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On the basis of the most recently reported spectroscopic data on vibrational modes in TeCfi and 
structural parameters of TcCIq. an estimation of its main force constants complemented with the 
calculation of mean amplitudes of vibration in a wide temperature range have been performed. Also 
thermodynamic functions for the ideal gaseous state of the molecule calculated, using the statistical 
mechanics approach.
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The gas phase infrared and Raman spectra as well 
as the corresponding spectra in Ar and N2 matrixes of 
TeClq have been reported more than thirty years ago by 
Beattie et al. [1]. However, the vibrational description 
remained incomplete since only seven of the nine fun
damental vibrations can be found in these studies. The 
vibrational assigmnent of this molecule was only com
pleted recently, performing a new measurement of the 
gas phase IR spectrum, complemented by an ab initio 
molecular orbital calculation at the MP2 level [2],

Using the spectroscopic and structural data reported 
in this study, we have now performed the calculation 
of the most important vibrational properties and ideal 
gas phase thermodynamic functions of this molecule.

The molecular geometry of TeClq is consistent with 
VSEPR theory [3], It can formally be derived from 
the sp3d hybridization of the central atom, with the 
lone pair occupying one of the equatorial positions 
of the trigonal pyramidal arrangement. The computed 
geometrical parameters are the following: Te-Cleq = 
2.13 A; Te-Clax = 2.441 A; Cleq-Te-Cleq = 100.2° and 
Clax-Te-Clax = 176.6° [2], The large space require
ment of the electronic lone pair is shown by the Cleq- 
Te-Cleq angle less than 120° and by the tilt of the axial 
chlorines towards the equatorial ones, as well as by the 
longer axial bonds. Notwithstanding, and as discussed 
below, an alternative approach, based on a well-known 
empirical semi-ionic model, may be more adequate for 
a better description of the Te-Cl bonds.

In order to attain a wider insight into the bond char
acteristics we have made an approximate calculation of 
the principal force constants, using the valence force 

field proposed by Siebert for Y2XZ2 molecules of C2v 
symmetry [4], but neglecting coupling effects between 
species of the same symmetry. The results are shown 
in Table 1. In this table, f refers to Te-Cl bonds, f to 
bond/bond interactions. fa to Cleq-Te-Cleq and fp to 
Clax-Te-Clax angles.

As it can be seen from the data presented in Table 1. 
the Te-Cl equatorial bonds are appreciable stronger 
than the axial ones, in agreement with the estimated 
greater length of these last bonds. The value estimated 
for the Te-Cleq bond compares reasonably well with 
that calculated for the Te-Cl bonds in the pyramidal 
TcCF cation(2.27 mdyn/A) [5],

Using these calculated force constants for the two 
types of Te-Cl bonds it is possible to make a rough es
timate of their bond orders, using the empirical method 
of Siebert [5,6], This calculation shows that the equa
torial bonds present a bond order of about of 1.2, 
whereas the axial bonds are weaker with a bond or
der of only 0.8, pointing also to substantial differences 
in the bond strength and characteristics of both bond 
types.

These results are in agreement with the semi-ionic 
three center-four electron (3c-4e) bond model [3,7,8], 
In the frame of this model, the equatorial Cl atoms are 
bound by regularly localized two center-two electron 
(2c-2e) bonds via sp2 hybridized orbitals on the cen
tral atom, with the lone pair on the remaining lobe of 
this hybrid orbital. Then, the axial F atoms must be 
in 3c-4e bonds, using the remaining p orbital of tel
lurium, and generating more ionic and weaker bonds 
[9.10],
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Table 1. Approximate force constants (in mdyn/A) for TeCL.

/(Te-Cleq) /(Te-Clax) /'(Te-Cleq) /'(Te-Clax) fa .fß
2.39 1.48 0.30 0.0 0.20 0.04

Table 2.
TeCl4.

Calculated mean .amplitudes of vibration (in A) for

T(K) "Te-Cl(eq) "Te-Cl(ax) "Cl...Cl(eq:) HCl...Cl(ax) HCl(eq)...Cl(ax)
0 0.0400 0.0448 0.066 0.057 0.079

100 0.0401 0.0454 0.071 0.058 0.089
200 0.0427 0.0502 0.086 0.065 0.111
298.16 0.0470 0.0567 0.101 0.074 0.132
300 0.0471 0.0568 0.101 0.074 0.132
400 0.0519 0.0636 0.115 0.083 0.151
500 0.0566 0.0699 0.128 0.092 0.168
600 0.0612 0.0759 0.140 0.100 0.183
700 0.0656 0.0816 0.150 0.107 0.198
800 0.0697 0.0869 0.161 0.114 0.211
900 0.0737 0.0919 0.170 0.121 0.224

1000 0.0774 0.0967 0.179 0.127 0.236

Table 3. Statistical thermodynamic functions (in cal/deg mol) 
ofTeCl4.

T(K) CP
100 16.86 11.81 56.83 68.65
200 22.07 15.86 66.38 84.24
298.16 23.90 18.25 73.20 91.45
300 23.92 18.29 73.31 91.60
400 24.70 19.81 78.79 98.60
500 25.09 20.83 83.33 104.16
600 25.31 21.56 87.20 108.76
700 25.45 22.11 90.56 112.67
800 25.54 22.53 93.54 116.08
900 25.60 22.87 96.22 119.09

1000 25.64 23.14 98.64 121.79
1100 25.68 23.37 100.86 124.23
1200 25.70 23.57 102.90 126.47
1300 25.72 23.73 104.79 128.53
1400 25.74 23.87 106.56 130.43
1500 25.75 24.00 108.21 132.21

For a wider characterization of the tellurium
chlorine bonds, we have also calculated the mean am
plitudes of the vibrations of TcCT 4. These calculations 
were performed with the method of characteristic vi
brations of Muller et al. [11] (cf. also [12,13]). The 
obtained results, in the temperature range between 0 
and 1000 K, are shown in Table 2.

The results of these calculations are in excellent 
agreement with the calculated force constants and with 
the discussed bond characteristics, as the equatorial 
bonds present lower mean amplitude values than the 
axial ones, in the full temperature range. On the other 
hand, and in agreement with the coimnented simi
lar value of the force constants, the Te-Cl bond in 
the Ted;, cation presents an identical mean ampli
tude value (0.047 Á at 298 K) [12] as for the Te-Cleq 
bonds.

A comparison with the octahedral TcCL,1 2 3 anion, 
also containing Te(IV), is interesting too. The force 
constant of 1.20 mdyn/Á calculated for the Te-Cl 
bonds in this case [14] immediately shows weaker 
bonds than in Ted 4. Consequently, the mean ampli
tudes of vibration of TcCT r,2 are also relatively higher 
(0.0484 Á at 0 K and 0.0649 A at 298 K [14]) than 
those of both types of Te-Cl bonds in TcCT 4.
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functions in a wide temperature range, for the ideal 
gaseous state (unit fugacity) using the rigid rotator, har
monic oscillator approximation [15,16], The moments 
of inertia were calculated with the MOLDRAW pro
gram [17], The symmetry number is 2.

The results, specific heat (Cp). reduced enthalpy 
[(H° —Ho°)/T], reduced free enthalpy [(G° — Ho°)T] 
and entropy (S'0), in the temperature range between 
100 and 1200 K, are presented in Table 3.

To conclude, these calculations provide a wider in
sight into the vibrational properties of TcCT 4. an in
teresting representative of the rather uncoimnon XY 4- 
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and possessing C2,, symmetry.
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