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1. Introduction

This paper is devoted to generalize two operations, coming from electrical network theory: 
parallel sum of matrices and shorting of matrices. In [2], Anderson and Duffin defined, for positive 
(semidefinite) matrices A and B the parallel sum A : B = A(A + By B. The motivation for study­
ing this operation, and its name, come from the following fact: if two resistive //-port networks, 
with impedance matrices A and B. are connected in parallel, then A : B is the impedance matrix 
of the parallel connection. It should be mentioned that the impedance matrix of a resistive n-port
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Abstract

In this paper we study shorted operators relative to two different subspaces, for bounded operators on 
infinite dimensional Hilbert spaces. We define two notions of "complementability” in the sense of Ando for 
operators, and study the properties of the shorted operators when they can be defined. We use these facts in 
order to define and study the notions of parallel sum and subtraction, in this Hilbertian context. 
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network is a positive (semidefinite) n x n matrix. On the other side, in [1] Anderson defined, for 
a positive n x n matrix A and a subspace of C", the shorted matrix of A by H. Just to give an 
idea about A/y, suppose that A has the block form ) where An is a k x k block and
A22 is an (n - k) x (n - k) block. If if is the subspace spanned by the first k canonical vectors, 
then

AoA^A21
0

where t denotes the Moore-Penrose inverse. ( Some authors define A/y as a linear transformation 
if — if avoiding the zeroes above.) The name shorted comes from the fact that it gives the joint 
impedance of a resistive n-port, some of whose parts have been short circuited. Here A is the 
impedance matrix of the original network and A/#- is the impedance matrix of the network after 
the short circuits. Both operations have been studied in Hilbert spaces context (see the historical 
notes below).

One of the goals of this paper is to extend the shorting operation to bounded linear operator 
between two different Hilbert spaces, given a closed subspace on each one. The solution we get, 
which we call the bilateral shorted operator, comes from a notion of weak complementability, 
which is a refinement of a finite dimensional notion due to Ando [6] and generalized by Carlson 
and Haynworth [12]. The bilateral shorted operator has been studied in finite dimensions by Mitra 
and Puri [33] (see also the papers by Goller [23] and Mitra and Prasad [31], who refined some 
results of [33]). However, their methods strongly depend on the existence of generalized inverses, 
so they can not be used for operators with non closed range ( see [7,10]).

The second goal is to extend parallel summability for two bounded linear operators between 
different Hilbert spaces. It should be mentioned that Rao and Mitra [35], and Mitra and Prasad 
[31] have studied this extension in finite dimensional spaces. Again, generalized inverses are the 
main tool they use. In order to avoid generalized inverses, we frequently use what we call hereafter 
Douglas' theorem, an extremely useful result due to Douglas [19], which we describe after fixing 
some notations.

In these notes, 9f 1 and ^2 denote Hilbert spaces, L(9f 1, 9f 2) is the space of all bounded linear 
operators between 9f\ and we write L(^,) = 9fD and L(9f\)+ (resp. L(^2)+)
the cone of all positive operators on 9f\ (resp. ^2)- Recall that C e L(^) is called positive 
if (Cx, x) 9 0 for every x e 9f. For every C e L(9f\, ,#2) its range is denoted by P(C), its 
nullspace by N(C). Given two self-adjoint operators A, B e L(^), A < B means that B - A e 
/,(.#)+ (this is called the usual or Lowner order). A projection is an idempotent (bounded linear) 
operator. Given a closed subspace if c ^^by TV e L(9f\) is denoted the orthogonal projection 
onto if. Douglas' theorem states that given A e Lf9f\, 9f'D and# e L(9f3, Jffi, the following 
conditions are equivalent:

1. R(B) c R(A), 2. 3X>0 : BB*  <'X AA*  and 3. 3D & : B = AD.
With the additional condition R(D) c A(A)-1-, D is unique and it is called the reduced solution 
of the equation AX = B\ itholds that \\D ||2 = inf{A e R : BB*  < AA*}  and N(D) = N(B).

We shall use the fact that each pair of closed subspaces if c 9f x and if c 99^ induces a 
representation of elements of by 2 x 2 block matrices. In this sense, we identify
each A e IA9C\, 9CD with a 2 x 2 matrix, let us say

(An Ai2\
9 -1- \A2i A22) if1-'

where An = 19 A\/, e L(if, 9 ), A12 = P^A|^±, A21 = ,4|./ and A22 = P^-aAl^u.

(1)
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Historical survey. In 1947, Krein [26] proved the existence of a maximum ( with respect to the 
usual order) of the set Ji (A, S) = {C e /,(■#)+ : C C A, R(C) c £}. Krein used this extremal 
operator in his theory of extensions of symmetric operators. See the paper by Smul’jian [40] 
for more results in similar directions. Many years later, Anderson [1] rediscovered, for finite 
dimensional spaces, the existence of the maximum which will be denoted A/^ and called the 
shorted operator of A by J. Some time before, Anderson and Duffin [2] (see also [20]) had 
developed the binary matrix operation called parallel sum: if A, B e L(C")+ the parallel sum 
A : B is defined by the formula

A : B = A(A+

Fillmore and Williams [21] defined the parallel sum of positive (bounded linear) operators on 
a Hilbert space ff and extended many of Anderson-Duffin's results. It should be mentioned that 
their definition of parallel sum is based on certain Douglas reduced solutions. Anderson and Trapp 
[5] defined Afor a positive operator A on ff and a closed subspace if of Jf, and proved that A 
can be defined by means of parallel sums, and conversely: if P is the orthogonal projection onto 
if, then A : nP converges to A^ in the operator uniform norm; and for A, B e L(Jf)+, A : B 
can be defined as the shorted operator of Q A )) e Ljf ® )+ by the subspace .ff ® {0}.

This is the approach we shall use here. The shorting of an operator is one of the manifestations 
of the Schur complement: if M is a square matrix with block form

where A and D are also square blocks and D is invertible, the classical Schur complement of D 
in M is A - BD~rC (see [11,16,36] for many results, applications and generalizations of this 
notion). Ando [6] proposed a generalization of Schur complements which is closer to the idea of the 
shorted operators. If A is an x n complex matrix and if is a subspace of C", A is called if-comple­
mentable if there are matrices M, and Mi such that PM, = Mr,MiP = Mi, PAMr = PA and 
MjAP = AP. (Here Pis the orthogonal projection onto if). It holds that AMr = MjAMr = MiA 
and AMr does not depends on the particular choice of Mr and My Ando calls A<f = AMr the 
Schur compression and A^ = A - Ay = A - AM,- the Schur complement of A with respect to 
if. He observes that, if A is a positive n x n matrix and if is the subspace generated by n - k 
last canonical vectors, then Ayy has the block form

(A - BDJ' 0\
V o o)

and therefore, his definition extends the classical Schur complement. Carlson and Haynworth [12] 
observe that a similar construction could be done starting with A e C"xm and subspaces J e C" 
and :J e Cm. They defined and studied the notion of operators which are complementable with 
respect to a pair JfJJ).

Ks, Anderson and Duffin remarked in [2], the impedance matrix is positive only for resistive 
networks. In order to study networks with reactive elements, parallel summation and shorting 
must be extended to not necessarily positive matrices and operators. Rao and Mitra [35] defined 
and studied parallel sums of m x n matrices and Mitra [33] used their results to define a sort of 
bilateral shorted operator by two subspaces, one in C" and the other in C'” . A common feature in 
both extensions is the use of generalized inverses. It should be mentioned that these constructions 
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can be applied to linear regression problems as in [33,34,31, Appendix], and in identification 
problems [28,29],

We summarize the contents of this paper. In Section 3 we study notion of complementability in 
infinite dimensional Hilbert spaces and we define the concept of weakly complementability (see 
Definition 3.5). We also prove in this section the basic properties of ( weakly or not) complement­
able triples and we show some criteria for each kind of complementability. In Section 6, under some 
compatibility conditions between the operator A and the subspaces and we define a bilateral 
shorted operator A/^ ^) e .^2), and we study the usual properties of a shorting operation.
As Mitra [30] proved for finite dimensional spaces, we show that A/^^) is the maximum of a 
certain set for a situable order (the so called minus order) in ^2)- The rest of the paper
is devoted the notions of parallel addition and subtraction of operators and their relationship with 
the shorted operator. The parallel addition is defined by means of the following device, due 
to Anderson and Trapp: given A, B e L(^i, ,#2), we say that A and B are weakly parallel 
summable (resp. parallel summable) if the triple 0 ,)) e Lfyfi ® JT’i, ® J" 2), ^1 ®

[0], ,#2 © {0} is weakly complementable (resp. complementable). In this case we define the 
parallel sum of A and B, denoted by A : B e L(^i, ,#2), as follows:

/A : B
I 0

We study the properties of this operator. Again, under the hypothesis of summability, all 
properties of the finite dimensional case are recovered in our context. In Section 5 we define the 
notion of parallel subtraction, we give some conditions which assures its existence and prove 
some of its properties. In Section 6, we extend to the bilateral case some well known formulae 
for the shorted operator in terms of parallel sums and subtractions showing that, as for positive 
operators, parallel and shorting operations can be defined one in terms of the other.

2. Preliminaries

We need the following two definitions of angles between subspaces in a Hilbert space; they 
are due, respectively, to Friedrichs and Dixmier (see [18,22], and the excellent survey by Deutsch 
[17]).

Definition 2.1. Given two closed subspaces, // and .. 4 ’, the Friedrichs angle between Ji and J" 
is the angle in [0, tt/2] whose cosine is defined by

c[^, A7”] = sup {| (.x, y)| : x e Ji © (Ji n J"), y e JQ (Ji n J") and ||x|| = ||v|| = 1) •

The Dixmier angle between Ji and J" is the angle in [0,7r/2] whose cosine is defined by

co[,//, ,4’] = sup [|(v, y)| : x e ,//, v e J~ and ||v|| = ||y|| = 1}.

The next proposition collects the results on angles which are relevant to our work.

Proposition 2.2. 1. Let Ji and J" be to closed subspaces of Jf. Then

(a) c\Ji, A ’] = < | // 1 . .,4 ■±].
(b) c\.ii. I | < 1 if and only if J/ + J" is closed.
(c) '// ij ■ .,47’± if and only if<\t\ii. I | < 1.
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1. (Bouldin [8], see also [25]) Given B e L(^i, ,#2) and A e ^3) with closed
range, then R(AB) is closed if and only ifc[R(B), 7V(A)] < 1.

3. Complementable operators

In this section we study complementable operators. We recall different characterizations of this 
notion, their extensions to infinite dimensional Hilbert spaces, and the relationships among them. 
The next definition, due to Carlson and Haynsworth [12], is an extension of Ando's generalized 
Schur complement [6],

Definition 3.1. Given two projections Pre£(./i) and Pi e an operator Ae
£(^1, ^2) is called (Pr, P/)-complementable if there exist operators Mr e L(^i) and Mj e 
£(^2) such that

1. (1 - Pr)Mr = Mr, (1 - P,)AMr = (I — Pi)A,
2. (I - Pi)Mt = Mi and M,A(I - Pr) = A(I - Pr).

We shall prove later that this notion only depends on the images of Pr and Pj. As in the finite 
dimensional case, we have the following alternative characterization of complementability. We 
use freely matrix decompositions like (1).

Proposition 3.2. Let Pr e L(^i) and Pj e £(^2) be two projections whose ranges are if and 
fT respectively. Given A e L(jfj, Jff), the following statements are equivalent:

1. A is (Pr, Pi)-complementable.
2. R(A1X) c 7?(A22) and R(A* 2) c R(A* 2).
3. There exist twoprojections P e L(.TPj) and Q e £(^2) such that:

R(P*)  = £P R(Q) = :T RiApCf and R((QA)*)Q9\  (2)

.r to 0 \ v
Proof. 1 => 2: By definition 3.1 itholds that Mr = i J ^±, and A2i = A22C.

Hence R(A2i) c R(A22). Similar arguments show that R(A* 12) c R(A22).
2 => 3: Let E and Fbe the reduced solutions of A21 = A22X and A* 12 = A22X, respectively. 

Note that E e L(.9j .9^) and F e L(F±. ¿T). If

P=(_E o)^eL(X1) and 2=(q “0F)/±e£(X2),

easy computations show that these projections satisfy Eq. (2).
3 => 1: Define Mr = I - P and Mi = I - Q* . Then R(Mr) = ff1 and R(Mj) = so 

conditions 1 and 3 of Definition 3.1 are satisfied. On the other hand

(1 - Q)AMr = (I - Q)A(I -P) = (I- Q)A -(I- Q)AP = (I — Q)A, and 
MiA(I - P) = (I - Q*)A(I  - P) = A(I - P)- Q*A(I  - P) = A(I - P).

This shows that conditions 2 and 4 of Definition 3.1 also hold. □
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The next characterization has been considered in [13] for self-adjoint operators in a Hilbert 
space. We prove an extension to our general setting.

Proposition 3.3. Let Pr e L(^i) and Pi e £(^2) be two projections with ranges if and :ff, 
respectively, and let A e ,#2)- Then the following statements are equivalent-.

1. A is (Pr, Pit-complementable.
T = LfL + A-\:fr} and.rf= .ff^ + A*-\if\
3. c0 .4*(  T±)] < 1 and c0 [tT, A(ifv)] < 1.

Proof. 1 <=> 2: Suppose that A is (Pr, P/)-complementable. By Proposition 3.2, there exists a 
projection P such that R(P*)  = if and P(AP) c :ff. Then, N(P) = if1- and R(P) c ,4_l (7'). 
Hence .Lf j = if'1 + .4~' (7~).

Conversely, suppose that df \ = if1 + A-1 (tJA and define..-!’ = ¿A2- n ,4_l (7').Then# 1 = 
if1 © (A~1(.fr) © ,4’).LetPbe the oblique projection onto A_1(tT) © I 'parallel to/Z^Theri. 
R(P*)  = N(P)1 = R(I - P)1 = if,and R(AP) c 7'because /?( P) = A“1].^) © A ’. Simi­
lar arguments show that the existence of a projection Q such that P( Q) = t^andP((<2A)*)  c if 
is equivalent to the identity = f1 + ,4* _l (.7).

2 <=> 3: It follows from Proposition 2.2 (item 3) and the equality A*  (tT2-)1- = A_1(JO. □

Remark-Definition 3.4. Proposition 3.3, as well as Proposition 3.2, shows that the notion of 
(Pr, P/)-complementable operators only depends on R(Pi) and R(Pr). Hence, from now on 
we shall say that an operator A e L(.ifj, .df2l is (if, ifycomplementable instead of (Pr, P/)- 
complementable.

In finite dimensional spaces, given a fixed subspace if, every positive operator A is (if, -7}- 
complementable. Indeed, if A = 0” 2[;) ^1, the inclusion R(A2\> c R(A22) always holds

(see [40] for details). However, in infinite dimensional Hilbert spaces, only the inclusion R(A2\) c
I I z2P(,422‘) holds in general. As R(A22} = R(Aff) if and only if A 22 has closed range (which is the 

case in finite dimensional spaces), it is not difficult to find examples of positive operators which 
are not (if, if )-complementable (e.g., see example 5.5 of [13]). For this reason we consider the 
following weaker notion of complementability:

Definition 3.5. Let if c df\ and :ff c ,ff2 be closed subspaces. An operator A e L(.7f\, rf2) 
is called (if, ¿ffweakly complementable if

P(A2i) c P(|A22|1/2) and P(A* 2) c p(|A22|,/2),

( according to the matrix decomposition of A given in Eq. (1)).

Remark 3.6. Observe that, by Douglas' theorem, P(|A22|) = R(A22} and R(|A 221) = P(A22). 
Therefore this notion is, indeed, weaker than the previously defined notion of complementability. 
However, if P(A22) is closed, then P( | A221) is also closed and P(A22) = P(|A22|) = P(|A22|1/2). 
Thus, both notions of complementability coincide.

As an easy consequence of Douglas' theorem,we get the next alternative characterizations of 
(if, 7' )-weaklv complementable operators.
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Proposition 3.7. Given A e L(^i, ,#2), and closed subspaces if ç ^1, ç ^2, then the 
following statements are equivalent’.

1. A is (if, y (-weakly complementable.
2. If A22 = U\A22\ is the polar decomposition of A22, then the equations A2i = | A* 21| ‘fA 

and A* 12 = IA2211/2 Y have solutions.

3. sup .¡'fr1/11 . < 00 and sup ,L . < 00..vJ' <|A^|v’v> y J

4. Shorted operators

Recall that, in the classic case, i.e., if Jfj = .ff'2 = ff.if = if and A e L(.jf(+, Anderson 
and Trapp [5] proved that Apy = (An /' c l2), where C is the reduced solution of Ax22X = 

A2i . Following this approach, we shall extend the notion of shorted operators to operators between 
Hilbert spaces ,ff\ and ,#2 .Throughout this section, if c ^and.J" c are closed subspaces
and each operator A e L(ff ^2) is identified with a 2 x 2 matrix induced by these subspaces, 
as in (1).

Definition 4.1. Let A e L(.ff\, .ff'2} be (if, Z)-wcakly complementable, and let FandEbe the 
reduced solutions of the equations A21 = \/\jÇfX andA|2 = IA2211/2 X, respectively, where 
U is the partial isometry of the polar decomposition of A22. The bilateral shorted operator of A 
to the subspaces if and if is

_ /An - F*E
" \ 0

Remark 4.2. If A22 has closed range, then A/o^) = A^A22A21 Oj gn other

hand, if if = if and A = A*  our definition extends the notion of shorted operator given in [27],

In the following proposition we collect some basic properties of shorted operators. The proof 
is straightforward.

Proposition 4.3. Let A e L(.fj, ,#2) be (.if, .if (-weakly complementable. Then

1. for every a e C, a A is (if, .if (-weakly complementable, and (aA(/^^ = a(Apce
2. A*  is (if, if (-weakly complementable, and (Apff^)(*  = (A*)/(^^),
3. Apff^) is (.if, .if (-weakly complementable and (Apff\3-)(/(ff',er) = Apy^v
4. if A = A*  and if = if, then Apffpp is self-adjoint.

The next Proposition is similar to Theorem 1 by Butler and Morley in [9], For the reader's 
convenience, we include a proof adapted to our setting. First we need a lemma and some notations: 

wWe write x„ —> x to denote that the sequence {x„} in a Hilbert space .if converges weaklv to x. By W—
Alaoglu's theorem, the closed unit ball of a Jf is weakly compact. This implies that any bounded
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sequence {x„} in dT admits weakly convergent subsequences. Recall that, if A e Lfjf i, ^2) 
w wand x„ —> v in ^1, then Ax„ —> ,4 a in ,yr2 (see [39, Thm. 3.17]).

II—»00 ZI~»OO

Lemma 4.4. Let A, B e L(^i, .If 2) be such that R(A*)  c R(\B\1/2). Suppose thatthere exists 
a sequence {v„} in ^1, d e 3^2 and a positive number M satisfying

Ay„ By„ and {\B\y„,y„} < M.

Then d = 0.

Proof. Denote a„ = \B|1/2y„, n e N. Note that ||«„ ||2 = (\B|y„, y„} < M. By the previous re­
marks, we know that there exists z e and a subsequence of {«„}, which we still call {«„}, 

w wsuch that a„ —> z. Let B = U\B\ be the polar decomposition of B. As Bv„ —>0 and B = 
n—^oc n—^oc

(t/|B|1/2)|B|1/2, we can deduce that z e N(|B|1/2). Let C be the reduced solution of A*  = 
|B|1/2A.Then7?(C) c L2^. so that /V(|/i'/2|) cN(C*)andz  e N(C*).  Therefore, the 
facts

IB |1/2y„ z and Av„ = C*  | B11/2y„ d
ft—<x

imply that d = C*z  = 0. □

Proposition 4.5. Let A e L(^i, ,#2) be (X, )-weakly complementable. Then, given x e X 
there exist a sequence {v„} c ¿A2- and a positive number M such that 

and (|A22|y„, yn) < M, n e N.

Conversely, if there exists a sequence {<„} in ¿T2-, dry. and a positive number M such that

and {\A22\Zn,Ztl) -fM, (3)

Proof. Let E and Fbe the reduced solutions of A21 = \Ad23\il2UX andA|2 = IA2211/2 X, respec­
tively. As R(E) c 7?(i7*  | Aï;211/2) = ^ ( | A2211/2 ), given x e ^1 there is a sequence {v„} such 
that |A22|1/2y„ —> - Ex. Then

A21X + A22yn = A21X + C71A2211/21A2211/2y«
= A2ix + I A* 2J 1/2L7(| A22|1/2 v„ ) -^0, and

n-A>(X)

Aux + Ai2.v„ = Aux + F*|A 22|1/2y„
= A2ix + F*(|A 22|1/2yn) —> A/(^ ^)(x).

n—>oo ' 2

Finally, since the sequence {IA2211/2J converges, then sup„6N(|A22Lv„, ,v„) < 00. 
Conversely, suppose that there exists another sequence {<„} in :7L which satisfies (3). If 
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w„ = Vn ~ Zn, then (|A22|w„, w„} < K. On the other hand, Aux + Ai2V„ —> d and Aux + 
«—►00

Ai2<„ —> A/(^;^;. Therefore, Anw„ —> d - Apc^fx). In a similar way, we obtain that 
«—*00 ’ M—*OO

A22<r’„ —> 0. Therefore, by Lemma 4.4, we get that d = Apcf ¡rfxY □
«—*00

Corollary 4.6. Let A e L(.JTi, be {if, ¿T)-weakly complementable. Then

K(A)n/cfi(A/m)cfi(A)ny, (4)
7?(A*)n^c 7?((A/(^))*) c^GV)n^. (5)

In particular, RiA/^^)) = R(A) n :ff and R((A/= R(A*)  n £f if R(A) is closed.

Proof. Firstly, we shall prove that R{Apff^)') c 7?(A) n XT. Clearly, by definition, R{Apff^j) 
c fT. On the other hand, given x e ^i, by Proposition 4.5, there exists a sequence [y„] in ¿f1- 
such that aQ1),—Thus R{A/(^^}) c R{A).

In order to prove the first inclusion in (4), take x e R{A) O :ff, and let z e Jfj such that 
Az = x. If P is the orthogonal projection onto if, then a(_ ppj = and, by Proposition 4.5, 

we get A/(ff~= x. The other inclusions follow in the same way. □

Next, we shall study the shorting operation on {if, t^l-complementable operators.

Proposition 4.7. Let A e L(^i, rff}be {if, -complementable. For every x e if there exists
y e H1- such that

Moreover, there exist projections P e L(^i) and Q e Lt-fTf) such that

R{P*) = if, R{Q) = fr and QA = AP = A/(^}. (6)

Proof. By Proposition 3.2, there exists a projector P e L(^i) such that R(P*)  = if and
7?(AP) ç :jf. The matrix decomposition of P with respect to if is (' where fis the identity 

operator of if and E e L{if, if^Y If x e if and y = Ex, then A0) = ^(o) e 11 = -v

for every n e N, the sequence {<„} satisfies (3). Hence, by Proposition 4.5, A^ = A/t^j-) .

Therefore AP = Apff^). In a similar way it can be proved that there exists Q e ¿(,#2) with 
7?(<2) = ¿7" such that QA = Apff^). □

Remark 4.8. Note that we actually prove that if there exists a projection P such that R(P*)  = if 
and 7?(AP) ç ¡T, then, by Proposition 4.5, AP = A^yy This result, for positive operators, 
appeared in [13], where the role of P is played by a so-called A-self-adjoint projection, i.e., a 
projection which is self-adjoint with respect to the sesquilinear form (x, v)a = {Ax, y). The 
reader is referred to [15,24,14] for more information about A-self-adjoint projections.

Corollary 4.9. Let A e L{.ff\, rff} be {Ü, ,^)-complementable. Then,

R(A/(c^¡n) = R(A) A .XT and N {A / = if^ + N {Af
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Proof. By Corollary 4.6, it holds that R(A) A © ç R(A/(^^)) and

y± + N(A) c (y A W))1 ç = N(A/(X^).
On the other hand, by Proposition 4.7, there exist two projections P e £(./i) and Q e £(^2) 

which satisfy Eq. (6). Hence, RtA/^^-j) = R(AP) ç R(A), and
N(A/(.^}) = N(AP') = N(P') © (R(P) n N(A')~) Ç y± + N(A), 

because/V(/’) == t/±. □

Remark 4.10. If A e ^2) be (if, y)-complementable, then, by Corollary 4.9, the sub­
spaces y1- + N(A), if + /V(,4 )±. y-1- + R(A)1- and y + R(A) must be closed. Moreover, if 
R(A) is closed then, by Proposition 2.2, A(y-*-),  A*(.y- L), and 7?(A22) are also closed. Hence, in 
this case, generalized inverse methods can be used. Nevertheless, by using the approach developed 
in this work, one can get almost all known properties of the Schur complements in finite dimen­
sional spaces, for complementable operators in general Hilbert spaces, including those operators 
whose ranges are not closed.

The minus partial order. In [30], Mitra proved (for matrices in C'”x") that Ap^^) is the 
unique maximum of the set

,//“(A, y, y) = {C e Cmx" : C A, 7?(C) ç y and R(C*)  ç y},

where the partial ordering is the so called minus order: C A if
R(C) n R(A - C) = {0} and R(C*)  A R(A*  - C*)  = {0}.

A similar result can be obtained in our setting with suitable changes. Firstly, we need to extend 
the minus order to infinite dimensional Hilbert spaces:

Definition 4.11. Given A, B e LQTfi, ^2), we write A s' ‘ B if:
(a) c0 [r(A), R(B - A)] < 1 and (b) c0 [r(A*),  R(B*  - A*)]  < 1.

Remark 4.12. In the finite dimensional case, condition (a) is equivalent to 7?(A) A R(B — A) = 
{0} and condition (b) is equivalent to R(A*)  A R(B*  - A*)  = {0}. So, Definition 4.11 extends 
the (finite dimensional) minus order. Also notice that A B if and only if A*  B*,  by the 
symmetry of conditions ( a) and (b).

The next proposition provides equivalent conditions to condition (a) in Definition 4.11, which 
are simpler to handle. A similar result for condition (b) can be obtained by taking adjoints.

Proposition 4.13. Given A, B e £(^1, .^2). the following statements are equivalent:

1. c0 [tf(A), R(B - A)] < 1.

2. There exists a projection Q e £(^2) such that R(Q) = R(A) and A = QB.
3. There exists a projection Q e £(^2) such that A = QB.

Proof. 1 2: Let y = 7?(A) © R(B — A), which is closed by Proposition 2.2. Let Q e
£(./2) be the projection with 7?(g) = R(A) and N(g) = R(B - A) © Zx. Then, QB = 
Q((B-A) + A)= QA = A.
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2 => 3: It is apparent.
3 => 1: Since A = QB and B - A = (I - Q)B, it holds that R(A) c R(Q) and R(B -

A) c R(I - Q) = N(Q). Hence, c0 [^(A), R(B - A)] < c0[7?(2), N(0] < 1. □

Corollary 4.14. Let A, B e L(^i, ^2)-

1. If A B, then R(A) c R(B) and R(A*(  c 7?(B*).
2. The relation is a partial order (i.e. it is reflexive, antisymmetric and transitive).
3. If A B and B is a projection, then A is also a projection.

Proof. The first two statements follow easily from Proposition 4.13. If A B and B2 = B, 
by Proposition 4.13 applied to A and B (resp A*  and B*)  there exist projections P and Q such 
that 7?(P*)  = R(A*(,  R(Q) = RjA) and A = QB = BP. Then A2 = (QB)(BP) = QBP = 
A. □

Theorem 4.15. Let A e L(jf\, .iff) be (if, .^)-complementable, and let

O', :LT) = |C e L(^b ,#2) : C A, R(C) c :ff and R(C*)  c if\.

Then, Apff\:y-) = max .//“(A, if, if}.

Proof. By Propositions 4.7 and 4.13, we know that A/(^^j A. On the other hand, by Corol­
lary 4.9, RiApcf^fi c fT and 7?((A/(^;^))*)  c if, Hence, Apff^) e .//“(A, if, if). On the 
other hand, given C e .//“(A, if, if), there exists a projection E e ¿(,#2) such that C = EA. 
Let P e L(.^i) be a projection as in Proposition 4.7 such that R(P*)  = if and A/o^) = AP. 
The inclusion 7?(C*)  c if implies that P*C*  = C* . Therefore

C = CP = EAP = EA/^sry

In a similar way, there exists a projection F such that C*  = F(A/(y ,$■))*.  So, by Proposition 
4.13, C Aj(<f^. □

Corollary 4.16. Let A e L(.Jf) be a projection. Iff, if c ,ff are closed subspaces such that A 
is (f, if (-complementable, then N(A) + if^ is closed,

ff = (R(A) nZ) © (N(A) +

and A/^ff ^) is the projection given by this decomposition.

Proof. By Theorem 4.15, A/^^j A. Hence it must be a projection by Corollary 4.14. The 
rest of the statement follows from Corollary 4.9. □

Next, we shall study the effect of shorting a shorted operator. The following proposition was 
proved for self-adjoint operators by Ando (see [16]).

Corollary 4.17. Let A e L(.jf\, ACf), and consider closed subspaces if, if of and if, if 
of fCi- Then, it holds that

if every operator is complementable with respect to the corresponding pair of subspaces.
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Proof^Straightforward calculations show that ,// ff, 2 ) = ,// (A,^n^,
fT n fT). Then apply Theorem 4.15. □

Remark 4.18. Actually, the last result holds with weaker hypothesis; in fact, it is only needed 
that any two of the three shorted operators exist. The reader is referred to [6] for the proofs of 
these facts. Ando's proof, valid for a single subspace (¿f = fTf can be easily extended to our 
setting.

5. Parallel sum and parallel subtraction

The device of parallel sum of matrices has been developed by Anderson and Duffin in [2]. The 
extension to general Hilbert spaces is due to Anderson and Trapp in [5] ( see also [31] and [32]). 
The key idea was to define parallel sum through shorted operators. In this section, we shall define 
parallel sum between operators following the ideas of Anderson and Trapp ( see, in particular, [5] 
Section 6). Even in the scalar case, not every two operators are summable. So, we need to define 
the concept of summable operators.

Definition 5.1. Let A, B e L(^i, ,#2)- We say that A and B are weakly parallel summable if 
the next range inclusions hold:

1. R(A) c R(|A*  + B*| 1/2) and R(B) c R(|A*  + B*| 1/2).
2. R(A*)  c B(|A + Bl1/2) and R(B*)  c B(|A + Bl1/2).

In this case, the parallel sum of A and B, denoted by A : B e L(^i, ^2), is

(A : B 0\ _ (A A \ /

\ 0 0/ V71 A + (jfi®{0},jf2®{0})

Remark 5.2. Note that the pair (A, B) is weakly summable if and only if the operator matrix 
(1 a + b) 1s ® {0}’® (OD-weakly complementable. Hence, the parallel sum is well 
defined.

Proposition 5.3. Let A, B e L(^i, ,#2) be weakly parallel summable operators and let Ea, 
Eb,Fa and FB be, respectively, the reduced solutions of the equations

A = |A*  + B*\ 1/2UX, B = \A*  + B*\ 1/2UX, (8)
A*  = |A + B|1/2A, B*  = |A + B\1/2X, (9)

where U is the partial isometry of the polar decomposition of A + B. Them.

A : B = F* aEb = F*E A. (10)

Proof. Note that |A*  + B*\ r/2U = U\A + B|1/2. Then, adding in (8) and in (9), we get

\A + B\1/2 = Ea + Eb, and |A*  + B*\ 1/2U = F*  + F*,  



582 J. Antezana et al. /Linear Algebra and its Applications 414 (2006) 570-588

by the uniqueness of the reduced solution. By its definition, A : B = A - FAEA. Then

A: B = A - FAEA = Fa(\A + B\^2 - EA) = FAEB.

The other equality follows in a similar way. □

Corollary 5.4. Let A, B e L(Xi, X2) be weakly parallel summable. Then A : B = B : A.

Corollary 5.5. Let A, B e L(Xi, ^2) be weakly parallel summable and suppose that the oper­
ator A + B has closed range. Then A : B = A — A(A + By' A = A(A + B)^B.

Using Proposition 4.5 we obtain the following analogous result with respect to parallel sum.

Proposition 5.6. Let A, B e LOH, ^2) be weakly parallel summable and x e X1. Thenthere 
exists a sequence {yn} and M > 0 such that

A(x + yn)—> A : B(x), B(yn)—> - A : B(x)

and (| A + B |y„, yn} < M. Conversely, if there exist d e X2, a sequence {yn} in and a real 
number M such that

A(x + yn)—>d, B(yn)—> - d, and (|A + B\yn, yn} < M,

then A : B(x) = d.

Corollary 5.7. Let A, B e L(Xi, X2) be weakly parallel summable. Then
J?(A) n R(B} c R(A : B} C RfA) n RfB)

Proof. Given x e R(A) n R(B), let y, z e such that Ay = Bz = x. Then A((y + z) - z) = 
x = B(-z). In consequence, taking w = y + z and yn = —z for every n e N, by Proposition 
5.6 we have that A : B(w) = x, which prove the first inclusion. The second inclusion follows 
immediately from Proposition 5.6. □

Parallel summable operators
Let A, B e L(Xi, ^2). As we have already pointed out in Remark 5.2, the operator pair 

(A, B) is weakly summable if and only if the block matrix
m=(aa /rY

\A A + B)
is (Xi ® {0}, #2 ® {0})-weakly complementable. From this point of view, it is natural consider 
pairs of operators (A, B) such that Mis (¿H ® {0}, #2 ® {0})-complementable. In this section 
we shall study such pairs of operators.

Definition 5.8. Let A, B e L(Xi, .O We say that A and B are parallel summable if 
R(A) ç R(A + B} and R(A*)  ç R(A*  + B*).

Note that these conditions imply that R(B) ç R(A + B) and R(B*)  ç R(A*  + B*).

Remark 5.9. This notion is indeed stronger than weakly summability. For example, take A, D e 
/.(.#)+ such that A < D but R(A)^-R(Dy Denote B = D - A e /.(.#)+. By Douglas’ theo­
rem, R(A) c 7?(A1/2) c ^(D1/2) = Rtf A + B)1/2). Similarly, since B < D, then also R(B) c 
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R(DV2) = R((A + B)1/2). However, by hypothesis, the pair (A, B) can not be parallel summa­
ble, because R(A)<^R(A + B) = R(D).

Both notion coincides, for instance, if R(A © B) is closed. In fact, in this case R(A © B) = 
J?(|(A©B)*|)  = 7?(|(A + B)*| 1/2) and R((A + B)*)  =R(\A + B\) = J?(|A © B|1/2).

Clearly, for parallel summable operators, some of the already proved properties can be im­
proved. Let us mention, for instance, the following ones.

Proposition 5.10. Let A, B e L(^i, ,#2) be parallel summable andx e JTi. Then, there exists 
y e Jfj such that A(x + y) = A : B(x) and By = —A : B(xY Moreover, there are projections
P e LC%f © Q e L(jf2 © ^2) such that R(P*)  = Jfj © {0}, R(Q) = ,Xf2 © {0} and

Q (A A ) = fA A \ p = (A ' B (3\A A + B) \A A + b) \ 0 0/ ’

Proof. It follows immediately from Proposition 4.7. □

Corollary 5.11. If A, B e L(^i, ^2) are parallel summable, then R(A : B) = 7?(A) A R(B).

Parallel subtraction
Given two operators A, C e L(^i, ^2), it seems natural to study the existence of a solution 

of the equation A : X = C, that is, if there exists an operator B e L(Jfj, .Xf2} parallel summable 
with A such that A : B = C. For positive operators this question has been studied, for example, in 
[3,38,4,37], Clearly, equation A : X = C may have no solutions for some pair of operators (A, C). 
Indeed, Corollary 5.11 implies that, if equation A : X = C has a solution, then R(C) c 7?(A) 
and R(C*)  c R(A*),  or, equivalently, R(C - A) c R(A) and R((C - A)*)  c R(A*).

In this section, we shall prove that, if R(C - A) = 7?(A) and R((C — A)*)  = 7?(A*),  then 
there exists a solution of equation A ■. X = C. Moreover, we shall find a distinguished solution, 
the parallel subtraction of the operators C and A. Given A e L(Jfj, jffY let Sa be the set of 
operators defined by

SA := {C e L(.#|,.#2) : R(C - A) = R(A) and R((C - A)*)  = R(A*)}.

Proposition 5.12. Let A e LfLEj, JffY Then the map C +*  C . (—A) is a bijection between the 
sets S’a and S_a with inverse D i-> D : A.

Proof. By the definition of summability, it is clear that —A and C are summable, for every 
C e S’a . Let E be the reduced solution of C - A = AX and let 2 be a projection onto ,rP2 © {0} 
such that Q (:1 C-A^ = (c (0-A)

Since (c and ( °A c_\) ("f °), we get that

(C (-A)+A 0\ (-E O\ _ n(A 0\ _ (A 0\
0 °)\I — _ \° °/'

This implies that 7?(A) c /?(<’ : (—A) © A). As the other inclusion always holds, we get 
7?(A) = R(C : (—A) © A). In a similar way we can prove that 7?(A*)  = 7?((C : (—A) © A)*).  
Thus, the mapping <P : Sa -» S_a given by <P(C) = C : (—A) is well defined. To prove that 
<P_1(D) = D : A, take C e Sa and x e Then there exists y, z e such that
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C : (-A)(x + y) = (C : (-A)) : A(x), Ay = -(C : (-A)) : A(x),

C(x + y + z) = C : (-A)(x + y), and Az =-(C : (-A))(x + y).

So, A(y + z) = 0 which implies that C(y + z) = 0. Hence

Cx = C(x + y + z) = C : (-A)(x + y) = (C : (-A)) : A(x),

and the proof is complete. □

Corollary 5.13. Let A e L(Xi, X2). For every C e S’ a, the equation

A: X = C

has a solution. Moreover, C : (-A) is the unique solution X which also satisfies

R(A + X) = R(A) and R((A + X)*)  = R(A*~).

Definition 5.14. Given A e L(^i, -SAi-andC e 2 a,^parallel subtraction between the oper­
ators A and C, denoted by C 4- A, is defined as the unique solution of equation A : X = C 
guaranteed by Proposition 5.13.

Remark 5.15. Note that, according to our definition, it holds that C 4- A = C : (-A); in partic­
ular, several properties of parallel sum are inherited by parallel subtraction.

6. Shorted formulas using parallel sum

In this section we shall prove some formulas for shorted operator using parallel sums and 
subtractions. Throughout this section ¿A and AT will be two fixed closed subspaces of .AC 1 and 
^2, respectively. The following lemma was proved in [38] for pairs of positive operators.

Lemma 6.1. Let A e L(X 1, be {¿A, tfifi-complementable. Let B e L(Xi, X2) be such 
that (A, B) and (A/q^), B) are parallel summable and A : B is {¿A, tfifi-complementable. 
Then

A/Lr.sr) : B = (A :

Proof. Let x e ¿A. By Proposition 5.10, there exists y e such that

+ y) = A^^ : B(x), and By = -A/^^) : B(x).

Let z e ¿A-1- such that A(x + y + z) = A/^^-fix + y). Then, A(x + y + z) = A/(^^) : 
B(x) and By = -A/^^) : B(x). So, A: b()) = A/^^-) : B(x), which implies, by Propo­

sition 4.5, that (A : Bf^^yx = A/^y-) : B(x). □

The next technical result will be useful throughout this section.

Proposition 6.2. Let A e L(Xi, X2) be (LA, ST)-complementable. IfB e L(Xi, X2) satisfies 
R(B) = SA and R(B*)  = ¿A-, then there exists n0 e N such that, for every n > n0, A and nB are 
parallel summable.
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We need the following lemma.

Lemma 6.3. Lei A, B e L(^i, ^2) such that R(A) c ST, R(A*)  c ¿A, R(B) = ST and 
R(B*)  = ¿A. Thenthere exists no e N such that, for every n no, R(A + nB) = fA and R((A + 
nB)*)  = SA.

Proof. It suffices to prove that SA c R(A + nB) and SA c R(fA + nB)*),  because the reverse 
inclusions hold by hypothesis. Since R(B*)  = SA, Douglas’ theorem assures that there exists 
a > 0 such that B*B  dS. Then

|A + nB\2 = A*A  + n2B*B  +n(A*B  + B*A)  > (an2 — n\\(A*  B + B*A)\\)Py.

Take //1 e N such that an2 > n||(A*B  + B* A)|| for every n n\. By Douglas’ theorem, SA c 
J?(|A + nB\) = R((A + nB)*),  for n n\. In a similar way, we can prove that there exists 
«2 e N such that for every n «2, AT R((A + nB)) holds. Hence, the statement is proved by 
taking no = max{«i, M2}. □

Proof of Proposition 6.2. Take, as in Proposition 4.7, a projection P e L(^i) such that AP = 
AK£f^) and R(P*)  = SA. Since N(B) = SAV = R(I - P), it holds that B(I - P) = 0 and 
BP = B. By Lemma 6.3 there exists «1 eH such that 7?((A/(^^) +nB)*)  = SA, for every 
n mi. Fix m > mi. Given x e there exists y e SA such that A^nyx = (A/^,^) + nB)y. 
If z = Py + (I - P)x e ¿fj, then

Ax = A(Px + (I — P)x) = A/^^)X + A(I — P)x
= (A/^^ + nB)y + (A + nB)(I - P)x
= (A + nB)Py + (A + nB)(I - P)x = (A + nB)z.

This shows that R(A) c R(A+nB). Following the same lines, it can be shown that there 
existSM2 e N such that R(A*)  c R(A +nB)*  torn M2. Thus, A and nB are parallel summable 
for m > max{Mi, M2}. □

Parallel sum may be defined in terms of shorted operators and the next Proposition shows a 
converse relation.

Proposition 6.4. Let A e L(.AA\, X2) be (-(A, SA)-complementable. IfB e L(Xi, X2) satisfies 
R(B) = SA and R(B*)  = ¿A, then there exists no e N such that:

1. The pair (A, nB) is summable for every m > m0, and
1. A/(cf^) = lim„_.v A : (nB) (in the norm topology).

Firstly, we shall prove Proposition 6.4 in the following particular case.

Lemma 6.5. Let A, B e L(SA 1, ^2) be such that R(A) c f/f R(A*)  c R(B) = SA and 
R(B*)  = SA. Then, A : (nB) -U- A.

Proof. Lemma 6.3 implies that there exists mo > 1 such that, for every m > mo, A and nB are 
parallel summable. Fix n m0. By definition, A : (nB) = A - F*E n, where Fn and En are, 
respectively, the reduced solution of A*  = |A + mB|1/2X and A = |(A + MB)*| 1/2t/„X, and Un 
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is the partial isometry of the polar decomposition of A + nB. We shall show that \\E„ || —> 0
n—foc

(resp. \\F„ || —> 0), which clearly implies the desired norm convergence. By Douglas' theorem, 
n—foc

E„ || = inf{X e R : A* A < X|A + nB |}, n e N, (ID
and there exist a, fl > 0 such that A*  A < flPy and B*B  aPy. Then (A*A) 2 < fl2Pff, and

\A + nB\2 = A*  A + n2B*  B + n(A*  B + B*  A)

>(<yn2 -n||(A*B  + B*A)||)P^  <
an2 — n\\(A*  B + B*A)\\  „ ,-----------" ------- — (A*A) 2

Recall that Lowner's theorem states that for every r e (0, 1] /(v) = xr is operator monotone, 
i.e. if 0 < A < B, then Ar < Br. Therefore, if n is large enough,

A*A  <------------------ - -------------- — |A + nB\.
(an2 — n\\(A*B  + B*A)||) 1/2

Hence, (11) implies that ||E„ || —> 0. Analogously, we get that ||F„ || —> 0. □

Proof of Proposition 6.4. By Proposition 6.2, there exists no such that for every n no the 
pairs (A, nB) and (A/(^,^j, nB) are parallel summable. Since the hypothesis of Lemma 6.1 are 
satisfied, for every n no, it holds that

A : nB = (A : nB)/^-^ = A/^-^ : nB.

Then, by Lemma 6.5 with A/^.^; playing the role of A, we get A : nB —> A/(<y^. □

Our last result relates parallel sum, parallel subtraction and shorted operators.

Proposition 6.6. Let A e L(.ffi, .fff) be (if, 2 (-complementable, andlet L e L(.Jfi, .fff) be 
such that R(L) = if and R(L*)  = if. Then, there exists n e N such that

1. A and nL are summable.
r A-liff'.m e 2-nL-
3. (A : nL) -nL = A/^^.

Proof. The first two assertions follows from Proposition 6.2 and Lemma 6.3, respectively. Since 
R((A : nL) nL) ç :f and R(((A : nL) nL)*)  ç ¿f then, by Lemma 6.1,

(A : nL) -? nL = ((A : nL) -f nL)/^ ^-) = (A/^ ^-) : nL) nL.

Finally, by Proposition 5.12, (A/^.^; : nL) nL = (A/^^j nL) : (-nL) = A^ff^, and 
the proof is complete. □

Remark 6.7. Proposition 6.4 was proved for positive operators by Anderson and Trapp in [5] and 
by Pekarev and Smul'jian in [38], It was also considered by Mitra and Puri who proved formula 
^■/(ff\:y) = lim„^œ A : (nB) of Proposition 6.4 for rectangular matrices (see [33]).

However, their proof can not be extended to infinite dimensional Hilbert spaces because it 
involves generalized inverses which, in our setting, only exist for closed range operators. Finally, 
the reader will find a generalization of Proposition 6.6 for positive operators in [38],
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