Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy

Graciela E. Hurtado de Catalfo,* Adalberto Ranieri-Casilla,† Fernando A. Marra,‡ Maria J. T. de Alaniz* and Carlos A. Marra*

*INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CONICET-UNLP, Cátedra de Bioquímica de la Facultad de Ciencias Médicas de la Universidad Nacional de La Plata, †Hospital Interalzonal General de Agudos José de San Martín, Servicio de Urología, La Plata, and ‡Clínica Vaccarini, Servicio de Medicina General, La Plata, Argentina

Keywords: antioxidan enzymes, hormonal levels, human varicocelectomy, oligoercmptoms, oxidative stress, semen characteristics

Correspondence:
Carlos Alberto Marra, INIBIOLP, Cátedra de Bioquímica, Facultad de Ciencias Médicas de la Universidad Nacional de La Plata, Calles 60 y 120, 1900 La Plata, Argentina.
E-mail: camarra@atlas.med.unlp.edu.ar

Received 19 September 2006; revised 24 November 2006; accepted 12 December 2006

doi:10.1111/j.1365-2605.2007.00753.x

Summary

The aetiology of varicocele is multifactorial although hormonal imbalance and oxidative stress play a key role in the progression of illness. No conclusive evidence has been presented previously, describing the changes in these two factors and the evolution of patients after varicocelectomy. Semen characteristics and hormonal profile were analysed in 36 infertile men with unilateral left varicocele and 33 age-paired controls (proved to be fertile men), after careful inclusion/exclusion selection criteria. Liposoluble and hydrosoluble antioxidants, oligoercmptoms and enzyme activities of the antioxidan defence system were also determined in plasma and erythrocyte from antecubital and spermatom, and in spermatozoa. Data were compared between groups at different times before and after varicocelectomy. Decreased levels of liposoluble and hydrosoluble antioxidants and increased activities of the antioxidan defence system enzymes were observed in patients compared with controls. Varicocelectomy normalized this condition at different post-surgical times. Levels of Zn and Se in seminal plasma, protein carbonyls and fragmented DNA remained elevated up to 1 month after surgery. Luteinizing and follicle stimulating hormone concentrations exhibited a biphase behaviour while testosterone was diminished in patients but normalized soon after varicocelectomy. The results clearly demonstrate the link between the antioxidan defence system, hormonal status and semen characteristics along the post-varicocelectomy period. We suggest that oxidative biomarkers may be appropriate in controlling the evolution of post-varicocelectomy patients, and antioxidan supplementation may improve the clinical condition of infertile men with varicocele.

Introduction

The aetiology of human varicocele, usually observed in the left testis, is multifactorial and controversial. Nonetheless, hormonal imbalance (Naughton et al., 2001) and oxidative stress (Chen et al., 2001; Naughton et al., 2001) are believed to play an important role in the progression of illness towards infertility. The incidence of varicocele in the population is high (approx. 15%) and unilateral left varicocele accounts for 41% infertility (Naughton et al., 2001). It has been suggested that varicocelectomy improved semen characteristics and pregnancy rates (Marks et al., 1986), although this is a matter of controversy as other reports failed to demonstrate this association (Kamischke & Nieschlag, 1999, 2001). There are additional studies showing that male infertility and varicocele are associated with elevated reactive oxygenated (ROS) or nitrogenated (RNS) species in seminal plasma and/or spermatozoa, with a concomitant reduced antioxidant capacity (Alkan et al., 1997; Hendin et al., 1996). Moreover, El-Demerdash et al. (2004) demonstrated that antioxidants preserve semen quality in Cd-intoxicated male rats under oxidative stress conditions.

In human varicocele, a careful revision of data already reported revealed controversial results between laboratories that could be attributed to different criteria in...
selecting patients with clinical diagnoses and/or lifestyles. In addition, there is a lack of evidence on the relationship between hormonal status, semen characteristics and the antioxidant defence system in varicocelectomized patients. For these reasons, the major aim of this investigation was to correlate those parameters in left varicocele patients and healthy donors and to gain an insight into the evolution of the illness along the pre- and post-surgical periods. The purpose was also to obtain information about (i) the convenience of antioxidant supplementation in these patients, and (ii) the utility of oxidative and/or hormonal biomarkers as potential predictive indexes of fertility.

Materials and methods

Study population

This study was approved by the local institutional review ethical board, which follows the Helsinki Declaration (1983 revised). From a large population of patients (approx. 200) treated in local hospitals only 36 infertile males with unilateral left varicocele (VC group) were selected for this study. Another group of 33 age-paired control donors who were fertile men (CO group) was also selected. For both groups, serial semen analyses were performed according to the standard WHO criteria (World Health Organization, 1999). Patients suffering from bilateral or right varicocele, smokers, drug and/or alcohol consumption, ongoing medical treatments for any other illness, diabetes, asthma, hypertension, testicular injury, cord injury, history of venereal disease(s), autoimmune disorders, infectious diseases of any aetiology, azoospermic ejaculate, infertility <1 year, hormonal-associated illness, focal testicular and/or scrotal abnormalities not associated with left varicocele, and particular diets and/or use of diet supplements (before or after varicocelectomy) of any composition were excluded from this study. Patients and controls were 28 ± 3 and 28 ± 4 years old, respectively, and they underwent complete clinical and laboratory examinations, and also ultrasound and colour Doppler scanning between 8:00 and 10:00 h after overnight fasting. Scrotal ultrasound assessment of testicular volume was performed following the procedure of Battaglia et al. (2001). The volume was automatically calculated after the ultrasound assessment by means of the software included in the device used (AU-4 Ide; Esaote, Milan, Italy). Doppler flow measurements of transmesialtinal arteries (TMAs) were performed in each testis using a trans-scrotal sensor settled at 6.5 mHz and using a 50-Hz filter to eliminate low frequency signal originating from vessel wall movements. Colour flow images of TMAs were obtained in a longitudinal plane at the level of the testicular mediastinum. The angle of insonication was modified to obtain the maximum colour intensity and blood flow velocity waveforms were recovered by placing the Doppler in the pulsed mode. The pulsatility index (PI) was calculated electronically.

Chemicals

Standards for high-performance liquid chromatography (HPLC), cofactors for enzymatic reactions, thiobarbituric acid, deferoxamine mesylate, CoA-SLi, N-ethylmaleimide, tetraetoxypropane, Trolox, Tris, sodium deoxycholate (grade II), N-acetylcysteine, dithiothreitol and butylated hydroxytoluene were purchased from Sigma Chem. Co., (Buenos Aires, Argentina). Sodium nitrite and nitrate were from Fluka Chemie AG, GmbH & Co. (Buenos Aires, Argentina.). Nitric acid and solvents were HPLC grade and provided by Carlo Erba (Milan, Italy). Organic and inorganic chemicals of analytical grade were obtained from local commercial sources. Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone were determined by radioimmunoassay (RIA) using commercial kits (Radim, Ponzenza, Italy).

Blood and semen samples

After 3 days of sexual abstinence, semen samples were obtained by masturbation, collected between 8:00 and 10:00 h and allowed to liquefy at 34 °C for 25 min. Computer-assisted semen analysis (CASA) was performed on all samples with a Motion Analysis VP50 Semen Analyzer (Motion Analysis, Co., Santa Rosa, CA, USA). Sperm count was assessed using a counting chamber. In some cases CASA results were confirmed by manual assessment using conventional microscopy examination under a blind code to increase the accuracy of the analyses. Seminal plasma was obtained by centrifugation (350 g for 10 min) and stored under nitrogen atmosphere at −80 °C. Pelleted spermatozoa were washed twice with cold phosphate-buffered saline (PBS) (pH 7.40), resuspended in the same fresh solution (approx. 20.10⁶ spermatozoa/mL), and immediately processed for DNA fragmentation assay based on the diphenylamine reaction (Gil et al., 2003). Whole blood samples from the antecubital vein were collected in 15 IU/mL heparin. Plasmas were obtained by centrifugation (600 g for 10 min) in the cold and stored under nitrogen atmosphere at −80 °C. An aliquot was supplemented with N-ethylmaleimide for reduced (GSH) and oxidized (GSSG) glutathione analyses. Another aliquot was treated with deferoxamine mesylate 0.1 mM (Menditto et al., 1997) and immediately analysed for ascorbate content (Benzie et al., 1999). Erythrocytes were washed twice in cold PBS (pH 7.40) and centrifuged (600 g for 10 min) to prepare erythrocyte lysates (Berlin
Biochemical assays

The presence of leucocytes in semen samples was assessed by myeloperoxidase test (Shekarriz et al., 1995). Thiobarbituric acid reactive substances (TBARS) were measured in blood and seminal plasma fluorometrically (Yagi, 1976). Oxidized glutathione (GSSG) was determined by HPLC (Asensi et al., 1994) while reduced glutathione (GSH) was measured following the glutathione-S-transferase assay (Brigelius et al., 1983), α-tocopherol (Buttriss & Diplock, 1984) and retinol (Catigiani & Bieri, 1983) content were determined by HPLC. The following antioxidant enzymes were also determined: catalase (Aebi, 1984), superoxide dismutase (SOD) (Flohe & Ottung, 1984), glutathione peroxidase (GSH-Px) (Wheeler et al., 2001), glutathione transferase (GSH-Tr) (Habib et al., 1984) and glutathione reductase (GSH-Rd) (Callberg & Mannervick, 1985). Protein carbonyls were determined spectrophotometrically (Levine et al., 1990) and quantified using a molar absorption coefficient for 2,4-dinitrophenylhydrazones of 22 000 mol/L/cm (Reznick & Packer, 1994). Total antioxidant capacity (FRAP assay) was performed in peripheral and seminal plasma (Benzie & Strain, 1996). Results were normalized with Trolox as a reference antioxidant. Nitric oxide synthetase (NOS) activity was estimated indirectly by quantification of nitrite plus nitrate ([NOx]) levels (Verdon et al., 1995). For trace element analyses the samples were mineralized overnight with concentrate nitric acid, diluted with bi-distilled water and centrifuged (10 000 g, 15 min) to remove undissolved particulates. The supernatant was used to determine mineral levels by atomic absorption spectrophotometry (Habib et al., 2002). Protein content was determined by the micromethod of Lowry et al. (1951). Total lipid content in sperm samples was measured according to Folch et al. (1957) and quantified gravimetrically (Marra et al., 1998).

Graphic software and statistical treatment of the data

All values represent the mean of 33 control (healthy) (CO) or 36 (VC) individual determinations (assayed in duplicate) ± 1 standard error of the mean. Binomial Gaussian distribution was checked for both the patients and the control group. Statistical significance of differences was analysed by the Student’s t-test or by ANOVA, with the aid of Systat (version 8.0 for Windows) from SPSS Science (Chicago, IL, USA), Sigma Scientific Graphing Software (version 8.0) from Sigma Chem. Co. (St Louis, MO, USA), and/or GB-STAT Professional Statistics Program (version 4.0) from Dynamic Microsystems Inc. (Silver Springs, MD, USA).

Results

Testicular and sperm characteristics

Varicocele patients did not present a significant difference in volume of testis with respect to the control group. Moreover, there was no difference between right and left testicles (15.6 ± 1.9 cm³ and 16.6 ± 2.2 cm³ respectively), with a 29% variation between extreme values. PI has been shown to reflect blood flow impedance downstream of the point of sampling. Significant differences were found between PI of left and right testicles (0.87 ± 0.07 and 1.33 ± 0.10 respectively). TMA characteristics confirmed in all cases the typical pattern of left varicocele. In all VC patients internal spermatic vein had a diameter larger than 3.5 mm associated with reversal flow. Neither healthy donors nor patients exhibited leucocytospermia defined as the presence of at least 1.10⁶ white blood cells/mL as they were negative for myeloperoxidase test (data not shown). Data regarding the evolution of semen parameters along the experimental period were analysed (Fig. 1). Before surgery, all parameters studied except ejaculated volume were significantly lower in the VC group compared with CO; they reached control values between 3 and 6 months after surgery. More relevant from the clinical point of view was the comparison of patients before and after surgery. It evidenced (Fig. 1) that varicocelectomy improved steadily the total sperm number, morphology and sperm concentration, the data being significantly higher 3 months after surgery when compared with the data obtained before surgery. No significant variations were seen in total motility up to 6 months post-correction.

Hormonal profile in CO and VC groups

Table 1 shows testosterone, FSH and LH levels in plasma from peripheral blood samples along the experimental period. VC patients showed a significant decrease in testosterone levels before the surgery that normalized after 1 month. LH and FSH values showed a biphasic pattern. Both hormones were elevated before surgery, normalized during the post-surgical period, and again were elevated 6 months after varicocelectomy. Values remained high at least up to the end of the period studied.

Oxidative stress biomarkers

Thiobarbituric acid reactive substances were significantly elevated in both peripheral and seminal plasma before
surgery and remained high up to 1 month post-varicocelectomy (Fig. 2). Values were higher in seminal plasma than in peripheral plasma, notwithstanding the pattern displayed was essentially the same in both kinds of samples. The content of nitrates plus nitrites ([NOx]) in seminal plasma was elevated in the VC group before varicocelectomy. After surgery, it remained significantly higher for 1 month and normalized between 1 and 3 months (Fig. 3). In peripheral blood [NOx] concentration showed a similar pattern to that observed in seminal plasma, although differences were not statistically significant (data not shown). The concentration of [NOx] in the spermatic vein was 63.4 ± 5.8 µM which was significantly higher ($p < 0.01$) with respect to that measured in the antecubital vein of the VC group (mean value during the pre-surgical period: 31.3 ± 4.0 µM). Figure 4 shows the content of liposoluble and hydroxylable antioxidants determined in total sperm. The α-tocopherol content

Table 1 Hormonal parameters in plasma from control donors (CO) and varicocelectomized (VC) patients

<table>
<thead>
<tr>
<th>Months</th>
<th>Testosterone (ng/dL) CO</th>
<th>Testosterone (ng/dL) VC</th>
<th>LH (ng/dL) CO</th>
<th>LH (ng/dL) VC</th>
<th>FSH (IU/L) CO</th>
<th>FSH (IU/L) VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>424 ± 18</td>
<td>298 ± 17*</td>
<td>5.3 ± 0.2</td>
<td>8.1 ± 0.1*</td>
<td>10.7 ± 0.3</td>
<td>17.5 ± 0.2*</td>
</tr>
<tr>
<td>-0.1</td>
<td>396 ± 11</td>
<td>301 ± 11*</td>
<td>6.1 ± 0.2</td>
<td>7.8 ± 0.2*</td>
<td>11.3 ± 0.2</td>
<td>18.3 ± 0.3*</td>
</tr>
<tr>
<td>1.0</td>
<td>408 ± 15</td>
<td>342 ± 30</td>
<td>5.8 ± 0.1</td>
<td>6.6 ± 0.3</td>
<td>12.0 ± 0.3</td>
<td>15.5 ± 0.4</td>
</tr>
<tr>
<td>3.0</td>
<td>420 ± 20</td>
<td>440 ± 18</td>
<td>5.5 ± 0.3</td>
<td>6.8 ± 0.1</td>
<td>10.9 ± 0.4</td>
<td>13.3 ± 0.3</td>
</tr>
<tr>
<td>6.0</td>
<td>431 ± 26</td>
<td>398 ± 20</td>
<td>6.3 ± 0.3</td>
<td>7.9 ± 0.2*</td>
<td>11.0 ± 0.1</td>
<td>16.0 ± 0.3*</td>
</tr>
<tr>
<td>8.0</td>
<td>411 ± 20</td>
<td>382 ± 15</td>
<td>6.0 ± 0.2</td>
<td>8.0 ± 0.1*</td>
<td>12.1 ± 0.3</td>
<td>16.8 ± 0.1*</td>
</tr>
</tbody>
</table>

Results were obtained by radioimmunoassay as described in Materials and methods. Each value is expressed as the mean ± 1 SEM of 33 or 36 individual determinations assayed in duplicated from plasma of CO or VC groups respectively. LH, luteinizing hormone; FSH, follicle-stimulating hormone. *Significantly different with respect to the corresponding control value ($p < 0.001$).

Figure 1 Major sperm characteristics in CO (– ––) and VC (– – –) groups determined by CASA following the WHO guidelines. Each sample was taken and processed under the same conditions Results are expressed as the mean ± 1 SEM of 33 (CO) or 36 (VC) independent analysis. Statistical differences were tested (ANOVA + Bonferroni test) between control and patients groups (*$p < 0.001$), and patient group before and after surgery (different letters, $p < 0.01$).
(γ-isomer amount was negligible) was normalized in respect to the corresponding lipid amount in each sample. The total lipid content in sperm samples within each group was very similar and constant during the study (never exceeded 9% of the mean value) while the total lipid concentration in the VC group was slightly reduced (−16%) compared with CO donors. The α-tocopherol concentration of VC patients was significantly lower than CO values before surgery and up to 3 months after varicocelectomy. Diminished levels of ascorbate and retinol observed in the VC group before surgery normalized 1 or 3 months after the operation, respectively. Reduced (GSH) and oxidized (GSSG) glutathione content in seminal plasma is shown in Table 2. No significant differences were found between CO and VC groups along the period of observation. However, the ratio GSH/GSSG was reduced in the VC group before surgery and up to
Varicocelectomy and oxidative stress

G. E. Hurtado de Catalfo et al.

Table 2 Reduced (GSH) and oxidized (GSSG) glutathione contents in seminal plasma from control donors (CO) and varicocelectomized (VC) patients

<table>
<thead>
<tr>
<th>Months</th>
<th>CO</th>
<th>VC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GSH</td>
<td>GSSG</td>
</tr>
<tr>
<td>-1.0</td>
<td>2.2 ± 0.10</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.9 ± 0.06</td>
<td>0.13 ± 0.02</td>
</tr>
<tr>
<td>1.0</td>
<td>2.2 ± 0.20</td>
<td>0.10 ± 0.01</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0 ± 0.03</td>
<td>0.14 ± 0.03</td>
</tr>
<tr>
<td>6.0</td>
<td>1.9 ± 0.02</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>8.0</td>
<td>2.0 ± 0.10</td>
<td>0.10 ± 0.02</td>
</tr>
</tbody>
</table>

Glutathione contents were determined by HPLC as described in the experimental part (blood and semen samples). Data are expressed in µmol/L as the mean ± 1 SEM of 33 or 36 individual determinations assayed in duplicate from CO donors or VC patients, respectively. *Significantly different with respect to the corresponding control value (p < 0.001).

Figure 5 Total antioxidant capacity of seminal plasma determined by the FRAP assay in CO (black bars) or VC (grey bars) samples before and after varicocelectomy. Details of the technical procedure are summarized in Materials and methods. Results are expressed as the mean ± 1 SEM of 33 (CO) or 36 (VC) independent analyses assayed in duplicate (*p < 0.001).

3 months post-varicocelectomy. The total antioxidant capacity of seminal plasma estimated by the FRAP assay reflected the changes observed in antioxidant components. Data were relatively constant in the CO group (approx. 750 µm), but exhibited decreased values in the VC group before varicocelectomy and up to 3 months after surgery (Fig. 5). Similar results were obtained in peripheral plasma (data not shown). Unfortunately, blood samples from the spermatic vein of CO donors were not available for the FRAP assay. However, at the time of surgery the results obtained in plasma from the spermatic vein of VC patients (462.8 ± 31.3 µm) were significantly reduced (approx. 30%) compared to those obtained from blood peripheral plasma within the same group (680.1 ± 45.6 µm).

Table 3 Oligoelement concentrations in seminal plasma from control donors (CO) and varicocelectomized (VC) patients

<table>
<thead>
<tr>
<th>Zn (mg/dL)</th>
<th>Se (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td>CO</td>
</tr>
<tr>
<td>-1.0</td>
<td>215 ± 11</td>
</tr>
<tr>
<td>-0.1</td>
<td>203 ± 22</td>
</tr>
<tr>
<td>1.0</td>
<td>195 ± 27</td>
</tr>
<tr>
<td>3.0</td>
<td>223 ± 18</td>
</tr>
<tr>
<td>6.0</td>
<td>211 ± 14</td>
</tr>
<tr>
<td>8.0</td>
<td>202 ± 12</td>
</tr>
</tbody>
</table>

Data were obtained as described in Materials and methods and expressed as the mean ± 1 SEM of 33 and 36 independent determinations from CO and VC groups respectively. *Significantly different (p < 0.001) with respect to the corresponding control value.

Table 3 shows novel findings in Zn and Se contents of seminal plasma from the CO and VC groups. Both Zn and Se showed increased values before surgery and up to 1 month after varicocelectomy. Results observed in seminal plasma did not correlate with those from peripheral plasma, as no differences were noted between the CO and VC groups in antecubital vein samples along the study (data not shown).

The activities of several antioxidant enzymes were also measured in erythrocyte lysates from peripheral blood plasma and in sonicated sperm from the CO and VC groups, as well as in erythrocyte lysates from blood of spermatic vein (at the time of surgery) in VC patients. SOD and catalase activities were high in VC peripheral erythrocytes and also in erythrocytes from spermatic vein compared with controls before surgery and after 1 month post-intervention (Table 4). Similar results were obtained in sonicated sperm. Antioxidant enzyme activities involved in glutathione metabolism were significantly modified (Table 5). Glutathione peroxidase activity was increased in erythrocyte lysates from peripheral and spermatic vein, and also in sonicated sperm. Activities returned to control values 1 months after surgery.

Glutathione reductase and transferase showed no significant changes in erythrocyte lysates from peripheral blood, but they were increased in spermatic vein and in
Table 4 Superoxide dismutase and catalase activities in erythrocyte lysates from antecubital and spermatic veins, and sonicated sperm from control donors (CO) or varicocelectomized (VC) patients

<table>
<thead>
<tr>
<th>Month</th>
<th>Antecubital</th>
<th>Spermatic</th>
<th>Sonicated sperm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO^a</td>
<td>VC^a</td>
<td>VC^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superoxide dismutase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1.0</td>
<td>1272 ± 85</td>
<td>1655 ± 121*</td>
<td>n.d.</td>
</tr>
<tr>
<td>0.0</td>
<td>1196 ± 108</td>
<td>1703 ± 134*</td>
<td>1933 ± 141*</td>
</tr>
<tr>
<td>1.0</td>
<td>1301 ± 90</td>
<td>1549 ± 96*</td>
<td>n.d.</td>
</tr>
<tr>
<td>8.0</td>
<td>1273 ± 111</td>
<td>1380 ± 135</td>
<td>n.d.</td>
</tr>
<tr>
<td>Catalase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1.0</td>
<td>115 ± 19</td>
<td>142 ± 16*</td>
<td>n.d.</td>
</tr>
<tr>
<td>0.0</td>
<td>122 ± 14</td>
<td>157 ± 21*</td>
<td>169 ± 12*</td>
</tr>
<tr>
<td>1.0</td>
<td>108 ± 21</td>
<td>119 ± 13</td>
<td>n.d.</td>
</tr>
<tr>
<td>8.0</td>
<td>117 ± 15</td>
<td>124 ± 17</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Enzyme activities were determined according to the procedures described in Materials and methods. Data are expressed as the mean ± 1 SEM of 33 (CO) or 36 (VC) individual determinations assayed in duplicate. n.d., not determined. *Units/g haemoglobin; †Units/mg protein. *Significantly different with respect to the corresponding control value (p < 0.001).

Table 5 Glutathione-related enzyme activities in erythrocyte lysates from antecubital and spermatic veins, and sonicated sperm from control donors (CO) or varicocelectomized (VC) patients

<table>
<thead>
<tr>
<th>Month</th>
<th>Antecubital</th>
<th>Spermatic</th>
<th>Sonicated sperm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO^a</td>
<td>VC^a</td>
<td>VC^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutathione peroxidase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1.0</td>
<td>18.6 ± 1.9</td>
<td>26.6 ± 3.8*</td>
<td>n.d.</td>
</tr>
<tr>
<td>0.0</td>
<td>21.5 ± 3.3</td>
<td>25.8 ± 3.1*</td>
<td>39.7 ± 4.1*</td>
</tr>
<tr>
<td>1.0</td>
<td>17.3 ± 4.0</td>
<td>18.2 ± 2.9</td>
<td>n.d.</td>
</tr>
<tr>
<td>8.0</td>
<td>20.1 ± 1.5</td>
<td>19.5 ± 4.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>Glutathione reductase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1.0</td>
<td>13.6 ± 1.1</td>
<td>16.0 ± 0.3</td>
<td>n.d.</td>
</tr>
<tr>
<td>0.0</td>
<td>15.0 ± 2.3</td>
<td>15.1 ± 2.2</td>
<td>22.8 ± 2.2*</td>
</tr>
<tr>
<td>1.0</td>
<td>14.2 ± 1.8</td>
<td>18.2 ± 3.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>8.0</td>
<td>14.0 ± 2.0</td>
<td>17.0 ± 2.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>Glutathione transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1.0</td>
<td>25.4 ± 2.2</td>
<td>26.8 ± 3.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>0.0</td>
<td>31.7 ± 2.0</td>
<td>30.1 ± 2.6</td>
<td>38.6 ± 3.0*</td>
</tr>
<tr>
<td>1.0</td>
<td>28.3 ± 3.1</td>
<td>24.7 ± 3.8</td>
<td>n.d.</td>
</tr>
<tr>
<td>8.0</td>
<td>29.9 ± 1.9</td>
<td>28.6 ± 4.0</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Enzyme activities were determined according to the procedures described in Materials and methods. Data are expressed as the mean ± 1 SEM of 33 (CO) or 36 (VC) individual determinations assayed in duplicate. n.d., not determined. *Units/g haemoglobin; †Units/mg protein. *Significantly different with respect to the corresponding control value (p < 0.001).

sonicated sperm. These activities normalized almost immediately after varicocelectomy (Table 5). Damages observed in the antioxidant defence system of VC patients were also reflected in the increased protein carbonyl content measured in proteins from seminal plasma (Fig. 6), and in fragmented DNA in isolated spermatozoa (Fig. 7). These values were normalized 1 month after surgery.

Discussion

The main parameters of semen samples determined in our patients with left varicocele (demonstrated by ultrasound and colour Doppler scanning of testis) were in accordance with those reported previously from other laboratories (Pasqualotto et al., 2000; Daitch et al., 2001;
Varicocelectomy and oxidative stress

Figure 6 Oxidative damage of proteins estimated by the formation of protein carbonyls in CO (black bars) or VC (grey bars) samples before and after varicocelectomy. Details of the technical procedure are summarized in Materials and methods. Results are expressed as the mean ± 1 SEM of 33 (CO) or 36 (VC) independent analyses assayed in duplicate (*p < 0.001).

Figure 7 Estimation of the DNA oxidative damage determined by the percentage of fragmented DNA in total sperm from CO (black bars) or VC (grey bars) samples before and after varicocelectomy. Details of the technical procedure are summarized in Materials and methods. Results are expressed as the mean ± 1 SEM of 33 (CO) or 36 (VC) independent analyses assayed in triplicate (*p < 0.001).

Xu et al., 2003). In spite of the abundance of data characterizing semen quality and antioxidant status in human cases of varicocele, evidence regarding the post-surgical evolution of left varicocele is extremely scarce. Ducht et al. (2001) observed that although varicocelectomy did not improve semen characteristics in all men studied, it appeared to improve pregnancy and live birth rates among couples who underwent intrauterine insemination for male factor infertility. They concluded that men with varicocele should be screened for other functional factors not measured in routine semen analysis. These factors could involve changes in hormonal status and oxidative stress of sperm, among others. In this study, we observed important alterations in both types of parameters when studying infertile left varicocele patients before and after surgical correction. However, the exact mechanism by which varicocele is responsible for male infertility and its real impact on the epidemiology of the illness, is still unknown (Naughton et al., 2001). Several authors have stated that from the development of varicocele at puberty, many factors (hyperthermia, testicular blood flow and pressure changes, reflux of renal/adrenal substances, hormonal dysfunction, autoimmunitive and oxidative stress) could play a role in the evolution of this illness and its consequences (Naughton et al., 2001; Santoro & Romeo, 2001). In this regard, Allamaneni et al. (2004) reported that reactive oxygen species (ROS) levels showed a significant correlation with left varicocele grade, and that significantly elevated seminal ROS levels were seen in men with left varicocele grades 2 and 3 compared with grade 1. There is experimental evidence that the normal production of the reactive species ROS and RNS by testicular cells and spermatozoa plays a key role in signal transduction mechanisms involved in fertilization, regulation of sperm capacitation, acrosome reaction and spermatozoa–oocyte attachment (Aitken & Fisher, 1994; De Lamirande & Gagnon, 1995; Özdamar et al., 2004). In healthy men, production and neutralization of ROS and RNS are strictly controlled by a complex antioxidant defence system. Our results clearly indicated that before surgery, VC group exhibited a significant reduction in hydrosoluble and lyposoluble antioxidant contents as well as in GSH/GSSG ratio in seminal plasma compared with CO donors. These observations support the idea of an increased spermatozoa sensitivity to oxidative damage in this kind of patients as suggested by Mancini et al. (1998) and Sharma & Agarwal (1996). The patients also had a reduced antioxidant capacity as estimated by the FRAP assay. Similar results were observed by Sharma et al. (1999) using TAC, and Hendin et al. (1999a) with luminol-dependent chemiluminescence assay. Augmented levels of [NOx] observed in seminal plasma could be attributed to an incremented NOS activity in varicocele patients. On the other hand, Rosselli et al. (1995) reported that elevated nitric oxide concentration decreases sperm motility and induces sperm toxicity. We found that [NOx] was significantly elevated in the spermatic vein when compared with the antecubital vein in the VC group. This result is in agreement with those previously reported by Özbek et al. (2000). Levels of [NOx] were inversely correlated with the PI of TMAs suggesting its important role in vascular modulation of testicular vessels and ultimately in sperm output (Battaglia et al., 2000, 2001).

The increased sensitivity of testicular cells to oxidative stress was associated with the high content of polyunsaturated fatty acids (PUFA) of their membrane lipids (Coniglio, 1994). Lenzi et al. (1996) demonstrated that PUFA content of sperm plasma membranes was significantly
decreased in varicocele patients compared with normospermic donors. Testicular biopsy of patients with varicocele showed that malondialdehyde (MDA) concentration, which is a useful indicator of ROS-induced lipid peroxidation, was greater in patients with varicocele (Naughton et al., 2001). Moreover, Koksal et al. (2000) have proposed a central role of MDA in the pathophysiology of varicocele as this oxidative biomarker was consistently elevated in testicles of patients with mild varicocele and its concentration increased in good correlation with illness progression. Other authors (Aitken et al., 1989; Gomez et al., 1996; Keating et al., 1997) reported a direct correlation between defective sperm function and excessive ROS production in lipid moieties. It is well known that TBARS are directly associated with MDA production (Meagier & Fitzgerald, 2000; Wild et al., 2001). Our results showed elevated TBARS levels in both peripheral and seminal plasma from the VC group that were rapidly normalized after varicocelectomy. However, major sperm characteristics such as sperm number, sperm concentration and total motility remained pathologically altered after normalization of TBARS concentration. This led us to consider that MDA accumulation is not the main determinant in sperm quality. ROS and RNS production were also associated with a high rate of double- and single-strand DNA damage, and to induction of mutations (Lopes et al., 1998; Twigg et al., 1998). In this work we observed that both the level of DNA fragmentation and the formation of protein carbonyls – widely used as biomarkers for ROS-induced damage to proteins – were significantly higher in the VC group than in the CO group. Oxidative modification of DNA and proteins is considered as one of the earliest events caused by oxidative stress. Therefore, protein carbonyl concentration and DNA mutation are not only biomarkers of ROS and RNS-induced damage but also a causal factor for oxidative injury and dysfunction in human testis. These modifications precede loss of cellular ATP, and eventually, cell death (Berlett & Stadtman, 1997; Ciolino & Levine, 1997; Chen et al., 2001). Fortunately, both DNA fragmentation and protein oxidation were rapidly reversed after varicocelectomy. As suggested for the case of the TBARS–time course evolution, these biomarkers seem not to be the key factors in the normalization of sperm quality.

With the aim of seeking a biochemical parameter that correlates with post-surgical evolution of VC patients (especially sperm quality) we studied various enzyme activities, oligoelement concentrations and hormonal status of patients. All antioxidant enzymes tested demonstrated a clear oxidative stress condition in VC patients compared to those of control donors which remained altered for at least 1 month after surgical procedure. Zn concentration is an attractive issue as there have been controversial reports concerning its effect on spermatozoa motility. While Sorensen et al. (1999) reported that high seminal Zn concentrations suppress motility, other authors proposed that Zn had a positive effect on spermatogenesis and fertility by improving both motility and density (Chia et al., 2000). In this study, Zn concentration correlated well with SOD activity rather than with sperm motility as this semen parameter remained low in the VC group at 4 months after surgery. The correlation of Zn concentration with SOD activity was statistically significant ($r_s = 0.96$, $p < 0.01$) as determined by Pearson and Spearman rank test (parametric and nonparametric assays respectively). Gaussian distribution of data, in the present study, made possible both kinds of statistic estimations. However, the conclusions obtained were completely equivalent. Regarding Se, a recent study by Xu et al. (2003) indicated that Se concentration was inversely correlated with DNA damage in human spermatozoa. This observation is interesting as the mechanism of DNA fragmentation may be associated with ROS and RNS production and with increased levels of protective antioxidant enzymes such as GSH-Px; one of its isoforms is a selenium-dependent protein. GSH-Tr is another antioxidant enzyme that was related to oxidative damage in testis. We demonstrated that this enzyme activity was elevated during the pre-surgical period but normalized after varicocelectomy. Chen et al. (2002) and Rajmakers et al. (2003) demonstrated that some isoforms of the superfamily of human GSH-Tr prevent oxidative damage in sperm of VC patients.

We also observed alterations in the hormonal profile of VC patients that were modified by surgery, the chief being the reduced testosterone level in plasma from the VC group that normalized after varicocelectomy. This finding is in agreement with data obtained in animal models (Shafick et al., 1989; Ghosh & York, 1994). Moreover, Naughton et al. (2001) reviewed those studies on testosterone levels in plasma from men with this pathology and found that they were significantly lower than those of controls, suggesting a deleterious effect of varicocele on Leydig cell function. Previous evidence demonstrated that the steroidogenic route in Leydig cells is inhibited by oxidative stress condition (Pomerantz & Pittelka, 1998; Murugesam et al., 2005). After varicocelectomy, the enzymes involved in testosterone biosynthesis would be initially restored to control levels. Despite these results, reversibility of hormonal dysfunction after varicocelectomy remains controversial as some authors reported no significant changes in testosterone concentrations before and after surgery (Hudson et al., 1985; Segenreich et al., 1986) while others observed a clear increase in androgen concentration after surgical correction of the illness (Su et al., 1995). Despite this, the real impact of this fact on sperm quality and fertility remains unclear.
Regulation of the hypothalamic-pituitary axis is a very complex mechanism controlled by a feedback system operating from the gonads to the pituitary. To study how this control system may be altered in varicocele patients, we measured FSH and LH levels. Both showed a biphasic behaviour that could reflect the adaptation of the pituitary-gonadal axis after varicocele correction. From the data obtained in this experimental design we are not able to propose (without any speculation) a mechanism to explain the increase in these gonadotrophic hormones 6 months after varicocelectomy. However, the fact that both LH and FSH have the same oscillations in the pre and post-surgical periods suggest that they respond to a similar mechanism of adaptation. The physiological significance of these changes remains to be clarified.

In conclusion, we demonstrated that various oxidative stress biomarkers were altered in infertile left varicocele patients. They normalized at different times after varicocelectomy depending on the particular biomarker measured. We also observed that hormonal alterations may be ascribed to an indirect effect of reactive species (ROS, RNS) on Leydig and/or Sertoli cell function. Our study suggests that antioxidant supplements may improve the clinical condition in infertile men with varicocele. We also suggest that some oxidative biomarkers as well as testosterone determination could have potential clinical applications in evaluating the evolution of varicocelectomized patients. More exhaustive investigations in this field could clarify these questions.

Acknowledgements

The authors are grateful to Eva Illara de Bozzolo for excellent technical assistance and to Prof. Enrique Gustavo Bozarello for data analysis. Language was revised by Norma Tedesco. This study was partially supported by grants from CIC and CONICET, Argentina.

References

Varicocelectomy and oxidative stress

