chemical potential and finite pion mass. We show that there is a critical isospin chemical potential /z'y above which such solutions 
cease to exist. We find that /z'y is closely related to the value of the pion mass. In particular for vanishing pion mass we obtain /z‘, = 0 in 
contradiction with some results recently reported in the literature. We also find that below /z'z the skyrmion mass and baryon radius show, at least 
for the case of the hedgehog ansatz. only a mild dependence on the isospin chemical potential.
© 2007 Elsevier B.V. All rights reserved.

PACS: 2.39.De; 25.75.Nq

Hadronic systems with vanishing baryon chemical poten­
tial /zb and finite isospin chemical potential /z/ are unstable 
with respect to weak decays. However, if we are interested in 
the dynamics of the strong interaction alone, we can disregard 
the relative slow electroweak effects and consider them as sta­
ble. Moreover, although there are not yet precise lattice QCD 
calculations at finite baryon density due to the Fermion sign 
problem, it is in principle possible to perform lattice simulations 
at finite isospin density [1]. These remarks have led several 
groups to study the behavior of strongly interacting matter at 
Ub = 0 and finite /z /. Effective Lagrangian analysis showed 
that there is a phase transition from normal phase to pion su­
perfluidity at a critical isospin chemical potential which turns 
out to be equal to the pion mass in the vacuum [2], This has 
been confirmed by lattice QCD calculations [3], random ma­
trix method analysis [4], etc. Studies at finite temperature have
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been also performed [5]. Given these results it is of consider­
able interest to investigate on the behavior of baryon properties 
at finite isospin chemical potential. One model which is well 
suited to perform these studies is the Skyrme model. In the 
Skyrme model [6] and its generalizations, baryons arise as topo­
logical excitations of a non-linear chiral Lagrangian written in 
terms of meson fields. These type of models have been quite 
successful in describing the properties of octet and decouplet 
baryons (see e.g. Ref. [7]). In a series of recent articles [8] 
the skyrmion properties in the presence of the isospin chemi­
cal potential have been analyzed. It has been found that, in the 
case of vanishing pion mass, there is a critical chemical poten­
tial uj 223 MeV above which stable soliton solutions on top 
of the perturbative pion vacuum cease to exist. Moreover, ac­
cording to Ref. [8] the skyrmion mass vanishes at /z = /zj. In 
this Letter we re-examine the issue of the skyrmion stability 
for finite isospin chemical potential considering the possibility 
of having a finite pion mass. We show that although there is in­
deed a critical isospin chemical potential /Zp its value is closely 
related to the value of the pion mass, and for vanishing pion 
mass one has /z, = 0. Moreover we find that, at least within 
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(6)

the spherically symmetric hedgehog ansatz, the skyrmion mass 
and baryon radius remain rather stable up to the critical isospin 
chemical potential.

We start by considering the Lagrangian of the SU(2) Skyrme 
model with quartic term stabilization and finite pion mass. It is 
given by

£ = _^Tr{LŒL“} + ¿2 Tr{[LŒ, L^]2}

Z772 f2 . f .
+ —^TrfU + EF -2}. (1)

Here, is the pion decay constant whose empirical value 
is = 93 MeV, e is the so-called Skyrme parameter and 
nijr is the pion mass which we will take at its empirical value 

= 139 MeV. In our numerical calculations below we will 
use the standard set of values = 54 MeV and e = 4.84 which 
leads to the empirical value of the nucleon and A masses within 
the rigid rotor approximation [9], It should be stressed, how­
ever, that our main conclusions are expected to be independent 
of this particular choice of parameters. In Eq. (1), as usual, U 
represents the S77(2) chiral field and the Maurier-Cartan oper­
ator La is defined by La = U‘daU.

The isospin chemical potential /// is introduced by perform­
ing the replacement

daU^daU -i^[r3.U]gal). (2)

where gap is the metric tensor in Minkowski space and r3 is the 
third Pauli matrix. This leads to a modified Lagrangian which 
reads

¿(/z;) = £ + Tr{«2} - Tr{[«, LJ2j

+ TriiuLoî-^-TrJiuL^Lo,^]} (3) 

where a> =U'‘ t3 U — r3 .
In what follows we will be interested in static soliton config­

urations. The corresponding soliton mass reads

m2f2
+ —^Tr{U + EF -2}

4

+4rTrl'“2l + éTrl'“’¿j2l (4)

It is not hard to see that the terms proportional to /z2 are not 
invariant under isospin rotations. Namely, the isospin chemical 
potential introduces a preferred direction in isospin space which 
is expected to lead to an axially deformed soliton configuration. 
For the time being we will assume that such deformations are 
small for the range of values of ¡i / considered here. Therefore 
we introduce the usual spherically symmetric hedgehog ansatz 
for the baryon number B = 1 configuration

Uh = exp[zr ■ rF(r)J. (5)

In this case we obtain1 

where 5 = sin F and c = cosF. The minimization of Mh(hi) 
leads to the following Euler-Lagrange equation for the soliton 
profile F,

As usual this differential equation is supplemented by the 
boundary conditions corresponding to B = 1 topological ex­
citations on top of the perturbative pion vacuum, F(0) = tt and 
F(oo) = 0. The associated baryon radius is given by

1 ' 1/2

drr2s2F’j . (8)

Before presenting the numerical soliton solutions we will an­
alyze the behavior of the profile F (r) for large distances. Given 
the boundary conditions we can linearize Eq. (7) in that limit. 
We obtain

„ IF' / , 2 , 2 \f" + _-^__/¿ + _2Jf = 0. (9)

This equation implies that localized finite energy topological 
excitations on top of the perturbative pion vacuum exist only for 
// / £ F'/, where n', = s/'i/'2.mJT. As it can be shown by solving 
Eq. (9), when /// > the profile F(r) behaves as a spherical 
Bessel function at large distances, implying that the usual cri­
teria for having localized finite energy solutions [10] fail to be 
satisfied. In fact, we find that at large distances the correspond­
ing energy density c(r) defined by Mh(hi) = drr2e(r) is 
given by

f (r) ~ sin(y2/3/z2 -/«2r)/r2 (10)

which is clearly non-integrable. The situation is quite similar to 
the one found long time ago in the study of the stability of the 
skyrmion under spin-isospin rotations [11],

In Fig. 1 we plot the numerical solutions of Eq. ( 7) for some 
chosen values of /o- There we can clearly note the oscilla­
tory behavior of F (r) for /i ¡ > /zj. For // z < Mp the skyrmion

1 We have noticed the existence of some misprints in Eqs. (8)-(14) of sec- 
ond reference in [8]. The correct corresponding expressions can be obtained by 
taking the chiral limit of our Eqs. (6), (7).
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Fig. 1. (Color online.) Hedgehog profiles F(r) for various values of the chem­
ical potential /t/. Note that localized solutions only exist for 1.
Although always oscillatory at large distances, the detailed form of F(r) for 
/z///zj > 1 depends on the maximum integration radius Fmax. Here we use 
Fmax = 100 fm. Of course, for 1 the profile function as well as the
soliton properties are independent of Fmax, provided it is sufficiently large.

As mentioned at the beginning of this Letter, general argu­
ments indicate that in the meson sector there is a phase tran­
sition from the normal phase (perturbative pion vacuum) to a 
pion condensed phase at pj = m„. Comparing with the result 
obtained above we note that in the soliton sector it appears an 
extra factor y^/2 in the corresponding critical value. A similar 
factor has been found in the study of the stability of the hedge­
hog skyrmion under spin-isospin rotation [12], As in that case, 
it reflects the fact that in the hedgehog approximation possible 
pion excitations are assumed to be spherical while, as already 
mentioned, the presence of the isospin chemical potential is ex­
pected to induce axially symmetric deformations. In order to 
account for this fact we introduce a general axial ansatz which, 
in cylindrical polar coordinates (p, </>, z), is given by [12,13] 

uax = ^3 +ÌT3^2 + (V'1(^1COS0 + T2sin0). (ID
Here, ÿa are the components of a unit vector ^(p, z) that is 
independent of the angular variable <f>. The boundary condi­
tions for finite energy solutions are that —► (0,0, 1) as p2 + 
z2 —>■ oo and that on the symmetry axis p = 0 the equations 
Vq = 0 and dp^2 = dP^3 = 0 must be satisfied. Using this 
ansatz, the mass for the static soliton configuration reads

Fig. 2. (Color online.) Soliton mass (full line) and baryon radius (dashed line) 
as a function of the isospin chemical potential // / for the spherically sym­
metric hedgehog ansatz and taken with respect to their corresponding values 
at //1 = 0. For our parameter choice such values are Mjj(0) = 864 MeV and 
r#(0) = 0.68 fm [9].

is exponentially localized. Finally, when p; = pj the solution 
displays a 1 /r2 large distance behavior which is typical of the 
localized pion massless case.

In the region where localized solutions exist we can study 
the behavior of the soliton mass and baryon radius as a function 
of the isospin chemical potential. This is shown in Fig. 2. We 
observe that as m increases, the soliton mass decreases while 
the radius increases. However, these effects are not too large 
(around 15% or less at p / = p'j), and Mh(pi) never vanishes 
in such region.

+ x 9Vl2 + + 2/«2(i - vn)
e2/# P

2^2■ aV- + -
where i = p,z. Minimizing this expression we obtain a set of 
coupled equations for the two independent functions that we 
take to be V'Hp, z) and <)■ Unfortunately the resolution 
of these equations implies a rather time-consuming numerical 
task. From the results obtained in the case of spin-isospin ro­
tations [12], soliton properties are not expected to be too much 
affected by the axial deformations provided p/ p j. Thus we 
postpone this numerical analysis for a future work. It is impor­
tant, however, to consider the linearized form of the equations 
for V'l and ^2, which are valid at large distances. They read

(13)

Thus, once axially symmetric configurations are considered, we 
have indeed pj = m„. Namely, for pj < p j the behavior of the 
deformed skyrmion mass and radius as a function of the isospin 
chemical potential is expected to be very similar to that shown 
in Fig. 2, the only important difference being that the curve will 
end at pj/m„ = 1 instead of pj/m„ = ^3/2.

In conclusion, we have re-examined the behavior of the 
skyrmion properties as a function of the isospin chemical po­
tential pj. We have found that there is, indeed, a critical value 
of pj above which localized finite energy topological excita­
tions on top of the perturbative pion vacuum cease to exist. 
Such critical value is closely related to the value of the pion 
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mass. For the spherically symmetric hedgehog ansatz we find 
Hcj = C^rim-r, while when axially symmetric deformations 
are allowed we obtain = m„ as expected from general ar­
guments in the meson sector. As in such sector [2], when ;z/ 
exceeds this critical value it is energetically favorable to create 
pion excitations which, in turns, lead to a pion condensed phase. 
This implies that for m > /z'7 one has to look for soliton excita­
tions on top of a pion condensed vacuum. These results disagree 
with previous works [8] which, having overlooked the oscilla­
tory behavior reported here, quote p, 223 MeV in the chiral 
limit (m„ = 0). Moreover, for m < /z'; we find only a mild de­
pendence of the soliton mass and radius on m. In particular, in 
contrast to the results in Ref. [8] our values of the soliton mass 
do not vanish for any value of m < /z';. It should be noted that 
these analyses of the soliton mass and radius dependence on m 
have been performed using the spherically symmetric hedgehog 
ansatz. Although for that range of values of m the axially sym­
metric deformations are expected to have only a minor effect on 
this dependence, the numerical resolution of the corresponding 
equations is required in order to confirm this expectation. This 
will also allow us to explore the region m > /z'; and, in partic­
ular, analyze the nature of the transition at m = ncj. We hope 
to report on these issues in forthcoming publications.
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