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Abstract

In this paper we give new characterizations of Riesz and conditional Riesz frames in terms of the 
properties of the nullspace of their synthesis operators. On the other hand, we also study the oblique 
dual frames whose coefficients in the reconstruction formula minimize different weighted norms. 
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1. Introduction

Frames were introduced by Duffin and Schaeffer [16] in the context of nonharmonic 
Fourier series, and they have been intensively applied in wavelet and frequency analysis 
theories since the work of Daubechies et al. [14], Today, frame-like expansions are fun­
damental in a wide range of disciplines (see. for example. [16,17] or [25]), including the 
analysis and design of oversampled filter banks and error corrections codes.
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A frame is a redundant set of vectors in a Hilbert space that leads to expansions of 
vectors (signals) in terms of the frame elements. More precisely, a sequence of vectors 
A = in a (separable) Hilbert space H is a frame (for 7f) if there exist numbers
A, B > 0 such that, for every f e H,

AWfwM^MMMswfw2. (i)

Associated with each frame there exists an operator T: £2 -> H defined by T(en) = fn, 
where B = {en}„SN denotes the canonical basis of £2; T is called the synthesis operator 
of A.

The results of this paper can be divided in two parts. The main results of the first part are 
devoted to the study of Riesz frames and conditional Riesz frames through the structure 
and geometric properties of the nullspace of their synthesis operators. Riesz and condi­
tional Riesz frames were introduced by Christensen in [9] (see definitions in Section 3). 
These frames are important because they behave well with respect to the projection method. 
In general, frame theory describes how to choose the corresponding coefficients to expand 
a given vector in terms of the frame vectors. However, in applications, to obtain these co­
efficient requires the inversion of an operator on H. The projection method was introduced 
by Christensen in [7] to avoid this problem. We refer the interested reader to [6], [7], [8], 
[9] or [10] for more information about the projection method. In [1] we found a charac­
terization of Riesz frames by studying the nullspace of the synthesis operator. Namely, if 
the nullspace N(T) has a certain geometric property of compatibility with the closed sub­
spaces spanned by subsets of B, then T is a Riesz frame, and conversely. In Section 3, we 
extend these results for conditional Riesz frames and give some new characterizations in 
terms of angles.

Throughout the second part of this work we study the so-called oblique dual frames. 
Let {fn }„sjsj be a frame for the closed subspace W c H, and let M c H be another closed 
subspace such that H = W 4- (+ means a nonnecessarily orthogonal direct sum). The
sequence [gn}nSN in M is an oblique dual frame of {/„}nSN (see Li [21] or Li and Ogawa 
[22,23]) if

oo
f = YM^fn VfeW.

n=\

Among the oblique dual frames, there exists a particular class with the minimal norm 
property. Recall that a dual frame {gn }„sjhas the minimal norm property if the coefficients 
{(/, that appear in the reconstruction formula have minimal £2 norm.

If B = [en}„SN denotes the canonical orthonormal basis for £2 and T is the synthesis 
operator of {/„}nSN, then Christensen and Eldar [11] proved that the minimal norm oblique 
dual frames have the form

fe„}„SN = {B(T*R)te„}nsN,

where B is any bounded operator with R(B) = M. From the point of view of sampling 
theory, the operator B can be interpreted as the synthesis operator associated to the frame 
used to sample the signals.
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In this work, we are interested in duals frames which lead to reconstruction coefficients 
that have minimal norm, but with respect to some weighted norms. Recall that weighted 
norms in r2 arise from inner products obtained by perturbing the original one with in­
vertible positive operators which are diagonal in the canonical basis. In Section 4 we give 
explicit formulae for dual frames which minimize a given weighted norm, and we prove 
that in the case of Riesz frames, if the sampling frame is fixed, then the norms of the syn­
thesis operators corresponding to the dual frames which minimize the different weighted 
norms are uniformly bounded from above.

We thank Ole Christensen for his useful comments.

2. Preliminaries

Let H be a separable Hilbert space and L(TL) the algebra of bounded linear operators 
on H. Gl(H) denotes the group of invertible operators in L(74), and G/(7f)+ the set of pos­
itive definite invertible operators on 74. For an operator A e L(H), R(A) denotes the range 
of A, N(A) the nullspace of A, a (A) the spectrum of A, A* the adjoint of A, p(A) the 
spectral radius of A and || A || the operator norm of A; if R(A) is closed, A^ is the Moore- 
Penrose pseudoinverse of A. We use the fact that A is an isometry (respectively coisometry) 
if A* A = I (respectively A A* = I). Given a closed subspace A4 of H, P\a denotes the 
orthogonal (i.e., selfadjoint) projection onto A4. If B e L(H) satisfies PjvyBPj^ = B, we 
consider the compression of B to A4 (i.e., the restriction of B to A4, which is an operator 
on A4), and we say that we consider B as acting on A4. Given a subspace A4 of H, its unit 
ball is denoted by A4i, and its closure by A4 or cl(A4). If Af is another subspace of H, we 
denote A4 G Af := A4 n AM If A4 n Af = {0}, we denote by A4 -¡-AC the (direct) sum of 
the two subspaces. If the sum is orthogonal, we write A4 ® AC The distance between two 
subsets A4 and At of H is d(A4, Af) = inf{ ||x - y||: x e A4, y e A/}.

2.1. Angle between closed subspaces

We shall recall the definition of angle between closed subspaces of H. We refer the 
reader to the nice survey of Deutsch [15] and the books by Kato [19] and Havin and Joricke 
[18] for details and proofs.

Definition 2.1. Given two closed subspaces A4 and Af, let Af = Af G (A4 n Af) and A4 = 
A4 G (A4 n Af ). The angle between A4 and Af is the angle in [0, tt/2] whose cosine is

c[A4, AC] = sup{|(x, y)|: x e A4, y eÂfand ||x|| = ||y|| = 1}.

The sine of this angle is denoted by 5 [A4, A/].

Now, we state some known results concerning angles and closed range operators (see 
[15]).

Proposition 2.2. Let A4 and Af be two closed subspaces ofTl. Then
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(1) c[A4,Af] = c[Af, M\ = c[M,AÎ} = c[M,ÀÎ}.
(2) c[A4,Af] < 1 if and only if A4 + N is closed.
(3) c[A4,A/"] = cfAf2-,A/"-1].
(4) c[A4, A'| = ||PmP^|| = ||PMPjy|| = \\PmPnP(.MîmM\ = HPMM ~ fy/inAll-

Proposition 2.3 (Bouldin [2]; see also [15]). Let A, B e L(TL) such that P(A) and R(B) 
are closed. Then, AB has closed range if and only if c[R(B), TV (A)] < 1.

Proposition 2.4 (Kayalar and Weinert [20]; see also [15]). Let P and Q be two orthogonal 
projections defined on TL. Then,

|| (PQ)k - Pa g|| = c[P(P), R(Q)]2k~\

where P A Q is the orthogonal projection onto R(P) A R(Q).

Finally, we give a characterization of .v| A4. Af] in terms of distances.

Proposition 2.5. Let A4 and Af be to closed subspaces ofTL. Denote Af = AiQ (A4 A Af) 
and A4 = A4 © (A4 A Af). Then,

s[A4, Af] = d(A4i, Af) = d(M, A4).

Proof. By Proposition 2.2, we can suppose that A4 A Af = [0], i.e., A4 = A4. By the 
definition of the sine and Proposition 2.2, a[A4, A/"]2 = 1 - ||Pa4-Pa/'II2- On the other hand, 
as d(x, Af) = || P\' x || for every x e 74, we have that

d(A4i,A/’)2 = inf{||PjV-±x||2: x e A4i} = inf{l - ||Pyx||2: x e A4i}

= 1 - sup{||PatxII2: x e A4i} = 1 - \\PjyPM\\2

= 1-11 Pm ^vll2- □

2.2. The reduced minimum modulus

Definition 2.6. The reduced minimum modulus y(T) of an operator T e L(TL) is defined 
by

y(P) = inf{||Px||: ||x|| = 1, x e N(Tp}- (2)

It is well known that y(T) = y(T*) = y(T*T)1^2. Also, it can be shown that an operator 
T has closed range if and only if y (T) > 0. In this case, y (T) = || pl ||_1.

The following result is an easy consequence of Eq. (2).

Lemma 2.7. Let B e L(TL) with B invertible. Then,

IIP-VMDCHPPK \\B\\y(T).

Moreover, the same formula follows, replacing || B ~11|_1 by y(B'), if R(B) is closed and 
R(T)<ZN(B)r.
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Lemma 2.8. Let T e 7.(74) be a partial isometry (i.e., TT* is a projection), M a closed 
subspace ofH and Pm the orthogonal projection onto M. Then

y{TPM) = s[N{T),M].

Proof. Denote Af = N(T) and 7£ = N2-. Since T acts isometrically on 7?., it is clear by 
Eq. (2) that

YÎTPm) = ytTP-j^Py^) = yd>Rl’w.

Since N(PrPm) = ® (-^4 n M, it follows that N(P-R,PyM = M n (A4 A A4X
= At. Then, by Proposition 2.5,

Y(PtiPm)= inf I|7\aII = inf d(x,AO = d(A4bA) = s[A0A4]. □
xëAti xëAti

The next result was proved in [1], We include a short proof for the sake of completeness.

Proposition 2.9. IfT e 7.(74) has closed range and M is a closed subspace ofTL such that 
c[N(T),M\ < 1 (so that T I’m has closed range), then

y(T)s[N(T), M] < y(TPM) < l|7>[A(T), A4]. (3)

Proof. Take B = \T*\ = (TT*)1/2. It is well known that R(B) = R(T) which is closed by 
hypothesis. It is easy to see that y (T) = y(B) and || B || = || T ||. Also, B' T is a coisometry, 
with the same nullspace as T. So, by Lemma 2.8, y(B^T Pm) = s[N(T), A4]. Now, using 
Lemma 2.7 for B and B^TPyy and the fact that BB^TPyy = Pr(t)TPm = TPm, we 
get

y(T)s[N(T), M] < y(TPM) < ||7>[A(T), M],

because R(B) = R(B^), so that R(B^T PM) Ç R(B) = N(B)A □

Remark 2.10. With the same ideas, the following formulae generalizing Lemma 2.8 and 
Proposition 2.9, can be proved.

(1) Let U,V e L(TL) be partial isometries. Then, y(UV) = s[N(U), 7?(V)].
(2) If A, B e L(H) have closed ranges, then

y(A)y(B)s[N(A), 77(B)] < y (AB) < ||A|| || B || s [7V(A), 77(B)],

Note that the first inequality implies Proposition 2.3.

In particular, this gives the following formula for the sine of an angle: given A4 and AT" two 
closed subspaces of 74, it holds

î[AT,.M] = )/(Pv±Pm).
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2.3. Frames

We introduce some basic facts about frames in Hilbert spaces. For complete descriptions 
of frame theory and applications, the reader is referred to the survey by Heil and Walnut 
[17] or the books by Young [25] and Christensen [10],

Definition 2.11. Let H be a separable Hilbert space, and F = {/„}nSN a sequence in H.

(1) F is called a frame if there exist numbers A, B > 0 such that, for every f e H,

(4)

(2) The optimal constants A, B for Eq. (4) are called the frame bounds for F.
(3) The frame F is called tight if A = B, and Parseval if A = B = 1.
(4) Associated with F there exist an operator T :f2 H such that T (en) = fn, where 

[e„ }„SN denotes the canonical basis off2. This operator is called the synthesis operator 
of F. For finite frames we assume that the domain of the synthesis operator is Cm, 
where m is the number of vectors of the frame.

Remark 2.12. Let F = {/„}nSN be a frame in H and T its synthesis operator.

(1) The frame bounds of F can be computed in terms of the synthesis operator

A = y(T)2 and B = ||T||2. (5)

(2) The adjoint T* e L(H, £2) of T, is given by T*(x) = J2„sN(x, fn)en, x e H. It is 
called the analysis operator for F.

(3) The operator S = TT* is usually called frame operator and it is easy to see that

= fn)fn, fFH. (6)

It follows from (4) that A.I f S f B.I, so that S e G/(7f)+. Moreover, the optimal 
constants A, B for Eq. (4) are

B = ||S|| = p(S) and A = y(S) = ||S_11|_1 = min{X: A e cr(S)}.

Finally, from (6) we get

f = ^{f,S~1fn)fn yfeH.

(4) The numbers {(/, are called the frame coefficients of f. They have the fol­
lowing optimal property: if / = cnfn, for a sequence (c„)hsn, then

El</’ 5_1/«>l2 < E ic«i2-
The frame ! W /„ }„<: is called canonical dual frame. We shall return to dual frames 
in Section 4.
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3. Riesz frames and conditional Riesz frames

It was remarked by Christensen [10, p. 65], that given a frame J" = {fn}„sn, in practice 
it can be difficult to use the frame decomposition f = ^f{f, S_1 fn)fn because it requires 
the calculation of S_1 or, at least, the frame coefficients (/, S_1 /„). In order to get some 
of the advantages of Riesz bases, Christensen introduced in [7] the projection method, 
approximating S and S_1 by finite rank operators, acting on certain finite dimensional 
spaces Hn approaching H. Later on, Christensen [9] introduced two special classes of 
frames, namely Riesz frames and conditional Riesz frames, which are well adapted to some 
of these problems (see also [3-5]).

We need to fix some notations: Let B = [e„}„sjbe the canonical orthonormal basis of 
£2 and I ç N.

c = sup c[M, Mi] < 1.
ZcN

(1) We denote Mi = span{e„ : n e 1} and Pi = Pyy, the orthogonal projection onto Mi.
(2) If I = I„ := [1,2,..., n], we put M„ for Mi.
(3) Given jf a closed subspace of £2, we denote jfn=M M„, n e N.
(4) If J" = {/„}„sN is a frame for H, we denote by J) = {fn}nei ■
(5) We say that Fi is a frame sequence if it is a frame for spân{ J}}-
(6) Fi is called a subframe of F if it is itself a frame for H.

Recall the definitions of Riesz frames and conditional Riesz frames.

Definition 3.1. A frame F = {/n}nSN is called a Riesz frame if there exists A, B > 0 
such that, for every I c N, the subfamily Fi is a frame sequence with bounds A, B (not 
necessarily optimal).

The sequence F is called a conditional Riesz frame if there are common bounds for the 
frame sequences Fin, where {In}fr=l is a sequence of finite subsets of N such that In ç 7„+1 
for every n e N and |JnsN 7« =

Remark 3.2. Let J" be a frame, and T its synthesis operator. Given I ç N, then Fi is 
a frame sequence if and only if R(TPi) is closed, and Fi is a subframe if and only 
ifR(T Pi) = H. In both cases the frame bounds for Fi are A = y(T Pi)2 and B = \\TPi ||2. 
Using these facts we get an equivalent definition of Riesz frames: J" is a Riesz frame if 
there exists e > 0 such that y(TPi) f e for every I ç N.

Proposition 2.9 can be used to characterize Riesz frames in terms of the angles between 
the nullspace of the synthesis operator T and the closed subspaces of i2 which are spanned 
by subsets of B.

Proposition 3.3. Let F = {/n}nSN be a frame, and T be its synthesis operator. Let jf = 
N(T). Then F is a Riesz frame if and only if *

(7)
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Proof. By Proposition 2.3, TPj has closed range iff c[jV, Ft/] < 1. By Proposition 2.9, 
y (TPi) has an uniform lower bound if and only ifthere exists a constant c < 1 such that, 
for every I ç N, c[jV, M/] < c. □

Remark 3.4. Let M be a closed subspace of £2 and B = {en}nSN be the canonical ortho­
normal basis of i2. If Eq. (7) holds, following the terminology of [1], we say that M is 
B-compatible.

In the following proposition, we state a characterization of B-compatible subspaces 
of H, proved in [1],

Proposition 3.5. Let J\i be a closed subspace of I2 and let B = {q}£Sn be the canonical 
orthonormal basis of t2. For n e N, denote by cn = sup/Cf c\Jfn, A4/]. Then the follow­
ing conditions are equivalent'.

(1) N is B-compatible.
(2) c = sup„sNc[A/', A4„] < 1, and sup„sN c„ < 1.
(3) cl(U„sNM/) =Jf and sup„sN c„ < 1.
(4) There exists a constant c < 1 such that c[A/", TLf\ < c for every finite subset I of N 

with Jf n A41 = {0}.

Proposition 3.5 can be “translated” to frame language to get a characterization of Riesz 
frames, similar to the one obtained by Christensen and Lindner in [13] :

Theorem 3.6. Let F = {/n}nSN be a frame and T its synthesis operator. Denote J\i = 
N(T). Then the following conditions are equivalent'.

( 1 ) F is a Riesz frame.
(2) J\i is B-compatible.
(3) There exists an uniform lower frame bound for every finite linearly independent frame 

sequence Fj, J C N.
(4) There exists d > Q such that y(TPj) f d, for every J e N finite such that N C Mj 

= {0}.

Proof. If I is a finite subset of N then A4; n fii = {0} if and only if Fi is linearly inde­
pendent. Then, conditions (3) and (4) are equivalent. By Propositions 2.9 and 3.5, they are 
also equivalent to the B-compatibility of fii.

Suppose that there exists a constant d such that 0 < d < y(TPjvtfr for every finite 
subset I ç N such that A4; n fii = {0}. This is equivalent to saying that there is a constant 
c < 1 such that c [A/-, A4/ ] s' c for such kind of sets I. Using Propositions 3.3 and 3.5, we 
conclude that A is a Riesz frame. The converse is clear. □

Now, we consider conditional Riesz frames. First of all, we state a result for this class of 
frames which is similar to Proposition 3.3, and whose proof follows essentially the same 
lines.
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Proposition 3.7. Let F = [fn}ne^ and J\i the nullspace of its synthesis operator. Then F 
is a conditional Riesz frame if and only ifthere exists a sequence [In] of finite subsets of N 
such that In ç In+\,

and c = supc[Af, M/„] < 1, n e N. (8)
«ëN "sN

As a corollary of this proposition we get the following result.

Proposition 3.8. Let F be a conditional Riesz frame, and T its synthesis operator for F. 
Denote fif = N(T). Then

In order to prove this proposition, we need the following technical lemma.

Lemma 3.9. Let Jf be a closed subspace of t2, a constant c < 1 and a sequence {In} of 
finite subsets o/N such that In Qln+i, [JnsN = andc[N, Ft/„] < c, for every n e N.
Then

elf

'„ëN 2

Proof. Denote Qn = Pin, n e N. The assertion of the lemma is equivalent to
SOT

I'F a Qn / Pyr-

Let x e £2 be a unit vector and let e > 0. Let k e N such that c2k~l < e/2. By Proposi­
tion 2.4, for every n > 1 it holds that

II {PyfQn/ - !>F a Qn\\ <

SOTOn the other hand, since QnPj\[ —> Py[ and the function /(x) = xk is SOT-continuous n—xX)
on bounded sets (see, for example, 2.3.2 of [24]), there exists no > 1 such that, for every 
n f no,

||[(e„W-^M <|-

Then, for every n f no,

||(Pjv - -fV a g„)x||

< || [Pat - (PArôn/HI + ||((PArôn/ - Pat A g„)x|| < e. □

Proof of Proposition 3.8. Since J" is a conditional Riesz frame, there exist c < 1 and a 
sequence {/„} of finite subsets of N such that In ç f„+1, [JnsN In = N and c[Af, Ft/J 
< c, for every n e N. By Lemma 3.9, n Ft/n is dense in N. Finally, for every
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n e N, there exists m e N such that In c Im = {1, 2,..., m}. Thus, n -A, c
1=1

As a consequence of Proposition 3.8 we obtain the following corollaries.

Corollary 3.10. Let F be a conditional Riesz frame with synthesis operator T and suppose 
that dimN(T) < oo. Then F is a Riesz frame. Moreover, there exists m e N such that 
N(T)QMm.

Proof. Denote by Jf = N(T). By Proposition 3.8, Jf satisfies Eq. (9). Since dimA' 
< oo, then there exists well such that Jf = N(T) c Mm- Thus, in the terminology 
of Proposition 3.5, if c„ = supc[M, At/], then c„ = cm for every nfm. Therefore, 
by Proposition 3.5, A is a Riesz frame. □

Corollary 3.11. Let F = {/n}nSN be a conditionalRiesz frame. Given n e N, denote by Sn 
the frame operator of {A}^=1 and let An be the minimum of the lower frame bounds of all 
frame subsequences of{Sn fk}k=i- If inf« A„ > 0, then F is a Riesz frame.

Proof. Let T be the synthesis operator of F and Jf = N (T). For each n e N, denote Fn = 
{fk}nk=v B„ = en} and Pn = PMn ■ Note that T Pn : Mn span{ fk'. k = 1,..., n}
can be considered, modulo an unitary operator, as the synthesis operator of Fn. In this way, 
it holds that Sn = TPnT*. Also note that ,2 ff'fry is a Parseval frame, and N(TPn) =
N(sM2TPn) = A" A Mn = Jfn. So, by Lemma 2.8, if J c {1,..., n}, the lower frame 
bound Aj of {sA/2 fk}k&J satisfies Aj = 1 - c[Jfn, Mj]1. Using Propositions 3.8 and 
3.5, the corollary follows. □

3.1. A counterexample

The nullspace Jf of the synthesis operator of a conditional Riesz frame has the property 
of “density”: cl(|JXi-^«) = M where fi„ is A" A Mn. In the following example we 
show that the converse is not true, i.e., we construct a frame which is not a conditional 
Riesz frame such that its synthesis nullspace A" satisfies cl(|JXi A"„) = A".

We shall prove the assertion in an indirect way, by using Proposition 3.7 and the follow­
ing fact: if A" is a closed subspace of £2 such that dim A"-1- = oo, then there exists a frame 
F with synthesis operator T such that Jf = N(T).

Example 3.12. Given r > 1, if B = {e„}„SN denotes the canonical basis of £2, let us define 
the following orthogonal system:

1111
A'l = ei - re2 + -e3 + —-e4 + —e5 + —e6,yZ J**

1111
A = e5 “ re6 + + pA10,
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1 111
xn - e4„_3 - re4»-2 + + -^-e4n+1 + ^-e4„+2.

Let N be the closed subspace generated by {x„}„sn- By construction, cl(|JXi AL) = AC 
Moreover {e4„_i - re4n: n e N} c A/"-1-, so dimAL1 = oo. By the remarks above, there 
exists a frame A" such that the nullspace of its synthesis operator is AC We claim that this 
frame is not a conditional Riesz frame. By Proposition 3.7, it suffices to verify that for 
every sequence A ç J2 ç J3 c . . . c Jn / N, it holds that c[AC A4 4] —> 1. Hence, fix 

k—>c>o

4. Weighted dual frames

Let A = {/„}nSN be a fixed frame for a closed subspace W of H and let A4 c H be 
another closed subspace such that H = W + A4X. As we have mentioned in the introduc­
tion, an oblique dual frame of A in A4 is a frame Q = {gn}„sjfor A4 such that for every 
f e W it holds that

OO
f = YJ{f,gn)fn v/ew. (ii)

n=l

Such a dual frame has the minimal norm property if for every f e W the coefficients 
{(A g„)}„eN have minimal £2 norm. Christensen and Eldar proved in [12] that the duals 
frames with the minimal norm property have the form

fy„}„SN = {B(r*B)te„}nsN, (12)

where [e„ }„sj7 denote the canonical orthonormal basis of £2, and B is a bounded operator 
with R(B) = M.

such a sequence {AheN and take 0 < e < 1.
Since ||x„ ||2<l+r2 + 4/r8" 4 * 6 for every n e N, there exists «0 ell such that

1 + r2
1 — e <------ — Vn no.

Ifynll
Note that, for y e AC and z e N, if A4, = span{e4î _3, e4î -2Î, then

(y,x;)=0 O PM.y = 0, (10)

because Pj^ xy 0 if and only if j = i. Let k e N be such that 

j=max{zeN: PMi (Va Mjk) A 0} > n0.

By Eq. (10), 27, e (AC A A4 jk )-*- for every h > j. In particular, xy+i e J\i © (AC A A4 jk) and

1+r2 < ||P4Xy+i||2 / xy+i Pjkxj+i
hy+lll2'' IIW+lll2 ihy+lll’ llp4W+lll

<c[ACAfyJ.

A similar argument shows that 1 - e < c[A/", Mjm\, for every m^k. This implies that 
liminf/—. x, c[jV, Af + 1 Al £• Finally, as e is arbitrary, we get c[AC A4 4] —> 1.
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On the other hand, let 7?(£2) be the set of all D e G/(£2)+ which are diagonal in the 
canonical basis {e„}nSN- Each D e 7?(£2) defines an inner product (•, -}d by means of

(x,y)D = (Dx,y), x,ye£2.

This inner product induces a weighted norm || ■ || n which is equivalent to the original one.
In this section, we are interested in dual frames such that their coefficients in the recon­

struction formula (11) minimize different weighted norms. We shall give explicit formulae 
for this class of dual frames that we call weighted dual frames. We also consider the par­
ticular case of weighted dual frames associated to a Riesz frame.

First of all, let us recall some preliminary facts on generalized inverses.

Definition 4.1. Given two Hilbert spaces H and 7C, let A e L(H, K.) be an operator with 
closed range. We say that B e L(1C, H) is a generalized inverse of A if ABA = A and 
BAB = B.

Remarks 4.2. Let A e L(TL, K.) with closed range, and let B e L(1C, H) be a generalized 
inverse of A. Then

(1) Both AB and BA are oblique projections, i.e., idempotent operators.
(2) R(B) is also closed.
(3) The idempotent AB and BA induce decompositions of the Hilbert spaces and 1C: 

H = N(A) + R(B) and 1C = R(A) + N(B).
(4) If (AB)* = AB and (BA)* = BA, then B is called the Moore-Penrose generalized 

inverse for A. It is usually denoted by A^. In this case, A A^ is the orthogonal projection 
onto R(A) and A^ A is the orthogonal projection onto N(A)-1-.

Among the generalized inverses of an operator A e L(£2, H), the following ones will 
be particularly important for us. In order to clarify the next statement, given a subspace T 
of £2 and D e 7?(£2), the orthogonal complement of T with respect to the inner product 
(■ ,-)d will be denoted by T±D.

Lemma 4.3. Let A e L(l2, TC) be an operator with closed range, and D e 7?(£2). Then, the 
operator XO(A) = £>_1/2(A.D_1/2)t is a generalized inverse of A such that / p(A)A is 
the orthogonal projection with respect to the weighted inner product (■ ,-)d onto N (A)±£l.

Proof. Since 7?(AD1/2) = R(A) it follows that

aXd^a = pr(ad1/2)a = A-

On the other hand,

Xd(A)AXd(A) = D“1/2(AD“1/2)tAD“1/2(AD“1/2)t = £>“1/2(AD“1/2)t

= XD^-
Finally, some easy computation shows that an oblique projection Q is D-orthogonal if and 
only if D Q is selfadjoint. In our case
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Z>(XO(A)A) = D1/2(AD“1/2)tA = D1/2(D“1/2A*(AD“1A*)t)A

= A*(AZ)_1A*)^A,

which is clearly selfadjoint. Therefore, / D (A) A is a D-orthogonal projection and clearly 
MXD(A)A) = iV(A). □

Now, we are ready to give the explicit form of weighted dual frames.

Proposition 4.4. Let F = {fn}ne^ be a fixed frame for a closed subspace W of Lt, T its 
synthesis operator and let A4 be another closed subspace of 1-1 such that 74 = W + A42". 
Then, given D e 7?(42), the oblique dual frames such thatfor every / e W their coefficient 
in the reconstruction formula minimize the weighted norm || ■ Ho have the form

Q = feW =

where {en}nSN denotes the canonical orthonormal basis of t2 and B e L(42,74) is any 
operator with R(B) = M.

Proof. Fix B e L(£2, TL) with range A4 and let T = B(D-^2T*B^D~^2. First of all, 
note that N(D~1^2T* B) = N(B). So, R(T) = R(B) = M and therefore Q is a frame.

In order to prove that Q is an oblique dual frame it is enough to prove that TT* is 
an oblique projection onto W. Actually, TT* is the projection onto W parallel to A42-. 
Indeed, on one hand

which shows that TT* is a projection. On the other hand, since N(D~1^2(B*TD~1^27B*) 
= A42- and R(D~1^2(B*TD~1^27B*) = A(T)2-, it holds that TT* is the projection onto 
W with nullspace A42-.

Finally, in order to prove that the reconstruction coefficients minimize the weighted 
norm || ■ |/) we have to prove that R(T*) c N(T)±D. But, using the notation of 
Lemma 4.3, we get T*T = % D(B*T)B*T and, therefore, using the same lemma, R(T*) = 
N(B*T)±D =N(T)±D. □

As we have already mentioned in the previous section, {/„}„sn is a Riesz frames if and 
only if N(T) is compatible with the canonical base (see Remark 3.4). If I’d.y denote the 
(unique) orthogonal projection onto the closed subspace fit of £2 with respect to the inner 
product (•,•)£>, it was proved in [1] that fit is compatible if and only if

sup Ilfe-Vll < 00-
Dëü(A)

As a consequence of this result we obtain the following
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Theorem 4.5. Let F = [fn}ns^ be a frame for a closed subspace W of Lt, T its synthesis 
operator, M another closed subspace ofH. such that TL = W + M1- and Q = {gn }„spsj a 
fixed {sampling) frame for M with synthesis operator B. Then, the following conditions 
are equivalent'.

(1) J7 is a Riesz frame on W.
(2) The oblique dual frames of T with respect to B that minimize the different weighted 

norms are bounded from above. In other words

sup ||B(D“1/2r*B)tD“1/2|| < oo.

Proof. Fix D e 7?(£2). We have already proved in Lemma 4.3 that

(B(D“1/2T*B)tD“1/2)*T = T*B(D“1/2T*B)tD“1/2 = T* B D(T* B)

= 1 - Pd,n(T)-

Hence

||B(D“1/2T*B)tD“1/2|| < \\B || || (D“1/2T*B)tD“1/2||

= ||B||||(T* B7 (7* B)(D~1/2T* B7 £>“1/2||
< \\b|| ||(t*b7|| ||(t*b)(d-1/2t*b7d-1/2||

= 11^1111(7*^111|1 - P*DMT)\\,

and

111 - Pd,n(T)\\ = ||7*5(D“1/27*5)tD“1/2|| < ||7*||||5(D“1/27*5)tD“1/2||.

Therefore

sup ||B(D_1/2r*B)'f'D_1/2|| < oo o sup || 1 - Pd,n(T)II < oo, 
DegDfr) DegDfr)

which proves the proposition. □
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