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Abstract

In this paper we give new characterizations of Riesz and conditional Riesz frames in terms of the
properties of the nullspace of their synthesis operators. On the other hand. we also study the oblique
dual frames whose coefficients in the reconstruction formula minimize different weighted norms.
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1. Introduction

Frames were introduced by Duffin and Schaeffer [16] in the context of nonharmonic
Fourier series. and they have been intensively applied in wavelet and frequency analysis
theories since the work of Daubechies et al. [14]. Today. frame-like expansions are fun-
damental in a wide range of disciplines (see. for example. [16.17] or [25]). including the
analysis and design of oversampled filter banks and error corrections codes.
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A frame is a redundant set of vectors in a Hilbert space that leads to expansions of
vectors (signals) in terms of the frame elements. More precisely, a sequence of vectors
F = {fulnex in a (scparable) Hilbert space H is a frame (for H) if there exist numbers
A, B > 0 such that, for every f € H,

AIFIP < 1P < BIAIR (1)

neN

Associated with each frame there exists an operator T : £2 — H defined by T'(e,) = f,.
where B = {e,},er denotes the canonical basis of £2; T is called the synthesis operator
of F.

The results of this paper can be divided in two parts. The main results of the first part are
devoted to the study of Riesz frames and conditional Riesz frames through the structure
and geometric properties of the nullspace of their synthesis operators. Riesz and condi-
tional Riesz frames were introduced by Christensen in [9] (see definitions in Section 3).
These frames are important because they behave well with respect to the projection method.
In general, frame theory describes how to choose the corresponding coefficients to expand
a given vector in terms of the frame vectors. However, in applications, to obtain these co-
efficient requires the inversion of an operator on . The projection method was introduced
by Christensen in [7] to avoid this problem. We refer the interested reader to [6], [7], [8],
[9] or [10] for more information about the projection method. In [1] we found a charac-
terization of Riesz frames by studying the nullspace of the synthesis operator. Namely, if
the nullspace N (T') has a certain geometric property of compatibility with the closed sub-
spaces spanned by subsets of 3, then F is a Riesz frame, and conversely. In Section 3, we
extend these results for conditional Riesz frames and give some new characterizations in
terms of angles.

Throughout the second part of this work we study the so-called oblique dual frames.
Let { f»}nen be a frame for the closed subspace W C ‘H, and let M < 'H be another closed
subspace such that H = W 4 M~ (+ means a nonnecessarily orthogonal direct sum). The
sequence {g,},en in M is an oblique dual frame of { f},}, < (see Li [21] or Li and Ogawa
[22.23]) if

F=) (fignfn YEEW.
n=1

Among the oblique dual frames, there exists a particular class with the minimal norm
property. Recall that a dual frame {g,,} ,en has the minimal norm property if the coefficients
{{f, gn)}nen that appear in the reconstruction formula have minimal £? norm.

If B = {e,)nen denotes the canonical orthonormal basis for £2 and T is the synthesis
operator of { f,} ,en, then Christensen and Eldar [11] proved that the minimal norm oblique
dual frames have the form

{gnlnen = {B(T*B)T e} .

where B is any bounded operator with R(B) = M. From the point of view of sampling
theory, the operator B can be interpreted as the synthesis operator associated to the frame
used to sample the signals.
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In this work, we are interested in duals frames which lead to reconstruction coefficients
that have minimal norm, but with respect to some weighted norms. Recall that weighted
norms in ¢2 arise from inner products obtained by perturbing the original one with in-
vertible positive operators which are diagonal in the canonical basis. In Section 4 we give
explicit formulae for dual frames which minimize a given weighted norm, and we prove
that in the case of Riesz frames, if the sampling frame is fixed, then the norms of the syn-
thesis operators corresponding to the dual frames which minimize the different weighted
norms are uniformly bounded from above.

We thank Ole Christensen for his useful comments.

2. Preliminaries

Let 'H be a separable Hilbert space and L(H) the algebra of bounded linear operators
on H. GI(H) denotes the group of invertible operators in L(7{), and G/(H)T the set of pos-
itive definite invertible operators on 7. For an operator A € L(H), R(A) denotes the range
of A, N(A) the nullspace of A, o (A) the spectrum of A, A* the adjoint of A, p(A) the
spectral radius of A and || A || the operator norm of A; if R(A) is closed, AT is the Moore—
Penrose pseudoinverse of A. We use the fact that A is an isometry (respectively coisometry)
if A*A =1 (respectively AA* = I). Given a closed subspace M of H, P denotes the
orthogonal (i.e., selfadjoint) projection onto M. If B € L(H) satisfies PayB Paq = B, we
consider the compression of B to M (i.e., the restriction of B to M, which is an operator
on M), and we say that we consider B as acting on M. Given a subspace M of H, its unit
ball is denoted by M1, and its closure by M or cl(M). If N is another subspace of H, we
denote M O N := M NNL. If MNN = {0}, we denote by M + A the (direct) sum of
the two subspaces. If the sum is orthogonal, we write M @ A. The distance between two
subsets M and A of H is d(M, N) =inf{||x — y||: x e M, y e N}.

2.1. Angle between closed subspaces

We shall recall the definition of angle between closed subspaces of 7. We refer the
reader to the nice survey of Deutsch [15] and the books by Kato [19] and Havin and Jéricke
[18] for details and proofs.

Definition 2.1. Given two closed subspaces M and AV, let N =N © (M NA) and M =

M (MNN). The angle between M and A is the angle in [0, 77 /2] whose cosine is
c[M,N1=sup]|(x,y)|: x e M, y e N and ||x|| = | y| = 1}.

The sine of this angle is denoted by s[M, A].

Now, we state some known results concerning angles and closed range operators (see

[15D).

Proposition 2.2. Let M and N be two closed subspaces of H. Then
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(D) M, N]=c[N, M]=c[M, N]=c[M,N].

(2) cIM, N1 < 1ifand only if M+ N is closed.

(3) M, N]1=c[M+ N

@) [IM NT= PPyl = 1P PA I = 1 PAa PN Porvaenyt | = IPM PN — Pracw |-
Proposition 2.3 (Bouldin [2]; see also [15]). Let A, B € L(H) such that R(A) and R(B)
are closed. Then, AB has closed range if and only if c[R(B), N(A)] < 1.

Proposition 2.4 (Kayalar and Weinert [20]; see also [15]). Let P and Q be two orthogonal
projections defined on 'H. Then,

| (PO = P A Q| =c[R(P), R(Q)
where P A Q is the orthogonal projection onto R(P) N R(Q).

]Zk—l’

Finally, we give a characterization of s[M, A/ in terms of distances.
Proposition 2.5. Let M and N be to closed subspaces of H. Denote N=NeMnAN)
and M = M MnNN). Then,
SIM, N1 =d(My, N) = dNG, M),
Proof. By Proposition 2.2, we can suppose that M N A = {0}, ie., M = M. By the

definition of the sine and Proposition 2.2, s[M, N1 = 1 — || Pa4 Po/||?. On the other hand,
as d(x, N) = || Ppr1x|| for every x € H, we have that

dMy, N2 =inf{ || Pyrix|®: x € My} =inf{1 — || Parx||*: x € My}
=1 —sup{l| Pxvx||*: x e My} =1~ | P Paql®
=1-|PuPyI>. O

2.2. The reduced minimum modulus

Definition 2.6. The reduced minimum modulus y (T) of an operator T € L(H) is defined
by

y(I)=inf{|Tx|: x| =1, x e N(T)*}. @)
It is well known that y (T) = y (T*) = y (T*T)'/2. Also, it can be shown that an operator
T has closed range if and only if y (T') > 0. In this case, y(T) = || 77|~

The following result is an easy consequence of Eq. (2).

Lemma 2.7. Let B € L(H) with B invertible. Then,
IB=HI™ 'y (T) < y(BT) < | Blly (D).

Moreover, the same formula follows, replacing |B~1||~! by y(B), if R(B) is closed and
R(TYC N(B)Y*.
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Lemma 2.8. Let T € L(H) be a partial isometry (i.e., TT* is a projection), M a closed
subspace of ' H and Paq the orthogonal projection onto M. Then
y (T Prg) = s[N(T), M].
Proof. Denote A" = N(T) and R = A+, Since T acts isometrically on R, it is clear by
Eq. (2) that
y(TPp) =y (T PRPp) =y (PRPM).

Since N(PrPpg) = ML @ (M NN, it follows that N(Pr Prot = M N (M NN
= M. Then, by Proposition 2.5,

y(PRPr) = inf |[Prx| = inf d(x, N)=dM;,N)=s[N,M]. O
xeMj xeM;

The next result was proved in [1]. We include a short proof for the sake of completeness.

Proposition 2.9. If T € L(H) has closed range and M is a closed subspace of H such that
c[N(T), M] < 1 (so that T Pyq has closed range), then

y (D)s[N(T), M] <y (T Pag) < ITIIs[N(T), M]. 3)
Proof. Take B = |T*| = (T T*)!/2. Tt is well known that R(B) = R(T') which is closed by
hypothesis. It is casy to see that y (T') = y(B) and || B|| = || T||. Also, BTT is a coisometry,
with the same nullspace as 7'. So, by Lemma 2.8, y (BTTPM) =s[N(T), M]. Now, using

Lemma 2.7 for B and BT Py, and the fact that BBTT Ppyq = PrryT Ppq = T Py, we
get

y(D)s[N(T), M] < y (T Prp) < ITIIs[N(T), M],

because R(B) = R(BT), so that RGBT T Pyy) CR(B)=N(B)-. O

Remark 2.10. With the same ideas, the following formulae generalizing Lemma 2.8 and
Proposition 2.9, can be proved.

(1) Let U, V € L(H) be partial isometries. Then, y (UV) =s[NU), R(V)].
(2) If A, B € L('H) have closed ranges, then

v (Ay (B)s[N(A), R(B)] <y(AB) <||A|IBIIs[N(A), R(B)].

Note that the first inequality implies Proposition 2.3.

In particular, this gives the following formula for the sine of an angle: given M and N\ two
closed subspaces of ‘H, it holds

SN, M) =y (Ppr1 Pag).
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2.3. Frames

We introduce some basic facts about frames in Hilbert spaces. For complete descriptions
of frame theory and applications, the reader is referred to the survey by Heil and Walnut
[17] or the books by Young [25] and Christensen [10].

Definition 2.11. Let H be a separable Hilbert space, and F = { f,,}neN a sequence in H.

(1) F is called a firame if there exist numbers A, B > 0 such that, for every f e H,
2
AIFIP < ml” < BILAIE. )

neN

(2) The optimal constants A, B for Eq. (4) are called the frame bounds for F.

(3) The frame F is called tight if A = B, and Parseval if A=B =1.

(4) Associated with F there exist an operator T : £2 — H such that T(e,) = f,. where
{en}nen denotes the canonical basis of £2. This operator is called the synthesis operator
of F. For finite frames we assume that the domain of the synthesis operator is C™”,
where m is the number of vectors of the frame.

Remark 2.12, Let F = {f,},en be a frame in H and T its synthesis operator.

(1) The frame bounds of F can be computed in terms of the synthesis operator
A=y(T)® and B=|T|* 5

(2) The adjoint T* € L(H, £?) of T, is given by T*(x) = D oneniX, fuYen, x € H. It is
called the analysis operator for F.
(3) The operator S = TT* is usually called frame operator and it is easy to see that

Sf=Y {f fa)far feH. ©6)

neN

It follows from (4) that A.] < S < B.I, so that S € GI(H)*. Moreover, the optimal
constants A, B for Eq. (4) are

B=|SI=p() and A=y =S =min{r: 1 €0 (5)}.
Finally, from (6) we get
F=Y (LS VfeH.

neN

(4) The numbers {(f, S~ £,)} are called the frame coefficients of f. They have the fol-
lowing optimal property: if f =", cn fu. for a sequence (c,)uen. then

SNAST <Y el
neN neN

The frame {S™! f,},en is called canonical dual frame. We shall return to dual frames
in Section 4.
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3. Riesz frames and conditional Riesz frames

It was remarked by Christensen [10, p. 65], that given a frame F = { f;,},<N, in practice
it can be difficult to use the frame decomposition f =Y _(f, S~! f,,) f,, because it requires
the calculation of S~ or, at least, the frame coefficients (£, S~! f;,). In order to get some
of the advantages of Riesz bases, Christensen introduced in [7] the projection method,
approximating S and S~! by finite rank operators, acting on certain finite dimensional
spaces H, approaching H. Later on, Christensen [9] introduced two special classes of
frames, namely Riesz frames and conditional Riesz frames, which are well adapted to some
of these problems (see also [3-5]).

We need to fix some notations: Let B = {¢,},.cn be the canonical orthonormal basis of
f2and I CN.

(1) Wedenote M; = Span{e,: n € I} and P; = P4, , the orthogonal projection onto M.
Q) IfI1=1,:={1,2,...,n}, we put M,, for Mj.

(3) Given AV a closed subspace of £2, we denote N, = N N M, n e N.

@) If F = {f,}nen is aframe for H, we denote by F7 = { fi,}ner.

(5) We say that F7 is a frame sequence if it is a frame for Span{F7}.

(6) Fy is called a subframe of F if it is itself a frame for H.

Recall the definitions of Riesz frames and conditional Riesz frames.

Definition 3.1. A frame F = {f,},ex is called a Riesz frame if there exists A, B > 0
such that, for every I C N, the subfamily F7 is a frame sequence with bounds A, B (not
necessarily optimal).

The sequence F is called a conditional Riesz frame if there are common bounds for the
frame sequences F7,. where {I,,}, ; is a sequence of finite subsets of N such that /,, € 1,11
forevery n e Nand | J, . In =N.

Remark 3.2. Let F be a frame, and T its synthesis operator. Given I € N, then Fy is
a frame sequence if and only if R(T Pr) is closed, and F7 is a subframe if and only
ifR(T Py) = H. Inboth cases the frame bounds for F; are A = y (T P7)? and B = ||T Py ||2.
Using these facts we get an equivalent definition of Riesz frames: F is a Riesz frame if
there exists ¢ > 0 such that y (T Py) > ¢ forevery I € N.

Proposition 2.9 can be used to characterize Riesz frames in terms of the angles between
the nullspace of the synthesis operator T’ and the closed subspaces of £2 which are spanned
by subsets of B.

Proposition 3.3. Let F = { fy}nen be a frame, and T be its synthesis operator. Let N' =
N(T). Then F is a Riesz frame if and only if

c=sup c[N, M] < 1. @)
ICN
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Proof. By Proposition 2.3, T P; has closed range iff ¢c[A, M;] < 1. By Proposition 2.9,
y (T Pr) has an uniform lower bound if and only ifthere exists a constant ¢ < 1 such that,
forevery I CN, c[N, M;1<c. O

Remark 3.4. Let V be a closed subspace of £2 and B = {e,},en be the canonical ortho-
normal basis of £2. If Eq. (7) holds, following the terminology of [1], we say that A is
B-compatible.

In the following proposition, we state a characterization of B-compatible subspaces
of H, proved in [1].

Proposition 3.5. Let N be a closed subspace of £* and let B = {e}}ren be the canonical
orthonormal basis ofﬁz. For n e N, denote by ¢, = Sup;c, ¢ Ny, M ). Then the follow-
ing conditions are equivalent:

(1) N is B-compatible.

(2) c=sup,encN, M,] <1, and sup,.ry ¢ < L.

(3) clU,exNo) =N and sup,, . cn < 1.

(4) There exists a constant ¢ < 1 such that c[N, H;] < ¢ for every finite subset I of N
with N'0 M = {0}.

Proposition 3.5 can be “translated” to frame language to get a characterization of Riesz
frames, similar to the one obtained by Christensen and Lindner in [13]:

Theorem 3.6. Let F = {fulneN be a frame and T its synthesis operator. Denote N =
N(T). Then the following conditions are equivalent:

(1) F is a Riesz frame.

(2) N is B-compatible.

(3) There exists an uniform lower frame bound for every finite linearly independent frame
sequence Fy, J CN.

(4) There exists d > 0 such that y(T Py) > d, for every J € N finite such that N N M
= {0}.

Proof. If I is a finite subset of N then M; N A = {0} if and only if F; is linearly inde-
pendent. Then, conditions (3) and (4) are equivalent. By Propositions 2.9 and 3.5, they are
also equivalent to the B-compatibility of A/

Suppose that there exists a constant ¢ such that 0 < d < y (T Ppy,) for every finite
subset I € N such that M; N A = {0}. This is equivalent to saying that there is a constant
¢ < 1 such that ¢[A, M;] < ¢ for such kind of sets /. Using Propositions 3.3 and 3.5, we
conclude that F is a Riesz frame. The converse is clear. 0O

Now, we consider conditional Riesz frames. First of all, we state a result for this class of
frames which is similar to Proposition 3.3, and whose proof follows essentially the same
lines.
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Proposition 3.7. Let F = { f,}nex and N the nullspace of its synthesis operator. Then F
is a conditional Riesz frame if and only ifthere exists a sequence {I,} of finite subsets of N
such that I, C I41,

UL=N and c=supclN. My]<1, neN. ®)

neN neN

As a corollary of this proposition we get the following result.

Proposition 3.8. Let F be a conditional Riesz frame, and T its synthesis operator for F.
Denote N'= N(T). Then

c1<UN,,) =N. )
n=1

In order to prove this proposition, we need the following technical lemma.

Lemma 3.9. Let N be a closed subspace of {2, a constant ¢ < 1 and a sequence {I,,} of
finite subsets of N such that I, < I,41, UneN In =Nand c[N, M 1< c foreveryn e N.
Then

cl<UJ\/’ﬂM1n)=J\/'.

neN

Proof. Denote Q, = P;,, n € N. The assertion of the lemma is equivalent to

SOT
Py AQn / Pu.

n—oQ

Let x € £% be a unit vector and let £ > 0. Let k € N such that ¢%~!

tion 2.4, for every n > 1 it holds that

[(Pv @)t = Py A Qu] <5

< &/2. By Proposi-

On the other hand, since Q, Py S—OT> Py and the function f(x) = x* is SOT-continuous
n—>o0

on bounded sets (see, for example, 2.3.2 of [24]), there exists ng > 1 such that, for every
n 2z ny,

IleQnPn* — Pxe] < 5.
Then, for every n > ny,
| Py = Par A Q)|
<[Py = (P @) Jx | + (PN Q) = Pv A Qu)x| <6 O
Proof of Proposition 3.8. Since F is a conditional Riesz frame, there exist ¢ < 1 and a

sequence {I,} of finite subsets of N such that I, € I,11. J,en In = N and [N, My, ]
< ¢, for every n € N. By Lemma 3.9, | J,,cn NV N My, is dense in AV. Finally, for every
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n € N, there exists m € N such that [, C I, ={1,2,...,m}. Thus, | J,.xN N M,
UmeNNm' d

As a consequence of Proposition 3.8 we obtain the following corollaries.

Corollary 3.10. Let F be a conditional Riesz frame with synthesis operator T and suppose
that dim N(T') < oco. Then F is a Riesz frame. Moreover, there exists m € N such that
N(T) € My,

Proof. Denote by N' = N(T). By Proposition 3.8, N satisfies Eq. (9). Since dimA
< o0, then there exists m € N such that N'= N(T) € M,,. Thus, in the terminology
of Proposition 3.5, if ¢, =sup;y, c[Ny, M1, then ¢, = ¢, for every n > m. Therefore,
by Proposition 3.5, F is a Riesz frame. O

Corollary 3.11. Let F = { f,} nen be a conditional Riesz frame. Given n € N, denote by S,
the frame operator of { fi};_, and let A, be the minimum of the lower frame bounds of all
Jframe subsequences of{Sn_l/sz}Z:l. If inf, A, > 0, then F is a Riesz frame.

Proof. Let T be the synthesis operator of F and N'= N(T). Foreach n € N, denote F, =
{fidi_,. Bu=1{e1,...,es) and P, = Pp4,. Note that T P, : M,, — §pan{ fi: k=1,...,n}
can be considered, modulo an unitary operator, as the synthesis operator of ;. In this way,
it holds that S, = T P, T*. Also note that {S,, 1/2 fi}i_, is a Parseval frame, and N (T P,) =
NS2TP) =N N M, =N,. So, by Lemma 2.8, if J C {1, ..., n}, the lower frame
bound Ay of {Sn_l/sz}ke] satisfies Ay = 1 — ¢[N,,, M ]1%. Using Propositions 3.8 and
3.5, the corollary follows. 0O

3.1. A counterexample

The nullspace N of the synthesis operator of a conditional Riesz frame has the property
of “density”: cl(|J;? IJ\/' ) =N, where A, is N' N M,,. In the following example we
show that the converse is not true, i.c., we construct a frame which is not a conditional
Riesz frame such that its synthesis nullspace A satisfies cl(| ;2 ; V) =N

We shall prove the assertion in an indirect way, by using Proposition 3.7 and the follow-
ing fact: if \V'is a closed subspace of £2 such that dim A/+ = oc, then there exists a frame
F with synthesis operator 7' such that A" = N(T).

Example 3.12. Givenr > 1, if B = {e,},n denotes the canonical basis of £2, let us define
the following orthogonal system:

1 1 1 1
x1—61—762+—63+ 64+ 65+

1 1 1 1
Xz—es—res-i- €7+ €8+ €9+ 3 €10
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1 1
Xp = €4n—3 —Fean—2 + r4n—_364n—1 + ) e4n + ) €4n+1+ m&ln—i—z-

Let V be the closed subspace generated by {x,}nen. By construction, cl(| ;2 Vy) =N
Moreover {eq,_1 — res,: n € N} ¢ N+, so dimA+ = oo. By the remarks above, there
exists a frame F such that the nullspace of its synthesis operator is A. We claim that this
frame is not a conditional Riesz frame. By Proposition 3.7, it suffices to verify that for

every sequence J1 S L C 3 C--- CJ, /N, it holds that c[N, M]k]k—> 1. Hence, fix
— 00

such a sequence {Ji}ren and take 0 < & < 1.
Since [|x,||? <1472+ 4/r% 6 for every n € N, there exists n9 € N such that

1 2
l—¢< +—r2 Yn = ny.
(Bl
Note that, for y € N and i € N, if M; = span{eq;_3, e4;_2}, then
¥x)=0 & Pruy=0, (10)

because Ppq,x; # 0 if and only if j =i. Let k € N be such that
j=max{i e N: Pps, (NN M) #0} > n.
By Eq. (10), x4 € (NN M, )t forevery h > j. Inparticular, x;4+1 € N'© (M N M ,) and

l—¢<

1472 | Py %4117 Xj+1  Prxin
> < < :
41l fl2j41 1 il IPpxjsll

><C[N,M]k].

A similar argument shows that 1 — ¢ < [N, M, 1, for every m > k. This implies that
liminf,—, o [N, Mj,1> 1 — ¢. Finally, as ¢ is arbitrary, we get c[V, M]k]k—> 1.
— 00

4, Weighted dual frames

Let F = {fulnen be a fixed frame for a closed subspace W of ‘H and let M C H be
another closed subspace such that H = W 4 M=, As we have mentioned in the introduc-
tion, an oblique dual frame of F in M is a frame G = {g, },en for M such that for every
f € W it holds that

f=Y (fignfa V[EW. (1)

n=1

Such a dual frame has the minimal norm property if for every f € W the coefficients
{{f, gn)}nen have minimal #2 norm. Christensen and Eldar proved in [12] that the duals
frames with the minimal norm property have the form

{gnlnen = {B(T*B)e,} . (12)

where {e,},en denote the canonical orthonormal basis of £2, and B is a bounded operator
with R(B) = M.
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On the other hand, let D(£2) be the set of all D € GI(¢£2)* which are diagonal in the
canonical basis {e,},en. Each D € D(¢?) defines an inner product (-, -)p by means of

(x, )p=(Dx,y), x,yet’

This inner product induces a weighted norm || - || p which is equivalent to the original one.
In this section, we are interested in dual frames such that their coefficients in the recon-
struction formula (11) minimize different weighted norms. We shall give explicit formulae
for this class of dual frames that we call weighted dual frames. We also consider the par-
ticular case of weighted dual frames associated to a Riesz frame.
First of all, let us recall some preliminary facts on generalized inverses.

Definition 4.1. Given two Hilbert spaces H and K, let A € L(H, K) be an operator with
closed range. We say that B € L(XC, 'H) is a generalized inverse of A if ABA = A and
BAB =B.

Remarks 4.2, Let A € L(H, K) with closed range, and let B € L(KC, H) be a generalized
inverse of A. Then

(1) Both AB and B A are oblique projections, i.c., idempotent operators.

(2) R(B) is also closed.

(3) The idempotent AB and B A induce decompositions of the Hilbert spaces H and X:
H=N(A)+R(B)and K = R(A)+ N(B).

4) If (AB)* = AB and (BA)* = BA, then B is called the Moore—Penrose generalized
inverse for A. It is usually denoted by A”. Inthis case, AAT is the orthogonal projection
onto R(A) and AT A is the orthogonal projection onto N (A)*.

Among the generalized inverses of an operator A € L(£2, H), the following ones will
be particularly important for us. In order to clarify the next statement, given a subspace 7
of £2 and D e D(f?), the orthogonal complement of 7 with respect to the inner product
{-,-)p will be denoted by 712

Lemma 4.3. Let A € L(#2, H) be an operator with closed range, and D € D(£%). Then, the
operator X p(A) = D V2ZAD VT isa generalized inverse of A such that X p(A)A is
the orthogonal projection with respect to the weighted inner product (-, -)p onto N (A)1P.
Proof. Since R(ADY2) = R(A) it follows that

AX p(A)A= PpeapinyA = A.
On the other hand,

X p(AAX p(A) =D V2AD VYT ADV2(AD™VHT = p=12(AD~V/2)T

= XD(A)-

Finally, some easy computation shows that an oblique projection Q is D-orthogonal if and
only if D Q is selfadjoint. In our case
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D(X p(A)A) = DV2(ADTYHT A= DV2(D7124*(ADT AM)T) A
= A*(AD7 1AM A,

which is clearly selfadjoint. Therefore, X ,(A)A is a D-orthogonal projection and clearly
N(x p(A)A)=N(A). D

Now, we are ready to give the explicit form of weighted dual frames.

Proposition 4.4. Let F = {f,,}nen be a fixed frame for a closed subspace W of H, T its
synthesis operator and let M be another closed subspace of H such that H =W 4+ M*.
Then, given D € D(£?), the oblique dual frames such that for every f € W their coefficient
in the reconstruction formula minimize the weighted norm || - || p have the form

G = {gntnen = {B(D™V2T*B) D72, ) .

where {e,}neN denotes the canonical orthonormal basis of 2 and B € L%, H) is any
operator with R(B) = M

Proof. Fix B € L(#%,'H) with range M and let 7 = B(D~Y2T*B)t D=1/2_ First of all,
note that N(D~V2T*B) = N(B). So, R(T) = R(B) = M and therefore G is a frame.

In order to prove that G is an oblique dual frame it is enough to prove that TT* is
an oblique projection onto W. Actually, TT* is the projection onto W parallel to M.
Indeed, on one hand

(T]AW*)Z — (TD—I/Z(B*TD—I/Z)TB*)Z
=D VA((B* TD VA B TD V(B TDVH ) B
=T(D7V2B*TD VI BY) = (TT"),

which shows that 7'7* is a projection. On the other hand, since N (D~Y/2(B*T D~1/2)t p*)
= M=+ and R(D~YV2(B*TD~Y2)T B*) = N(T)L, it holds that T'T* is the projection onto
W with nullspace M.

Finally, in order to prove that the reconstruction coefficients minimize the weighted
norm | - |[p we have to prove that R(T*) € N(T)‘P. But, using the notation of
Lemma 4.3, we get T*T = X p(B*T)B*T and, therefore, using the same lemma, R(T*) =
N(B*T )LD =N(T)*>. O

As we have already mentioned in the previous section, { £}, is a Riesz frames if and
only if N(T') is compatible with the canonical base (see Remark 3.4). If Pp_ denote the
(unique) orthogonal projection onto the closed subspace A of £2 with respect to the inner
product {-, -) p, it was proved in [1] that A/ is compatible if and only if

sup || Ppwll < oo.
DeD(¢?)

As a consequence of this result we obtain the following
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Theorem 4.5. Let F = { f,,}en be a frame for a closed subspace W of 'H, T its synthesis
operator, M another closed subspace of H such that H =W+ ML and G = {gy}nexn a
fixed (sampling) frame for M with synthesis operator B. Then, the following conditions
are equivalent:

(1) F is a Riesz frame on W.
(2) The oblique dual frames of T with respect to B that minimize the different weighted
norms are bounded from above. In other words

sup |B(D™VAr*B)IDT?|| < occ.
DeD(£?)

Proof. Fix D € D(¢%). We have already proved in Lemma 4.3 that
(B(D—l/zT*B)TD—l/z)*T _ 7BV BY D2 = TR By (T*B)
=1-Ppnr).
Hence
||B(D—1/2T*B)TD—1/2|| <|IB| ” (D_I/ZT*B)TD—I/ZH
= || B|l|(T*B) (T*BYD™V2T*B) D72
<|IBI|a*B)t||(T* By DT B) D1
— 181 B |1 - Ph i

’

and
11— Pp el = |T*BD~Y2T*BY D72 | < | 7| | B~V T*B) D712
Therefore
sup BTV BYIDTV| <0 & sup [1- Ppyl < oo,
DeD(¢?) DeD((?)

which proves the proposition. 0O
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