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ABSTRACT

Context. Since the discovery, with the EINSTEIN satellite, of strong X-ray emission associated with HD 93162 (=WR 25). this object 
has been predicted to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary 
nature have yet to be found.
Aims. We spectroscopically monitored this object to investigate its possible variability to address this discordance.
Methods. We compiled the largest available radial-velocity data set for this star to look for variations that might be due to binary 
motion. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched these radial 
velocities for periodicities using different numerical methods.
Results. For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star 
WR 25 is an eccentric binary system with a probable period of about 208 days.

Key words, stars: binaries: spectroscopic - stars: Wolf-Rayet - stars: individual: HD 93162

1. Introduction

Massive stars of spectral type O and Wolf-Rayet ( WR) are im
portant objects that play a crucial role in the dynamic and chem
ical evolution of galaxies. They are the major source of ioniz
ing and UV radiation and, through their huge mass-loss rates, 
they have a strong mechanical impact on their surroundings. 
Despite their importance, our knowledge of these objects and 
of their evolution is still fragmentary. The parameters that pre
dominantly determine the evolution of a massive star are its 
mass (as for any star in the HR diagram) and its mass-loss 
rate, although rotation could also have an important impact 
(Meynet & Maeder 2005). In this context, massive O+O and 

WR+O binaries are key objects because their binary nature al
lows us to determine minimum masses from the radial velocity 
orbital solution.

It is now well established that strong winds of massive stars 
in binary systems collide (Stevens et al. 1992) generating hard 
X-ray emission. For O stars, this comes in addition to a softer 
component that is intrinsic to individual objects (Berghofer et al. 
1997; Sana et al. 2006). The existence of intrinsic emission 
for WR stars is still under investigation (Oskinova et al. 2003; 
Gosset et al. 2005). As for colliding-wind binaries, the observed 
characteristics of the collision region may contribute to constrain 
the mass-loss rates and, eventually, the inclination of those sys
tems (by studying the X-ray emission modulation during the or
bital cycle). Although colliding-wind binaries are interesting ob
jects, only a handful of them have been studied in detail, which 
is particularly true for WR+O systems.

The star HD 93162 (WR 25 in van der Hucht 2001) is a 
bright ( V = 8.1) galactic Wolf-Rayet located in the Carina 
Nebula region. Its binary nature has been a matter of debate 
for many years. It has been classified as WN7 + 07 by Smith 
(1968) because the spectrum appears as a superposition of 
WN-type emission lines and of absorption lines corresponding to 
an O-type star. The morphology of the blue optical spectrum of 
WR 25 has been further discussed by Walborn (1974). He clas
sified this star as WN6-A (see also Walborn & Fitzpatrick 2000) 
and considered that there was not sufficient information to 

Article published by EDP Sciences and available at http://www.aanda.org http://dx.doi.Org/10.1051 /0004-6361:20065618

mailto:rgamen@dfuls.cl
mailto:gosset@astro.ulg.ac.be
mailto:nmorrell@lco.cl
mailto:hsana@eso.org
http://www.aanda.org_http://dx.doi.Org/10.1051_/0004-6361:20065618


778 R. Garnen et al.: The first orbital solution for WR 25

confirm its binary nature, since absorption lines intrinsic to 
a WN star had been observed in the neighbouring binary 
HD 92740=WR 22 (Niemela 1973). The massive binary status 
of WR 22 with absorption and emission lines moving in phase 
has been confirmed by several authors (Niemela 1973; Conti 
et al. 1979; Rauw et al. 1996; Schweickhardt et al. 1999). In 
later classification systems of WR stars (e.g. van der Hucht et al. 
1981; Smith et al. 1996), the presence of absorption lines has 
been noted in different ways, e.g. “+abs” or adding an “a”, in
dicating that absorption lines of unknown origin are observed in 
the otherwise emission-line spectrum.

Radial velocity studies of WR-type spectra with absorption 
lines are thus needed to shed light on the origin of these lines. 
In the case of WR 25, previously reported radial velocity studies 
have not revealed any orbital motion. From the study of 15 pho
tographic spectra obtained during consecutive nights, Moffat 
(1978) concluded that WR 25 is probably a single star. Conti 
et al. (1979) reached a similar conclusion although they noticed 
a larger scatter in the radial velocities of WR 25 than that ob
served for other stars in their study (such as HD 93131 =WR 24 
and WR 22 besides its orbital motion).

Using EINSTEIN observations, Seward & Chlebowski 
(1982) found that WR 25 has an abnormally high X-ray flux 
and, later, Pollock (1991) suggested that this very high X-ray lu
minosity might be caused by colliding winds in a binary system. 
More recently, Raassen et al. (2003) analyzed XMM-Newton ob
servations and provided further evidence that the X-ray emission 
could be indicative of a colliding-wind binary (CWB) although 
its apparent stability has been, on the contrary, taken as an argu
ment against binarity. Pollock & Corcoran (2006) reported sig
nificant variability as detected with XMM-Newton and discussed 
the possibility of periodic variations in the X-ray flux.

Drissen et al. ( 1992) found polarimetric variability in WR 25, 
as well as a wavelength dependence of its polarization angle. 
One of the two proposed explanations was that this variability 
may arise in a long-period binary system. The alternative ex
planation attributed particular properties to the intervening in
terstellar medium. In his recent catalog, van der Hucht (2001) 
classified WR 25 as WN6h+O4f considering that the WR emis
sion lines showed evidence of being diluted, although no radial
velocity variations had ever been detected.

To investigate the binary status of WR 25, the massive star 
research groups of Liège and La Plata independently collected 
high-resolution spectra of this star over the past 10 years. The 
acquisition of high-resolution spectra of WR stars is rather un
usual due to the difficulties presented by the comparatively broad 
emission lines typical of these stars. However, the radial veloc
ities (RVs) measured for each data set showed variations larger 
than the expected errors. No single periodicity could be found 
until the data obtained by the two groups were combined. In the 
following, we show how the analysis of the combined spectro
scopic data set enabled us to reveal the binary nature of WR 25 
and to derive a preliminary orbital solution for this system.

Table 1. Observing runs. The first column gives the month and year of 
the observations, the second column lists the instrumental combination 
utilized. The third column gives the number of spectra.

Date Instr, configuration n

Feb.-97

High-resolution spectra

Echelle-REOSC, 2.15-m, CASLEO 2
Mar.-97 CES+LC, CAT 1.4-m, ESO 4
Feb.-98 Echelle-REOSC, 2.15-m, CASLEO 5
Feb.-99 Echelle-REOSC, 2.15-m, CASLEO 3
May-01 FEROS, 1.5-m, ESO 4
Mar.-02 FEROS, 1.5-m, ESO 4
Mar.-02 EMMI-REMD/Ech, NTT, ESO 2
Apr.-02 FEROS, 1.5-m, ESO 1
Jan.-03 Echelle-REOSC, 2.15-m, CASLEO 4
Mar.-03 Echelle-REOSC, 2.15-m, CASLEO 3
Apr.-03 Echelle-REOSC, 2.15-m, CASLEO 5
May-03 FEROS, 2.2-m, ESO 3
Dec.-03 Echelle-REOSC, 2.15-m, CASLEO 2
May-04 FEROS, 2.2-m, ESO 3
Apr.-05 Echelle, 2.5-m, LCO 4
Feb.-06 Echelle, 2.5-m, LCO 1

Feb.-94

Medium-resolution spectra

2D-Frutti, 1-m, CTIO 2
Apr.-9 6 B&C, 1.5-m, ESO 2
Feb.-02 CSpec, 1.5-m, CTIO 4

May-73

Low-resolution spectra

Cass, 0.9-m, CTIO 2
Dec.-97 B&C, 2.15-m, CASLEO 4
Apr.-01 REOSC-DS, 2.15-m, CASLEO 6

is stable enough that three to four calibrations over the night are 
sufficient.

The summary of the observations is presented in Table 1 
where we give the dates of the run, the instrumentation used, 
and the number of spectra obtained.

2.1. High-resolution spectra (HRS)

Twenty four echelle spectra were obtained with the REOSC 
Cassegrain spectrograph (on long-term loan from the University 
of Liège) attached to the 2.15-m reflector at the Complejo 
Astronomico El Leoncito (CASLEO2 1), using a Tek 1024 x 
1024 pixel CCD as the detector. These spectra cover an approx
imate wavelength range from 3600 to 6000 Â, with a spectral 
resolving power of 26000. Typical S/N ratios in the continuum 
range between 65 and 100.

2. Observations and data reduction

Our observational data set consists of 50 high-, 8 medium- and 
12 low-resolution spectra obtained, from 1994 to 2006 (except 
for two spectra acquired in 1973), at different observatories and 
with various instrumental configurations.

Comparison (wavelength calibration) spectra were obtained 
at the same telescope positions as the stellar spectra immediately 
after or before the science exposures, except for EEROS which

1 CASLEO is operated under agreement between CONICET, 
SECYT, and the National Universities of La Plata, Córdoba and 
San Juan, Argentina.

Four spectra were acquired with the ESO 1.4-m Coudé 
Auxiliary Telescope feeding the CES spectrograph equipped 
with the Long Camera and CCD ESO#38, yielding an effective 
resolving power of 65 000, and a wavelength domain between 
4035 Â and 4080 Â. Only the blue path was used and the ex
posure time was between 30 min and one hour, implying spec
tra with S/N ratios of 100. Normalization to the continuum was 
performed through the use of a metal-poor star observed under 
similar conditions to WR 25.
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Fifteen spectra covering the whole optical range (3750- 
9000 A) were obtained with the Fiber-fed Extended Range 
Optical Spectrograph (FEROS), an echelle spectrograph 
mounted at the ESO 1.5-m telescope at La Silla and then 
transferred to the ESO/MPI 2.2-m telescope in October 2002. 
The detector was a 2kx4k EEV CCD with a pixel size of 
15 //mx 15 jum. The spectral resolving power of FEROS is 
48 000. Typical exposure times were between 10 and 20 min ac
cording to weather conditions, resulting in typical S/N ratios in 
the continuum between 150 and 200 at the 1,5-m and around 250 
at the 2.2-m.

Two spectra were acquired with EMMI attached to the 
Nasmyth focus of the NTT telescope. The instrument was used 
in the echelle spectrographic mode (REMD-echelle) with grat
ing #9 and grism #3, providing a resolving power of 7700 and 
18 usable spectral orders, covering the wavelength domain from 
4040 A to 7670 A. Typical S/N ratios are around 120.

Five spectra were observed with the 2.5-m du Pont telescope 
at Las Campanas Observatory (LCO), Chile, using the echelle 
spectrograph which provides simultaneous wavelength coverage 
from -3700 to 7000 A at a typical resolving power of -40 000. 
The detector is a Tek5 2k x 2k CCD with pixel size of 24 //m. We 
used a 1 x4 arcsec slit. These spectra have S/N ratios around 100.

2.2. Medium-resolution spectra (MRS)

Two medium-resolution spectra (S/N - 100) were obtained in 
1996 with the ESO 1.5-m telescope equipped with the mod
ified Boiler & Chivens spectrograph at La Silla. The con
figuration utilized is described in Gosset et al. (2001). Four 
medium-resolution spectra were obtained with the Cassegrain 
Spectrograph at the CTIO2 1.5-m telescope in February 2002. 
A 600 1/mm grating blazed at 3375 A in second order, com
bined with a Loral lk CCD provided a 2 pixel resolution of 
1.5 A (wavelength range 3270^1180 A). Two spectra were ob
served with the Shectman/Heathcote two-dimensional, photon
counting detector (2D-frutti) on the Cassegrain spectrograph at 
the CTIO 1-m telescope. The wavelength coverage was from 
3800 to 5000 A at a 3 pixel resolution of 1.5 A. Typical S/N 
ratios range between 50 (2D-frutti data) and 250 (CSpec at 
CTIO). Typical resolving powers for these MRS are in the range 
2000^1000.

2 CTIO is operated by the AURA Inc. under a cooperative agreement 
with the National Science Foundation as part of the NOAO.

2.3. Low-resolution spectra (LRS)

We have also obtained lower resolution spectra with resolving 
powers -1000.

Six LRS were acquired at CASLEO with the above- 
mentioned REOSC spectrograph but in its simple dispersion 
mode. This configuration provides a sampling of 1.64 A per 
pixel, on the Tek 1024 x 1024 CCD.

We also used 4 spectra observed with the Boiler & Chivens 
spectrograph attached to the 2.15-m telescope at CASLEO. A 
PM 512 x 512 pixel CCD, with pixel size of 20 pm, was used 
as the detector. The reciprocal dispersion was -2.3 A pixel-1, 
and the wavelength region observed was about AA 3800^1800 A. 
Typical S/N ratios of CASLEO LRS are about 200.

In addition, we used two previously unpublished radial ve
locity values determined from spectra observed in May 1973 at 
CTIO with the Cassegrain spectrograph attached to the 0.9-m 2 

telescope. These spectra were recorded on photographic plates, 
have a reciprocal dispersion of 120 A/mm, and were widened 
to 1 mm for a better visibility of the spectral lines. The spectro
grams were measured for the determination of R Vs with a Grant 
oscilloscope engine. Because the radial velocity values of the 
NIV 24058 emission determined from these two spectra were 
rather more negative than the mean of the other 52 observations, 
they were deemed suspect and were not included in the radial 
velocity study published by Conti et al. (1979). We note, how
ever, that the radial velocity of the interstellar Ca n absorptions 
in the two photographic spectra (-32 km s-1) does not deviate 
much from the values for these lines in our digital spectra (see 
below).

3. The radial velocity analysis

We have determined the radial velocities of WR 25 measur
ing the position of the NIV 24058 emission line because this 
line is narrow and strong enough to minimize measurement er
rors. In addition, it is expected to be formed relatively deep in 
the WR wind, and thus to better reflect the true motion of the 
WR star. We arbitrarily adopted for that line the rest wavelength 
2o = 4057.9 A as given by Conti et al. (1977). The adopted 
method consists of fitting Gaussian profiles to the observed line 
using either MIDAS or IRAF routines. We worked on spectra 
normalized to the continuum and, to homogenize the RV mea
surements, we favoured the position as measured on the upper 
part of the line; this has the advantage of being less depen
dent on the errors in the definition of the continuum. The RVs 
of the NIV 24058 emission line as measured in the spectra of 
WR 25 are reported in Table 2. These values should be cau
tiously considered as preliminary because various effects (e.g. 
intrinsic line-profile variations) could render the measured R Vs 
inaccurate. On a few good spectra, we used other techniques to 
measure the position of the NIV 24058 line, e.g. one based on 
the lower part of the emission profile. The resulting R Vs differ 
from the adopted R Vs measured on the basis of the upper part by 
0.06 A or 4.5 kms-1 at maximum. No systematic shift has been 
detected. These results give further support to the reported R Vs 
and provide an idea of the error on the measurement.

In Fig. 1, we show two typical line profiles. One was ob
served on HJD 2 452 383.507 (corresponding to </> = 0.78, see 
below) and exhibits a RV of -48 kms-1. The other, acquired 
on HJD 2 453 133.605 (</> = 0.39), corresponds to a velocity of 
-10 km s-1. These spectra are representative of two extreme po
sitions of the line as observed by us at high resolution. The main 
difference between the two spectra of Fig. 1 is a Doppler shift 
and line-profile variations, if they exist, are only second order 
effects. On the other hand, the smallness of the shift compared 
to the line width explains the difficulty in performing fully accu
rate measurements through a fit of the entire profile.

We also measured the Can 23933 interstellar absorption 
line. In the echelle spectra, this line presents at least 5 distinct 
components. Therefore, we measured the position of the central 
line of the three main components. Averaging the R Vs obtained 
in the echelle spectra, we derived a mean of -30 ± 4 km s-1. In 
Fig. 4 (bottom), we also show the R Vs of this Can line measured 
in our WR 25 spectra. This confirms the good agreement exist
ing among the different instrumental configurations used in this 
work.

Having noticed that the position of the NIV 24058 line was 
variable, we studied the time series of the measured RVs. We 
searched for periodicities using two independent methods: the
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Table 2. Radial velocities (RVs) of the NIV 44058 emission line mea
sured in the spectra of WR 25. The velocities are expressed in the he
liocentric rest frame; time is given in Heliocentric Julian Date.

HJD
2400 000+

RV
km s 1

Dataset HJD
2400 000+

RV
km s 1

Dataset

41 823.657 -112 LRS 52328.707 -18 MRS
41 828.620 -117 LRS 52328.718 -20 MRS
49 406.668 -9 MRS 52333.848 -20 MRS
49 409.767 -23 MRS 52335.652 -18 HRS
50181.671 -32 MRS 52337.685 -27 HRS
50 182.637 -25 MRS 52338.636 -20 HRS
50 505.846 -47 HRS 52339.639 -22 HRS
50 507.802 -48 HRS 52353.616 -20 HRS
50531.535 -68 HRS 52353.620 -20 HRS
50531.584 -70 HRS 52383.507 -48 HRS
50 532.513 -59 HRS 52655.865 -29 HRS
50 534.524 -69 HRS 52657.870 -29 HRS
50 807.849 -15 LRS 52658.861 -30 HRS
50 809.868 -17 LRS 52659.855 -29 HRS
50 811.869 -28 LRS 52710.711 -4 HRS
50 812.856 -26 LRS 52711.827 -6 HRS
50 842.800 -7 HRS 52712.832 -9 HRS
50 846.791 -7 HRS 52735.672 -11 HRS
50 847.877 -7 HRS 52736.673 -18 HRS
50 850.855 -11 HRS 52737.631 -15 HRS
50 852.798 -8 HRS 52738.590 -12 HRS
51 209.865 -15 HRS 52739.658 -22 HRS
51 216.881 -5 HRS 52782.493 -32 HRS
51 218.880 -10 HRS 52783.498 -30 HRS
52005.575 -80 LRS 52784.493 -30 HRS
52007.577 -102 LRS 52985.841 -42 HRS
52008.576 -110 LRS 52989.842 -37 HRS
52009.612 -81 LRS 53131.510 -11 HRS
52011.635 -103 LRS 53133.605 -10 HRS
52013.589 -74 LRS 53135.485 -11 HRS
52037.638 -16 HRS 53480.710 -46 HRS
52038.586 -20 HRS 53481.584 -39 HRS
52039.618 -22 HRS 53488.559 -28 HRS
52040.622 -15 HRS 53490.662 -26 HRS
52328.697 -22 MRS 53772.679 -12 HRS

algorithm to derive periods of cyclic phenomena described in 
Marraco & Muzzio (1980), and a Fourier-type analysis method 
by Heck et al. (1985, see also comments by Gosset et al. 2001).

We first analyzed the data set consisting of the 50 high- 
resolution spectra (HRS). The particular distribution of the ob
serving times induces some aliasing at <5v = 0.00045 d_1, at 
<5v = 0.00270 d“1, at <5v = 0.02540 d"1 and at <5v = 0.02810 d"1 
as revealed by e.g. the spectral window (see the definition in 
Deeming 1975). The Amplitude Spectrum (square root of the 
power spectrum) of the HRS data is given in Fig. 2. The highest 
ordinate is located at v = 0.004795 d_1. The two neighbouring 
peaks are aliases of this frequency; this is also the case for the 
peaks at v = 0.00209 d"1, at v = 0.00749 d"1, at v = 0.03015 d"1 
and at v = 0.03286 d_1. All of them thus belong to the same 
family and we consider that the dominant frequency is the one 
at v = 0.004795 d_1. This is further confirmed by a decompo
sition of the RV curve into several frequencies using the mul
tifrequency approach (see Eqs. (All) to (A19) in Gosset et al. 
2001). The main frequency varies from v = 0.004795 d_1 to 
v = 0.004805 d_1 depending on the secondary frequencies being 
inventoried: we thus adopt v = 0.00480 d“1 (P = 208.3 d) as the 
true progenitor. We estimated the error on the period by taking 
as a conservative upper limit one tenth of the peak width (which 
is a function of the time baseline); we derived av = 0.00003 d_1 

t—i—i—i—|—i—i—i—i—|—i—i—i—i—|—i—i—i—i—|—i—i—i—r

__  0=0.78 _

i i i i I i i i i I i i i i I i i i i I i i i i 
4045 4050 4055 4060 4065 4070

Wavelength(Ä)
Fig-1- Two typical line profiles corresponding to high S/N FEROS 
spectra of WR 25. The emission line is NIV J 405 8 and is shown 
in the heliocentric rest frame. One (plain line) was observed on 
HJD 2 452 383.507 (corresponding to <j> = 0.78, see Table 3) and 
is exhibiting a RV of -48 kms the other was observed on 
HJD 2 453 133.605 (0 = 0.39) corresponding to a velocity of
-10 km s . The main change between the two spectra is a shift in RV.

Fig. 2. Amplitude spectrum (square root of the power spectrum) as a 
function of the frequency expressed in d and corresponding to the 
analysis of the HRS data set. From 0.04 d to 0.5 d 1. no peak exceeds 
13 km s . The adopted main frequency is marked by a filled circle and 
the expected positions of the main aliases of this frequency are marked 
with open circles.

and thus aP = 1.3 d. The Marraco & Muzzio method applied 
to the RVs measured on the HRS spectra gave as a most proba
ble period P = 208.3 ± 0.5 d along with some aliases, in good 
agreement with the Fourier results (see Fig. 3).

A phase diagram with the adopted period presents a clear gap 
(around phase 1.0, see Fig. 4). Therefore, we complemented our 
HRS data with other data sets. We thus defined two subsequent 
data sets:

- our 50 RVs measured on the high-resolution spectra (HRS) 
complemented by the 8 medium-resolution data (MRS) and 
by the 12 low-resolution spectra (LRS), thus 70 data points 
labelled HRS+MRS+LRS;
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Fig.3. Run of the Marraco & Muzzio (1980) statistic as a function of 
the frequency expressed in d and corresponding to the analysis of the 
HRS data set. The main dips are seen at v = 0.0012 d 1. v = 0.0016 d 1. 
v = 0.0024 d and v = 0.0048 d 1: the first three are subharmonics of 
v = 0.0048 d and are a well-known artifact of this kind of method. 
Other dips are visible at v = 0.0082 d 1. v = 0.0100 d 1. v = 0.0302 d 
and v = 0.0329 d 1. The last two are also aliases of the v = 0.0048 d 
dip. The cited frequencies are marked as in Fig. 2.

- all our 70 RVs plus the 54 published by Moffat (1978) and 
Conti et al. (1979), complemented with the RV measured in 
one spectrum provided by Hamann et al. (1995).

We also ran the period-search algorithms using these enlarged 
data sets. In the HRS+MRS+LRS data set, the Fourier anal
ysis favoured a frequency v = 0.004820 d_1 which is within 
the error bars of the previously quoted one. Finally, the data set 
all+published indicates a frequency v = 0.004810 d_1 (av = 
7.7 x 10“6 d_1) corresponding to P = 207.9 d (aP = 0.3 d). The 
Marraco & Muzzio (1980) method applied to the all+published 
data set similarly gives P = 207.8 ± 0.3 d.

3 Available upon request from ftp://lilen.fcaglp.unlp.edu. 
ar/pub/fede/gbart-0.1-41.tar.gz

To further refine the period determination, we ran GBART, 
an improved version3 of the orbital solution program originally 
published by Bertiau & Grobben (1968), with the three above- 
mentioned data sets. The RVs measured on HRS were weighted 
with 1, MRS with 0.5, and LRS or published, with 0.1. The or
bital parameters obtained for each data set are explicitly given 
in Table 3 and the corresponding orbital solutions are depicted 
in Fig. 4. We obtained quite eccentric orbits with e ranging be
tween 0.35 and 0.5, orbital semi-amplitudes K between 33 and 
44 km s“1, and different values for the orbital period.

The fact that there is no HRS RV more negative than 
-70 km s“1, while some LRS RVs indicate -110 km s_1, is in
triguing. Clearly the HRS data set presents a strong gap around 
phase 1.0. This gap can be filled by LRS data obtained in 
May 1973 and April 2001. Even though the errors on these RVs 
are expected to be larger and despite the low weight given, these 
LRS data have a large impact on the eccentricity and on the or
bital semi-amplitude derived. Adding the published data to ours 
still yields an orbital solution that remains in good agreement 
with the HRS+MRS+LRS one. However, none of the published 
RVs have been acquired near the critical phase (1.0).

Although the exact orbital solution remains uncertain, our 
various data sets allow us to conclude that WR 25 presents RV 
variations with a period of about 208 days. These variations are

Fig-4. Observed radial velocities (along with the fitted models) cor
responding to the NIV A405 8 emission line in the spectra of WR 25. 
The data are phased according to the ephemeris as given in Table 3; 
phase 0.0 corresponds to periastron. The different panels illustrate dif
ferent analyzed data sets. Top: our HRS data only (filled circles). Middle 
top: HRS+MRS+LRS data; open triangles represent the RVs in the 
MRS set, and squares the LRS ones. Middle bottom: all + published 
data; crosses are the RVs from Conti et al. (1979), Moffat (1978), and 
Hamann et al. (1995). In each plot, the solid curve represents the rele
vant orbital solution as given in Table 3. Bottom: radial velocities of the 
interstellar Call K absorption feature measured on our spectra.

indicative of an eccentric binary system. Strictly periodic RV 
variations with such a long time-scale are difficult to interpret 
in other terms. The exact values for some of the parameters are 
highly dependent on low resolution data. Therefore, we need fur
ther good quality high-resolution data in order to derive a fully 
definitive orbital solution for the WR primary.

We also considered other lines in the HRS spectra of WR 25. 
Clearly, certain lines such as Nv 2/14603-4619 vary in agree
ment with the derived orbital solutions. However, some ab
sorption lines such as Hel 25876 and 24471 seem to vary in 
anti-phase, plausibly revealing the signature of the binary com
panion.

Studying other lines will help to verify whether the RVs de
rived from the motion of NlV 24058 represent the orbital motion 
of the primary; this can not be established on the basis of a single 
line. This is beyond the scope of the present paper and requires 
high-resolution high S/N data covering all the phases.

4. Conclusions

We have found that the RVs of the NIV 24058 emission line in 
the spectrum of WR 25 show variations with a period of about
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Table 3. Orbital solutions corresponding to the RVs of the NlV 44058 
emission line within different data sets. The quoted errors correspond to 
lcr uncertainties. Symbols have the canonical meaning. The last three 
correspond, respectively, to the mass function, the standard deviation of 
the fit and the number of data points involved.

HRS only HRS+MRS+LRS All + published

P[d] 208.3 ± 0.2 207.9 ± 0.1 207.85 ± 0.02
Vo [kms-1] -30.6 ± 0.7 -34.2 ± 0.7 -34.6 ± 0.5
X[km s 11 33 ± 2 42 ± 2 44 ± 2
e 0.35 ± 0.03 0.48 ± 0.02 0.50 ± 0.02
a) [degrees] 227 ± 4 216 ± 3 215 ± 3
Tperiast [d] 1598 ± 3 1597 ± 2 1598 ± 1
^RVmax [d] 1654 ± 3 1655 ± 2 1654 ± 1
a sin i [Ro] 125 ± 8 151 ± 9 156 ± 8
F(M) [Mo] 0.6 ± 0.1 1.1 ± 0.2 1.2 ± 0.2
a (kins 2.5 3.7 4.7
n 50 70 124

*: Heliocentric Julian Date 2 450 000+.

We are currently planning to monitor the optical spectrum 
of WR 25 around the expected time of minimum radial veloc
ity of the WR emission lines in order to derive a full definitive 
orbital solution. High-resolution high S/N ratio data are essen
tial. These spectra will help to improve the orbital solution, and 
to detect the absorption lines of the companion, which for this 
particular phase domain should be located to the red of the WN 
emission line, thus avoiding confusion with the absorption com
ponents of P-Cygni profiles from the primary.
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P = 208 days. These variations indicate that the WN star WR 25 
is an eccentric binary system.

The He 125876 and 24471 absorption lines seem to show an 
anti-phase motion and should thus partly belong to the compan
ion which is supposed to be of the OB type.

The companion seems to be fainter than the WR primary, 
indicating that WR 25 is perhaps another example of a young 
binary system where the WR component is the most massive 
star. The prototype of this class is WR 22 (WN7h+O9III-V, 
van der Hucht 2001) which turned out to be a massive binary 
system (55 M& + 21 M0) in an 80-day period orbit (Rauw et al. 
1996; Schweickhardt et al. 1999). The primary ofWR 22 is most 
probably an example of the long-searched for case of a core 
H burning star resembling a WR star due to its luminosity and 
mass. The star is on its way to becoming a hydrogen-free WR- 
type star. These objects are extremely rare and thus interesting 
to study in detail.

WR 25 is one of the brightest WN stars in the X-ray do
main, too bright to be explained by intrinsic X-ray emission. It 
thus was customarily classified as a putative colliding-wind bi
nary. Figure 4 is the first proof that WR 25 is a binary as sus
pected from its X-ray emission. On the basis of the existing 
XMM-Newton data, Pollock & Corcoran (2006) found that the 
X-ray emission of WR 25 is variable although the period can
not be derived independently from the X-ray data alone. WR 25 
was brighter in the X-ray domain on JD 2 452 842.6 which ac
cording to our ephemeris corresponds to a phase of 0.96-0.98. 
The star thus seems to be brighter at periastron as predicted for 
colliding-wind binaries in the adiabatic regime (see e.g. Stevens 
et al. 1992). Although this should be further investigated, WR 25 
appears to be an example of a colliding-wind binary system.
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