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1 Introduction

Principally motivated by security concerns, logical and type theoretic founda­
tions of low-level code (eg. typed assembly language [16] and bytecode [15]) 
and abstract machines (such as SECD-style machines [13] and the Java Vir­
tual Machine [15]) have received considerable attention recently. Our interest 
is in the logical foundations of abstract machines: This paper presents a proof 
theoretic account for an abstract machine in the setting of Linear Logic [10] 
and establishes its correctness. The contributions of this work may be summed 
up as follows:

(i) We introduce a sequent calculus for intuitionistic propositional linear 
logic, the linear sequential sequent calculus (SS), and we show that the 
term assignment for SS is low-level code in which terms encoding lazy
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connectives introduce appropriate closures. SS is sequential [17,18] in the 
following sense: the succeclent of each sequent which is the conclusion of 
an inference scheme is identical to the succeclent of its major premise. 
For example, the inference schemes for tensor and with are:

v,a,b h c
------------------(®L)
r, A ® B h c

r, A ® B h c 
------------------(®R)
V,A,B h c

r,n h c
---------------- (&L1)
r, A&B h c

r, B h C' r, A&B h C Ah A A h B
 (&L2)  (&B) 
r.M-BHC--------------------------------- r,AhC'

Consequently, proofs in SS have a “principal” branch and inference 
schemes may be seen to operate on the antecedent of the sequents in 
this branch. This is reflected in the term assignment for these inference 
schemes (here x, y, z stand for registers):

r,y : A,z : B B : C
----------------------------------------------------- (®L)
r, x : A 0 B Hc (y, z) =wipa±x (x) ;B : C

r, z : A 0 B kc B : C
-------------------------------------------------
T, x : A, y : B \~c z=paix (x ,y) -,B : C

Vpx:A&BCcB:C &CcB-f.A A kc B2 : B 
----------------------------------------------------------------- (&B) 

y : A, r Hc tc=makeLPClos (Bi ,B2 ,y) ;B : C

For example, ;r=makeLPClos(£>i,B2,y) is a code block whose first in­
struction creates a closure associated to the lazy pair constructor and 
deposits it in register x. The full set of instructions is described in Sec. 3. 
In formulating SS by following this pattern for the other connectives we 
note that all those whose computational interpretation is eager [2] such 
as the tensor, yield inference schemes with one hypothesis. However, all 
lazy connectives such as the of course modality “!” and with require 
one or more additional hypothesis which represent additional code blocks 
with which appropriate closures are constructed.

(ii) From cut-elimination in SS we derive a register based abstract machine 
(the Linear Logical Abstract Machine or LLAM) whose states comprise 
a code block, a register bank and a clump holding suspended procedure 
activations. Each step in the cut-elimination proof corresponds to a re­
duction step in the LLAM. The LLAM includes instructions for creating 
functional, with and of course closures, executing closures, constructing 
and destructing eager pairs, duplicating and erasing registers, and re­
turning from a call. Each machine state has a register bank, a code block 
and a clump, the latter of which encodes the application of the Induction 
Hypothesis in the proof of cut-elimination.
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(iii) We show that the transformation of Natural Deduction proofs into SS 
yields a type-preserving compilation function from the Linear Lambda 
Calculus or X1 (as presented by Waeller [24]) to our low-level code.

(iv) We prove the correctness of the LLAM with respect to evaluation in X1-. 
If a term in X1 evaluates to some canonical form, then its compilation 
reduces in the abstract machine to the corresponding compiled canonical 
form. The proof is rather standard in SECD-style2 machines in which 
lambda terms themselves are executed (eg. [19]). In our case, however, in 
which low-level code different from lambda terms are executed, we need to 
introduce some additional machinery for the proof to go through, includ­
ing an intermediate notion of evaluation (which we call lifted evaluation) 
where substitutions are managed explicitly.

2 In the light of the distinction proposed by Ager at al [1] one might call our machine a 
virtual machine since it has its own instruction set. This is in contrast to abstract machines 
which operate directly on A-terms and which we refer to as “SECD-style” machines.

Structure of the paper. We formulate SS in Section 2 and also 
address cut-elimination and the relation between SS and natural deduction. 
The syntax, type system and operational semantics of the LLAM is presented 
next. Section 4 briefly recalls X1 and defines a compilation function from X1 to 
the low-level code of the LLAM based on the proof transformation developed 
in the preceding section. This section ends with the proof of correctness of 
the LLAM. Finally, we conclude and suggest further research directions.

1.1 Related Work

The Erst abstract machines related to linear logic were introduced by La- 
font [12] and Abramsky [2] (the “Linear SECD Machine” - LSECD). The 
Linear Abstract Machine (LAM) of Lafont is inspired by the categorical com- 
binators of the theory of symmetric monoiclal closed categories (modal types 
are encoded using the standard recursive encoding). Our LLAM is derived 
from cut-elimination in a sequent calculus. Moreover, in LAM there is no 
sharing and hence cells may be reclaimed immediately by the instructions of 
the machine. This is not favourable if sequential implementations are desired. 
The LLAM does allow sharing for exponential types. However, this must be 
achieved by introducing locations and tailored reduction schemes [2] which are 
not mirrored by our cut-elimination analysis. Regarding the LSECD Machine 
it is simply presented as a variant of Landin’s SECD machine [13] without 
supplying further details on its foundations. Lincoln and Mitchell [14] sketch 
an abstract machine but do not define it precisely nor give any proofs for its 
properties. The work of Raffalli [20] and Ariola et al [3] is also relevant, how­
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ever none of them address Linear Logic. Mackie investigates the use of the 
Linear Term Calculus [2] as the basis for a functional programming language 
by extending it with natural numbers, booleans, lists, iterators and recursion. 
The abstract machine he considers is an extension of the LSECD machine 
to cope with these new constructs. In a similar line of research, Wakeling 
and R.unciman [25] also study functional programming based on a linear term 
calculus introduced by Waeller [23]. Danos et al [7] introduce two abstract 
machines in order to relate Hyland-Ong and Abramsky-Jagadeesan-Malacaria 
game semantics. The relation between these semantics is established by re­
lating the machines: both implement linear head reduction in the lambda 
calculus. Alberti and Ritter [4] introduce a linear abstract machine with the 
aim of allowing sharing of non-linear types while ensuring the single-pointer 
property. However the logical foundations of the machine and its correctness is 
not studied. The approach to machine derivation by means of a Curry-Howard 
isomorphism on sequential sequent calculi introduced by Ohori [17,18] is the 
closest to this paper. However, it does not deal with Linear Logic and no 
proof of correctness for the abstract machine is provided. Further relevant 
work (although not dealing with abstract machines) is developed by Waeller 
et al [24,22] and Bierman et al [5] among others. An annotated bibliography 
on abstract machines is provided by Diehl et al [8].

2 Sequential Sequent Calculus

A proposition of ILL is either a propositional constant N, a linear implication 
A —o B, a tensor product (or multiplicative conjunction) AoB, a direct prod­
uct (or additive conjunction) A&B, or an exponential (“!” is called “bang” 
or “of course”) !A. The standard computational interpretation [12,2] of these 
propositions as types may be informally described as follows. N is the type 
of the natural numbers. A —o B is the type of functions which use their 
argument exactly once. A O B is the type of pairs in which, on its unique 
consumption, both components are used exactly once. A&B is the type of 
the pairs in which we must choose whether to use the first component or the 
second one, the other component is no longer available for selection once our 
choice is macle. !A is the type of values of type A that may be used as many 
times as we wish (possibly none).

A context T is a multiset of propositions and 0 is the empty context. SS 
comprises four logical judgements (sequents for short):

T F A Code block judgement F(. A Value judgement

|-e T Environment judgement F A Top-level judgement
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The axiom ancl inference schemes defining these judgements are given in Fig. 1. 
We write SSC for the schemes defining the code block judgement (the reason 
for the qualifier “code block” is explained in Sec. 3). A proof of a code block 
judgement is called a code block proof (and likewise for the remaining judge­
ments). The major premise of an inference scheme is the leftmost premise, 
the others (if present) are the minor premises. In a sequent T l-c A, we call T 
the antecedent and A the succedent. of the sequent. A sample proof in SSC (of 
!(A&B) HAo\B) is

Ahc A
-------------- (&L1)
A&B hc A B hc B

----------------------(®L) ------------------(!L) -------------- (&L2)
LA, !B HL4®!B !(A&B) H A AtkB H B
----------------------------------------------------- (!B) ------------------(IL)

IB, l(A^B) LAA®IB l(A^B) H B
-------------------------------------------------------------------------(!/?)

!(.4&B), !(.4&B) hcL4®!B 
----------------------------------- (C)

!(.4&B) hcL4®!B

We now briefly describe these judgements. First we point out that SSC is 
sequential in the sense discussed in the introduction. The major premise path 
of a proof is the path of sequents obtained by traversing the major premise of 
each inference step in the proof, from the end sequent to the initial sequent. 
Second, SSC is equivalent to the standard sequent calculus presentation of 
ILL as may be verified by a straightforward induction on the proofs of the 
judgements in question.
Lemma 2.1 T Fc A is provable in SSC iff V A is provable in the standard 
sequent calculus presentation of ILL.

Regarding the axioms and inference schemes for the value judgement there 
is one inference scheme per connective. Note that lazy type constructors, 
namely with and of course, have an environment judgement and a code block 
judgement as hypothesis. These are used for constructing the appropriate 
closures. An environment is either an empty environment (written 0) or a 
multiset of propositions each of which is provable using the value judgements.

In SS only a top-level cut rule, called multicut 3 (cf. Fig. 1), is available. 
Multicut is applied at the top-level and simultaneously cuts all the formulas in 
the antecedent of T Fc A. Furthermore, the sequential nature of SSC allows the 
cut-elimination process to always replace a multicut with another multicut. 
This induces two desired properties of the abstract machine resulting from 
cut-elimination: reduction is on closed machine states and always takes place 
at the root. Regarding cut-elimination we have:

In the sequel we shall speak of “cut-elimination” instead of “multicut-elimination”.3



104 E. Bonelli / Electronic Notes in Theoretical Computer Science 158 (2006) 99-121

Inference Schemes for Code Blocks

--------- (axiom)
A K A

r, N K A 
------------- (nat) 
r K A

r, A&cB hc C A , A A hc B 
-------------------------------------------- (&R)

r, a K c

r, A K c 
--------------(!D 
r,L4Hc C

r, LA, LA K C 
------------------ (C)

r, la K c

r K c
-------- m
r, la K c

Inference Schemes for Value Judgements

-------(natV)
\~v N

A hv B
--------------(®V)

\-v A (B) B

He!A !AFCB
---------------------(!V)

MB

He A A Hc A A Hc B 
---------------------------------(&F)

l-^ A&zB

Inference Schemes for Env. Judgements Top-Level Judgement

He r \~v A
----- (consE)

0 eer,A

-e r r hc a
------------------ (meut)

- A

Fig. 1. Schemes for values and environments, and multicut

Proposition 2.2 (Cut-elimination) Cut-elimination is strongly normaliz­
ing (SN) and confluent.

Confluence is trivial since the cut-elimination process introduces at most 
one application of multicut at each step. SN, which we address below, can 
be proved using standard reductibility arguments [9,18]. Define (recursively) 
a family of reducible code block (value, environment) proofs indexed by a se­
quent (proposition, context, resp): Redc(T Fc A) is the set of reducible code 
block proofs with enclsequent T Hc A, RedflA) is the set of reducible value 
proofs of A and l!.cde(\f is the set of reducible environment proofs of Fe T. 
Intuitively, a value proof V is reducible if all the code block and environment 
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proofs of V are reducible; in turn, an environment proof is reducible if each 
value subproof in it is reducible; finally a code block proof C is reducible if all 
multicuts

(1) ------ (mcutf
I- A

with reducible environment proofs £ can be transformed to a reducible value 
proof of A.
Definition 2.3 (Families of reducible proofs) The family of sets of re­
ducible proofs Redv(A), Rede(T) an(l Redc(T Fc A) is defined recursively:
• Value proofs

. ------- (natV-) e fe/UN)
H i, N
Vi(K-4) VzVvB)

■ ------------------------------ (QV) G Redv(A O B~) ifVi G Redv(A~) and V? G Redv(B~)
H r .4 0 B

£(He A) C(A,.4PB)
• -----------------------------------(—3 V) G Redv(A —> B) if £ a Rede(JS) and C G 7?edc(A, A Hc £>)

H, A -;■ B
£(He A) Ci(AHc.4) C2(APB)

• ---------------------------------------------------- (&V) Redv(AkB) if £ G Rede(JS), Ci G Redc(J\ Hc .4)
Hr A<EB

and Co G Redc(J\ Hc £>)
£(He!A) C(!AHB)

■ ------------------------------- (!V) e Redvif.B) if £ G J?cde(!A) and C G J?edc(!A Hc B)
Ht,!B

• Environment proofs
. ------(nilE~) e Redi^

He 0
£(He r) y(He .4)

• -------------------------- (const?) G Rede(T, .4) if £ G Rede(T'i and V G Redv(A)
Her,.4

• Code block proofs
■ C(r He .4) G Redc(T He .4) if for every £ G RedeT), the top-level proof (1) is transformed to 

a value proof in Redv (.4).

We now consider the proof of SN of Cut-Elimination by showing that if 
C(T h,. A) is a code block proof, then C E RedfiT K Af It makes use of the 
fact that if £ E 7?ede(T, A), then there exist environment proofs £\ and £o 
such that £1 E Rede(T) and £2 £ RedfiAfi-

Proof. By induction on the proof of C(T h,. A). Case analysis is performed 
on the last inference scheme used to prove C in (1). We give two sample cases.
• A right introduction rules introduces a new value proof which is used to 

extend the environment proof £ of (1). A new multicut is then introduced 
using the extended environment proof and the subproof just above the con­
clusion of C. As an example, here is the case of (&J?). The proof ends



106 E. Bonelli / Electronic Notes in Theoretical Computer Science 158 (2006) 99-121

in:
C3(T,A&.BEc C) Ctl&hA) C2(Ah B) 
-------------------------------------------------------------(&cR)

£i(Her,A) r,Ahc
--------------------------------------------------------- (mcut)

- C
This may be transformed into

£2(heA) CgAGA) C2(AhcB) 
--------------------------------------------------(&V)

£l(He r) A&cB
-----------------------------------------------(cons E)

-er,A&B r,AkBhcc
-------------------------------------------------------------------------------- (m cut)

- C
to whom we may apply the IH and conclude.

• A left introduction rule resorts to an existing value proof in £, a subproof of 
C and a new multicut to compute a new value proof (representing an inter­
mediate result). While this intermediate result is computed the elimination 
of the original multicut is suspended (this is to be encoded in the clump 
of our upcoming abstract machine). Once the new value proof is obtained, 
a new environment proof is constructed using it, and a new multicut with 
a subproof of C is introduced. We illustrate this with the case of (&L1). 
Suppose the proof ends in

cpr.AK o 
------------------ (&L1) 

¿■UK r,n&B) r,n&B hc c 
------------------------------------------- (mcut)

- C

From ¿i(Fe T, A&B) we know that there exists £2 such that ¿^(K T) G 
Rede(T) and that there must be a value proof of l~t, A&B. Moreover, this 
proof must have the form

£2(GA) Ci(AhA) C2(AKB) 
------------------------------------------------- (&V)

F-y A&cB

for some A and £2 G Rede(A). Therefore the following top-level proof
£l(he A) A hc A 
------------------------- (mcut)

- A

may be transformed into a proof Pi G Redv(A). This computes our inter­
mediate result. Using the resulting value proof, the following environment 
proof £3

£2(M Vi(GA)
--------------------------- (consE)

-e r,A
is seen to be in Rede(T,A'). As a consequence we may apply the IH to 

the proof
£i(her,A) Ci(r,AbC)
-------------------------------------(mcut)

F C
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-------- (axiom)
A k A

----- (nat)
k N

r k a r' k b
--------------------(®D
r, r' k a ® b

r k a ® b r',A,BEC 
--------------------------------- (®E) 

r, r' k c

r k A&cB
------------ (&B1)

r k a

r k A&cB
------------ (&B2)

r k b

r k a r k b
-------------------

r k A&cB

!r k a
-------- (!/)
!r HA

r HA r',!A,!AkC
---------------------(C)
r,r' k c

r ha r' k c
------------m

r, r' k c

Fig. 2. Natural Deduction for ILL

and conclude.

We now address the relation between SS and Natural Deduction for ILL 
(ND, cf. Fig.2). The standard approach transforming ND proofs into Sequent 
Calculus proofs is to map inference schemes in ND that introduce a connective 
in the former system to right introduction schemes in the latter, and those 
that eliminate a connective to left introduction schemes plus possible appli­
cations of (the standard rule) cut. We follow the same approach except that 
since standard cut-elimination in SSC is straightforward due to its sequential 
nature4 , all cuts are eliminated directly by means of a proof transformer.

A proof transformer P from T to A in SS, written P[] : A => T, is a code 
block proof with a hole Dr subscripted with a context at the initial sequent on 
the major premise path and whose end sequent has A as context. We write 
P[C] for the proof obtained by Filing the hole in P with the code block proof 
C. We view P[] : A => T as a proof transformer in the sense that it takes 
a proof C(T Fc A) and transforms it to a proof of A Fc A. The following 
result relates provability in ND and existence of proof transformers (its proof 
proceeds by induction on proof of T F A).
Lemma 2.4 IfV F A is provable in ND, then there exists a proof transformer 
P[] : P, T => P, A,/or all P.
Proposition 2.5 IfT F A is provable in ND, then T F A is provable in SSC.

4 The cut formula may be seen never to change: occurrences of the cut inference scheme 
are pushed downwards towards the root of the proof and then eliminated once they reach 
the axioms.
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Proof. If T H A is provable in ND, then by Lemma 2.4 there exists a proof 
transformer P[] : T => A. Hence P[A H A](T I- A) is a proof of T F A in SSC.

3 The Linear Logical Abstract Machine

3.1 The Code Language and Type System

A code block is a sequence of instructions. We let B range over code blocks, /. 
over instructions and ;r, y, z over a countable infinite set 1Z of registers. The 
grammar defining code blocks and instructions is:

£> ::= | Return(x)

l ::= x=n | tc=makeClos (13, y, z) | rr=call y with z

| rc=pair(y,z) | (tc,t/)=unpair(z)

| x=makeLPClos (13,13 ,y) | tu=fst(t/) | tu=snd(t/) 

| tc=makeOCClos(13,y) | tc=read(t/) | (tc,t/)=copyz | kill(rr)

The code language of the LLAM is a register transfer language with an 
unbounded number of registers. A typical instruction has the form ;r=op(y) 
where op is the operation code, ;r is the destination register and y are the 
argument registers. A brief description of (some of) the instructions follows.

Returner) returns to the caller with the contents of register x. x=n assigns 
the numeral n to register x. Cr ,z/)=unpair(A) destructs the eager pair resid­
ing in register z\ the first component is placed in register ;r while the second 
component is placed in register y. Note that, in accordance with the eager 
nature of the O connective in ILL, it is not possible to project only the first 
(or only the second) component of an eager pair. a^makeLPClosCiq ,£>2 ,?7) 
creates a lazy pair. Such pairs are represented as lazy pair closures which con­
sist of a pair of code blocks B\ and B> together with the current register bank 
restricted to the registers in y. This closure is placed in register x and registers 
y are no longer available since they were consumed in order to construct the 
closure. The remaining instructions may be understood along similar lines.

The code language is typed. A typing judgement for code blocks is an ex­
pression of the form T Fc B : A, where T (the typing context) is a multiset 
of expressions of the form x-i : Aj, 1 < i < n, where ;zy is a register, Aj is a 
proposition in ILL and the x^ are all distinct, B is a code block and A is a 
proposition in ILL. The typing schemes (samples of which were given in the 
introduction) are the logical schemes that define the code block judgement 
described in Sec. 2 decorated with typing information (cf. Fig. 3). We some­
times write x : T when T = {;zq : Ai,. .., xn : A„} and x = ;zq,.. ., xn. Also, 
T, x : A is shorthand for T U {x : A} assuming x Dom(T).
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Typing Schemes for Code Blocks

------------------------------(<mom)
x : A Hc Return(x) : A

T,x :NbcB : C 
---------------------- (nat) 
r Hc x=n;B : C

T,y : A Hc x=makeClos (C, z,y) \B : C

r,t/ : A.z:BCcB:C 
----------------------------------------------------- (®L) 
r,x:A®Bhc (?/,z)=unpair (rr) ;B : (7

V,z:A®B\-cB:C
-------------------------------------------------(®R)
V, x : A,y : B \~c z=pair (x,y) ;B : C

r, A&cB \~cB:C A H Bl :A A Hc B2 : B 
-------------------------------------------------------------(&cR)
y : A, r l~c x=makeLPClos (Bi ,B2 ,y) ',B : C

y :!A, F Hc x=makeOCClos (C ,$') -,B:C

T,x :\A,y :L4 Hc B : C
----------------------------------------- (C)
r,z :!A Hc (x,y)=copy z\B : C

r He B : C
--------------------- m
r, x :!A Hc kill (a?) ;B i C

Typing Schemes for Values, Dumps and Machine States

He R : A A,x : A\~c B : B

Hv Clos(B, x, R) : A —o B

----------(nilD)
Hd0:0

He R : A A Hc Bi : A A Hc B2 : B 
------------------------------------------- -— (&V)

H, LFG7os(Bi,B2,ß) : A&B

--------- (nilE)

He B:!A !A Hc B : B
----------------------------- (!V)
H, OCClos(B, R) :<B

\~e R : V k^ v : A 
-----------------------------(consE) 
-e R[x := u] : f, x : A

He R : r P,x : A H^ B : C Hj D 
----------------------------------------------- (cons D) 

-d [B, R,x\ • D

He ß : A A He B : C \~d D 
---------------------------------------- (MS) 

-ms (B,R,D)

Fig. 3. Typing schemes for LLAM code blocks, values, dumps and machine states
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3.2 Machine Architecture

A register bank R, R',... is a mapping with finite domain that associates 
values to registers. A value is one of the following: a numeral n, an eager 
pair of values (zy, zy), a function closure Clos(B,x, R), an of course closure 
OCClos(B, R) or a lazy pair closure LPCloslB^Bz, Rfi Just like code blocks, 
values are also typed (bottom of Fig. 3). A typing judgement for values is an 
expression of the form |-„ v : A where v is a value and A is a proposition in 
ILL.

A dump is a stack of suspended procedure activations: [B\, Ri, ay] • ... • 
[Bn,Rn,xn\. Each procedure activation consists of a code block, a register 
bank and a register that shall hold the return value of the computation that 
caused suspension of execution. A machine state is a triple (B, R, D) where 
B is a code block, A is a register bank and D is a clump. In LLAM machine 
states are typed (Fig. 3). A machine state (B, R, D) is well-typed if the clump 
D is well-typed and there exists a typing context A and a type C such that 
the register bank is well-typed with type A and the code block is well-typed 
under typing context A with type C. The typing schemes for environments 
are self explanatory. Regarding those for clumps, each suspended procedure 
activation should be well-typed. If Dorn (J?) denotes the domain of R, then we 
write _R[;r := c] for the register bank R U {x = c}, if x Dom(A’), otherwise 
_R[;r := c] is undefined.

Before defining the operational semantics of the LLAM we need some ad­
ditional notions. R(x) denotes the value assigned to register x by R assuming 
x E Dorn (J?). The restriction of R to y, written R 1^, is defined as R' if 
y E Dom(A’), where R'(xf = Rfx) if x E y\ R'(x) is undefined otherwise. The 
deletion of y from R, written R\$, is defined as R — {yi := Rfyfi), ... ,yn := 
/?(?/„)} if y = y^,... ,yn E Dom(A’); otherwise it is undefined.

The operational semantics of the LLAM is defined as a binary relation on 
states: (B, R, D) reduces to (B', R', D') if (B, R, D) —> (B', R', D') according 
to the reduction schemes in Fig. 4. An initial state is of the form (B, R, 0) 
and a final state is one of the form (e, {x = v}, 0), where e denotes the empty 
sequence of instructions. This relation is obtained from the cut-elimination 
(Prop. 2.2) and as a consequence the following result holds immediately.
Proposition 3.1 (Type Safety) If \~ms (B,R,D) and (B,R,D) reduces to 
(B', R', D'}, then hms (B', R', D'fi

Furthermore, a typed machine state that is not a final state can always 
progress towards one. Its proof follows from a simple case analysis on the last 
typing scheme in the typing proof of B.
Proposition 3.2 (Progress) If \~ms {B,R,D} and IB,R,D} is not a final
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(Return(.i’), {.r = v}, 0)

13, R, D)
(.r=makeClos (C, zc, y) -,B,R,D}

(s=callxwithy ;B, R[x := Clos(C,w,R')],D)

(Return(.z’), {.z1 = v}, [13, R, t] • D)

(.z—pair (y, z) ;Z3, R, D}

{Cy, a)=unpair (x) ;B, R[x := {01,02}], D}

Gr=makeLPGlos (A ,B2 , y) >13, R, D)

(.z-fst(y) ;B,R[y := LPClos{Bi, B2, R')], D)

(.z-snd(y) ;B,R[y := LPClos{Bi, t32, R’)], D)

''j-=makeOGGlos (< ’ ,y) ;B, R, D}

(.z-read(y) ;B, R[x := OCClos{C, R')], D)

{(.x, y)=copy z;13, R, D}

(kill Ox) ;B, R, D}

—> {e, {.r = Z'}, 0)

{B, R[x := n], D)

—> {B, R\y[x:= Clos(C, w, R ]y}], D} 

{C,R'[w := R(-y)], [B, R\x,y, z] ■ D) 

{B,R[z :=v],D}

{B,R\y,z [x-.= {R(y),R(z)}],D} 

{B,R\X [y :=oi][z :=o2],D}

- {B,R\y[x := LPClos{Bi,B2, R \y)],D)

- {B2,R',[B,R\y,x] ■ D}

{B, R \y ]x := OCClos{C, R \y}],D} 

{C,R',[B,R\y,x] ■ D}

{B,R\Z [x := R(z)][y := R(z)],D}

-> {B,R\X,D}

Fig. 4. Operational semantics of the LLAM

state, then there exists (B',R',D'} such that {B,R,D} —> IB',R',D'Y

4 Compilation of A1 and Correctness of the LLAM

This section introduces A1 and a function that compiles a term in A1 into code 
for the LLAM and then proves correctness of the LLAM. Since the syntax of 
terms in A1 is not context free, we introduce an auxiliary syntactic category of 
preterms [2], If U, V, W range over finite sets of variables, then we write Ty for 
the set of preterms with variables in U. The types of A1 are the propositions of 
ILL. In particular, N is a base type. T is a typing context. The (Az-)terms are 
those preterms M E Ty such that there exists T (Dom(T) = U) and A such 
that T H M : A is provable using the standard axiom and inference schemes 
obtained from decorating the ND schemes (cf. Fig. 5).

As has been noted elsewhere [20,17,18], the transformation of natural de­
duction proofs to sequent calculus proofs yields a compilation function. In­
deed, the proof of Prop. 2.5 yields the compilation function from Artemis to 
partial code blocks (code blocks without the last Return instruction) shown in 
Fig. 6. Given a Az-term M E Ty such that T I- M : A is provable, its com­
pilation is denoted Comp(G | M | z). This shall return a partial code block 
which when suffixed with the instruction Return(,z) yields a proper code block 
that returns the compiled value of M in z. We use the symbol e to denote
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 (axiom)  (not) 
x : A k X : A----------------------k ¡j : N

r k M : A r' k N : B
------------------------------- (®I)
r, r' k M ® N : A ® B

rkA/:A®B V',x : A,y : B E N : C
----------------------------------------------------- (®E)

r, T' k let M be x ®> yinN : C

r k M : A&cB
------------------- (&E1)
r k fstlM) : A

r k M : A&cB
--------------------- (&E2)
r k snd(M) : B

r k M : A r k N : B
---------------------------(&F

r k M&eN : A&cB

!r k M : A r k M :‘li r',x:BEN:A
-------------- (!/)
!r HM :!A

T k M :!A r' k N : C 
-------------------------------(W') 
r,r' k kill M in N : C

Fig. 5. Typing schemes for X1

a left identity for instruction composition: e;B and B are identified in the 
metalanguge. A X1 variable is just compiled to e since when suffixed with the 
return instruction we shall obtain Return(t). An integer constant is compiled 
into a register assignment instruction. The remaining cases are self explana­
tory. Notice that both M&.N and \M are compiled into code that generates 
appropriate closures. Also, registers appearing on the right-hand side that do 
not occur on the left-hand side are assumed to be fresh (for example, as in the 
third and fourth clauses).

By construction the following type-preservation result holds immediately.
Lemma 4.1 If T I- M : A is provable for some typing context T, preterm 
M G Ty and, type A, then the sequent T I- Comp(N | M | z); Returnfz') : A is 
provable in SSC.

We now address correctness of the LLAM. Evaluation in X1 is defined by 
the standard call-by-value evaluation schemes (cf. Fig. 7). We say a closed 
Az-term M evaluates to a canonical form F if M (I F, where canonical forms 
are given by the grammar

F,G,H-.:=n | Xx : A.M \\M | MkN \ F®G

The main obstacle towards a proof of correctness (cf. Thm 4.11) is that 
evaluation relies on substitution over Az-terms, whereas there is no such notion 
of substitution in the abstract machine. Moreover, in contrast to SECD-style
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COMP(p} X x)

COMP(0 n a)

Comp((7 A.r : A.M z)

Comp(C, V \ MN\z)

Comp(C, V M ®N\z)

def €
def= z=n
fi
= £=makeClos(COMP((7, x \ M | y) ;Return(t/)? x, U)

fi 0~f~
= Comp(V | N ) t/i);C0MP((J | M | 2/2);call?/2 withal 

c-]
CoMP({J 1 M 1 1/1);COMP(V 1 N 1 t/2) ; ^=pair (t/1 , t/2)

Comp((7, V | let A4 be x ®> yinN\z) d= Comp((7 | Ai | w) ; (x, ® =i_mpair ( w) ; Comp( V, x, y \ N \ z)

Comp((7 I MkN 1 z)
Fl 0~f~
= z=makeClos (Comp(£7 | M | y\) ; Return(t/i ),

Comp({J J N | y<2) ;Return(t/2) , U)
Comp(F 1 fst(M) 1 z)

Comp((7 snd.(M) z)

Comp(î7 |!Af 1 z)

Comp((7, V let A4 be !.r in N z)

Comp(/7 I M 1 y);z=fst(y') 
def Comp(Ï7 I M 1 y) ;z=snd(t/) 
F| faf
= z=makeOCClos ( COMP({J | M | y) ;Return(t/) , U) 

d=f COMP(t/ M ?/) ;æ=read(?/) ;COMP(V, x N|z)

Comp((/, V | copy A4 as x'&y in N | z) d= Comp((7 | Ai | w) ; (x, y)=copy w; Comp( V, x, y \ N \ z)

Comp(F, V 1 kill A4 in N\ z) def COMP(U 1 A4 1 w);kill(w);C0MP(V | N | 2)

Fig. 6. Compilation function

N 1) F Ml) Xx : A.P P{x — F} 1) G

A.r : A.M ... Xx : A.M

M ,, F N G

A4 ® N fl F ® G

A4 N , G

A4 ff F ® G N{x, y f— F,G} 1) H

let A4 be x ®> y in N I) H

A4 .. P&zQ P . F A4 . P&zQ Q . F

M&zN . M&zN fst(M) ... F snd(M) fl F

A4 .... IP P .... F N{x <— F} 1) G

!A1 1)1A4 let A4 be !.r in N ■ G

A4 1)IP N ., F

kill M in N fl F

Fig. 7. Evaluation for X1

abstract machines, the LLAM executes low-level code and this adds further 
complications. Indeed, in SECD-style machines the code executed by the ma­
chine is a lambda expression itself and this makes the task of establishing 
correctness results easier. Thus we define an intermediate (big-step) opera­
tional semantics, called lifted evaluation, in which the use of substitution is 
replaced in favor of an assignment with which evaluation schemes are deco­
rated. In turn this requires adapting the notions of canonical form. Essentially, 
we obtain a weak linear calculus with explicit substitutions.
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N[on] 4 G M[om] 4 (A.Z- : A.P)[r] P[r ffi {.r := C'}] 4 D

(M N)[a] D

V c G> D N[ay ffi {x := C, y := D}] E

(let M be x ® y in N) [cr] 4 E

M(a] ... (F&Q)[r] P[r] G M[cr] (F&Q)[r] Q[r] 4 G

(MkN)(<r] (M&N)[a fst(M)[a] 4 G

A/[crAf ] {. (!F)[r] P[r] 4 G N[<tn ffi {.z- := C}] ., D

(!M)H 4 (!M)H {let M be lx in N) [<r] 4 D

•r[{.r := C'}] 4 G

M[om] g.P)[r] N[on ffi {x := (lP)[r],y := (!F)[r]}] C M\°m\ -11 (!-P)[t] . C

(copy M as x@y in N) [a] 4 C (kill M in N)[cr] ... G

■rz [0] 4 n

Fig. 8. Lifted Evaluation for X1

Assignments ancl lifted canonical forms are defined as follows
cr, t ::= {a® := Cfo .. ., xn := Cn}

C,D::=n | (Ax : A.M)[<7] | (!M)[a| | (M&JV)[a| | C ® D
We write Dom(a) for the domain of a. We write a ® {x := C} for the 
extension of a with x := C under the assumption that x Dom(a). If M 
is a Az-term and FV(AT) C Dom(a), then is the restriction of a to the 
free variables of M. Lifted evaluation of Az-terms is defined by the evaluation 
schemes of Fig. 8. Given a preterm M E Tv ancl an assignment a such 
that Dom(a) = V, if the relation (AT) [a] JJ C holds, then we say that M 
I-evaluates to C under a. The expression M[a] may be interpreted as term M 
with pending assignment a. In contrast to evaluation, lifted evaluation does 
not rely on applying substitution but rather records the substitution until 
it is required. This is witnessed, for example, by comparing the evaluation 
scheme for application with the corresponding lifted one. This is also reflected 
in canonical forms: lifted canonical forms include, for all canonical forms 
corresponding to lazy types and to the function type, a suspended substitution. 
All in all, the resulting evaluation mechanism is closer to the abstract machine.

The proof of correctness proceeds in three steps. First we establish the 
correspondence between evaluation and lifted evaluation (Prop. 4.3). Then we 
prove a correctness result for lifted evaluation (Prop. 4.7). Finally, appealing 
to the result of the first step we prove correctness for evaluation (Thm 4.11).



E. Bonelli / Electronic Notes in Theoretical Computer Science 158 (2006) 99-121 115

4.1 Relating Evaluation and Lifted Evaluation

We begin by relating canonical forms ancl lifted canonical forms. The idea is 
that C is a lifting of F if F results from “flattening” C by applying all pending 
assignments.
Definition 4.2 We say C is a lifting of F if C = F, where

(A.r : A.M)[cr] A.r : A.M^r
(lM)[a] d= \M—

C ® D d= <7® 7?

The notation (defined simultaneously with C) denotes the term resulting 
fromM by applying (the flattening of) a and has the following defining clauses:

(M®N^ = 
fst(M)— def /si(M-) 

snd(M)-g- t=f snd(M-g-) 

[M&N]- def M—&cN— 

(!MV ‘W

{let M be lx in N)^ d= let be \x in NaN<${x:=x}

(copy M asx&yinN)-^ = copy as x'&y in
(kill M in N)^ d= kill in

def (let M be x ® y in N)^ = let be x ® y in

Here a is, in fact, an extended assignment in that components of the form 
Xi := Xi are admitted.

Lifted evaluation preserves evaluation. Its proof relies on the fact that if C 
is a lifting of a closed canonical form F, then Pa(S^r.=Ty{x <— F} = Pa(S{T.=cfi, 
it proceeds by induction on M F.
Proposition 4.3 M JJ. F, for M a closed term, implies for all assignments a 
and preterms O such that FV(O) = Dom(a) and Op = M there exists a lifted 
canonical form C such that C = F and O[a] JJ- C.

Taking O to be M and a to be 0 (the identity substitution) in Prop. 4.3 
we deduce:
Corollary 4.4 If M JJ. F, for M a closed term, then there exists a lifting C 
of F such that M[0] JJ. C.
Remark 4.5 The converse also holds (if M[a] JJ- C, then Mp JJ. C) however 
we do not make use of it in this work.

4-2 Correctness for Lifted Evaluation

Before stating the main result of this section we introduce a definition.
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„Comp drf £

((A.r : A.M)[<r] )ComP def G'Zos(CoMP(Dom(<r), x { M { s) ;Return(s), .r, <rComp) 

(!A/)[cr] )ComP def OC'C7os(CoMP(Dom(<r) | M j s); Return(s), <7ComP) 

(Ai&W)[a-])ComP def LFG'Los(CoMP(Dom(a-) | M j s) ;Return(s),

CoMP(Dom(<r) | N | 3);Return^),<rComP)

(C ® P)ComP def

{.i’l := Ci,. .. x„ := C„}c°-P def {.!■! := cf0"113,.. := C?mp}

Fig. 9. Compilation of canonical forms

Definition 4.6 The compilation of a lifted canonical form C, denoted C'Comp, 
is the value (cf. Sec. 3.2) defined by the clauses given in Fig. 95:

The main result of this section reads as follows:
Proposition 4.7 If M[a] 4 C, then for any fresh register z and code block 
vanable X, (COMP(Dom(a) | M | z);X, aComp, D) - (X, {z := CComp}, D).

The rest of this section introduces the notions and results required to prove 
Prop. 4.7. We begin by introducing partial machine states and then present 
the Instantiation Lemma, crucial to the proof of Prop. 4.7.

Let X, Y, Z stand for code block variables. An open code block is one that 
has the form z® ; . . . ; in; X (by abuse of notation we write B; X and let B stand 
for ¿u ... ;z.n).
Definition 4.8 (Partial state) A partial state (for (A', D)) is a machine 
state S of one of two forms:
• (B; X R, D), for some code block B and register bank R, or
• (B\, 7?i, [B2, Rz, ^2] • • • • • [Bn, Rn, ;r„] • [B;X, R, ;r] • D) for some code blocks 

B, Bi (1 < i < n), register banks R, Rt (1 < i < n) and registers x, x-i 
(2<i< n).

where the sole occurrence of X is the indicated one (other open code blocks 
may occur in D though). In both cases we say R is the register bank of S.

Computation commencing at a partial state for (A', D) is seen never to 
access or modify D and, if well-typed6, proceeds until it blocks at X. Indeed, 
one may verify the following by case analysis on the reduction schemes of the 
llam/
Lemma 4.9 If S is a partial state for (A', D) and S —» S', then S' is a partial

5 Strictly speaking, the compilation of a lifted canonical form is parameterized over some 
variable z. We pick such a variable according to the context of application.
6 In which case the occurrences of code block variables, representing an “incomplete” proof 
in SS, are given appropriate types.
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state for (X, D) (ie. for the same X cmcl D).
Given a partial state S we may instantiate the code block variable with a 

proper code block. The following instantiation function does just that and, 
moreover, extends the register bank of S with additional mappings. Below 
we write R © R' for the union of the register banks R, R' which we assume 
to have disjoint domains. Let 7?,- stand for a suspended procedure activation 
[Bi, Ri, ;zy], i E 2..n.

Ib,.b(((B;X,/?,£>)) = ? R’, D)
•...•!>„• \B-X,R,x\-D)) d= (Bi, Rlt % •...•©„•

•[B;B',B© R’,x\ ■ D)

Let Reg(£>) denote the set of registers occurring in code block B. We say 
a register bank R' is compatible with S, a partial machine state for (A', Df if 
the following holds:
• If S' = (B;X, R, Df then Reg(£>)riDom(A>/) = 0 and Dom(7?)nDom(7?') = 0.
• If S = {Bi, Ri,[B2,R2, x2] •... • [Bn, Rn, xn] -[B;X, R, x]-Df then (Reg(5) U 

{©}) Pl Dom(.R') = 0 and Dom(B) Pl Dom(B') = 0.
Lemma 4.10 (Instantiation) If S is a partial state, R' is compatible with 
S and S -» S', then \b',r'(S) -* (S")-

Proof. By case analysis for one-step reduction using the fact that compati­
bility is preserved by reduction and then extended by induction to many-step 
reduction.

We now address the proof of Prop. 4.7. It proceeds by induction on the 
proof of M[a] JJ. C. Here we consider a sample case.

Proof. Let us call S the machine state (COMP(Dom(a) | M | z) ;X, <7Comp, Df 
Suppose the proof ends in:

AW 4 C M[aM] (Ax : A.P)[r] P[r Q) [x := C}] E

(M jV)[ct] E

The idea of the proof is to apply the IH on each of the hypothesis. This 
yields isolated reductions in the LLAM for the compilation of N under register 
bank ©((omp. M under register bank and P under register bank rComp ©
{x := C'Comp}, respectively. The Instantiation Lemma is then resorted to in 
order to weave these reductions into a unique reduction of the compilation of 
M N under register bank <7Comp.

Let U stand for Dom(<7A/) and V for Dom(cyv). S takes the form (Comp(H | 
N | z/i);COMP(P | M | y2) ;z=call y2 with?/!;X, aComp, D). By the IH ap­
plied to iV|cqv] JJ. C we deduce (Comp(H | N | yf) ;Y, ©((omp. D) — (Y, {ty := 
C'Comp},L)). Therefore, by the Instantiation Lemma (B' = Comp(I7 | M | 
y2); 2=call y2 with y±; X and R' = aM) and noting that <7Comp = <7^°mp©<7^omp
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(2) S (Comp(£7 I M | 1/2) ;z=call y2 witht/i ;X, ctm ® {yi *— C^omp}, D)

By the IH applied to JJ- (A;r : AP)[r] we have
(C0MP(i7 I M I y2);Z,crQ°mp,D} -» (Z,{y2 := ((A.i- : A.F)[r] )Comp}, D) = 

= (Z,{y2 := Clos(COMP(Dom(<r), x | P | w) ;Return(w), x, rComp)}J D)

By the Instantiation Lemma (B' = 2=call y2 with y-y; X and R' = {yi := 
C'Comp}) and a further reduction step yields

(C0MP(i7 I M | y2); s=call y2 with '/ ;X, <r^°mp ® t^l := C,(“omP}, D)

(3) — (z=call ?/2 with?/i ;X, p, D)

■ (CoMP(Dom(<j), x | P | w) ;Return(w), rComp[x := <7Comp], [X, 0, z] • D)

where p is the register bank {y^ := C'Comp, y2 := C'Zos(COMP(Dom(cr), x | 
P | w); Return(w), ;r, rComp)}.

A new application of the IH, this time to P\t ® {x := C}] JJ- E, yields 
(CoMP(Dom(r),x | P ( w); W, rComp[x := GComp], [X, 0, z] • D) — (W, {w := EComp}, [X, 0, z] ■ D)

Again we resort to the Instantiation Lemma (£>' = Return(w) and R' = 0) 
and an additional reduction step in order to obtain

(CoMP(Dom(r),.r | P j w) ;Return(?u), rComp[.i- := C'Comp], [.Y, 0, a] • D) 

-» (Return(zc), pc := EComp}, [_Y, 0, a] • D) -* {X,{z := EComp},P)

We conclude by juxtaposing reduction sequences (2), (3) and (4).

We now address the main result.
Theorem 4.11 (Correctness) If M JJ- F, then there exists a lifting C of F 
such that (Comp(0 | At | z) ;Retum(zf 0, 0) — (e, {z := CComp},0).

Proof. If At JJ. F with At closed Az-term, then by Corollary 4.4 there exists a 
lifted canonical form C such that M[0] JJ. C and C = F. By Prop. 4.7, for any 
fresh register z and fresh code block variable X (Comp(0 | Al | z); X, 0, 0) -— 
(X, {z := CComp},0). Finally, by the Instantiation Lemma and an addi­
tional reduction step (Comp(0 | Al | z); Return(z), 0, 0) — (Return(z), {z := 
CComp}, 0) -> (e, {z := CComp}, 0).

5 Conclusions

We have presented an abstract machine based on ILL that executes low-level 
code. This machine has been derived from cut-elimination of a Sequent Cal­
culus presentation (SS) of ILL. It is a register based abstract machine (a stack 
based machine is easily obtainable by treating contexts as sequences rather 
than multisets) whose states consist of a low-level code block, a register bank 
and a clump containing suspended procedure activations. Translation of Natu­
ral Deduction proofs to SS yields a type-preserving compilation function from 
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the Linear Lambda Calculus [24] (Az) to low-level code. We prove that the 
LLAM is correct with respect to the standard call-by-value natural semantics 
(evaluation) of X1.

An issue that warrants a further look is cle-compilation of low-level code 
to terms in X1. This should be possible in the same way that it has been ad­
dressed for bytecode and low-level code based on Intuitionistic Propositional 
Logic [11]. Also, we have not addressed sharing in our abstract machine. In­
deed, the LLAM trivially satisfies the single-pointer property since all closures 
are recomputed. Although our efforts have concentrated on providing a robust 
logical foundation for an abstract machine based on linear logic, we are aware 
that sharing is an important topic which must be addressed and leave further 
investigation on this matter to future work. On a related note, Danvy [6] has 
developed a general technique to “mechanically deconstruct” the SECD ma­
chine into an evaluator and to construct a SECD-like abstract machine from 
an evaluator. He makes use of well-known implementation techniques: clefunc- 
tionalization, CPS conversion and closure conversion. It would be interesting 
to see if these phases could be recast in proof theoretical terms.

Finally, the there is a striking similarity between the sequential sequent cal­
culus (SS) and Shroecler-Heister’s presentation [21] of intuitionist propositional 
logic based on higher-orcler natural deduction (in addition to the standard no­
tion of assumptions there are assumption rules that may also be discharged). 
The natural deduction rule for implication elimination takes the form

A

B 

.4 D B C
----------------- OO

C

Here the assumption rule — may be used in the upper right hand proof 
B

but is discharged by (d E). The reader is invited to compare (d E) with 
(—o A). An in-depth analysis is postponed to future work.
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