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OBLIQUE PROJECTIONS AND FRAMES

J. ANTEZANA, G. CORACH, M. RUIZ, AND D. STOJANOFF

(Communicated by David R. Larson)

ABSTRACT. We characterize those frames on a Hilbert space Tl which can be 
represented as the image of an orthonormal basis by an oblique projection 
defined on an extension JC of 7Y. We show that all frames with infinite excess 
and frame bounds 1 < A < B are of this type. This gives a generalization of 
a result of Han and Larson which only holds for normalized tight frames.

1. Introduction

Let 71 be a (separable) Hilbert space, and let y = {/n}neN be a sequence in 
71. Then y is called a frame if there exist numbers A, B > 0 such that, for every 
feH,
(1) 4||/||2<^|(/,/„)|2<B||/||2.

new

The optimal constants A, B for equation (1) are called the frame bounds for T. 
The frame T is called tight if A = B, and normalized tight if A = B = 1.

Let AS be another Hilbert space, and let B = {en}new be an orthonormal basis of 
AS. It is known that, if T is a frame in 71, there exists a unique surjective bounded 
linear operator T : AS 71 such that Ten = fn, for all n G N. In this paper, the 
triple (T, 7C, B) is called a preframe operator for T. The excess of T is the cardinal 
number e(y) = dimSV(T), which does not depend on the chosen preframe operator.

A well-known theorem of Han and Larson [4] states that a sequence T = 
in 71 is a normalized tight frame if and only if there exists an orthonormal basis 
S = {en}n£N in an extension AS D 71 such that fn = Ppi en, n G N, where 
Ph L(JC) is the orthogonal projection onto 71, i.e., the triple (Ph, AS, B) is a 
preframe operator for y.

The main results of this paper extend their theorem as follows: A frame y = 
{fn} n£N in 71 with frame bounds 1 < A < B comes from an orthonormal system, 
not necessarily complete, in an extension AS D 71, through a not necessarily or­
thogonal projection from AS onto 71. If the excess of y is infinite, the orthonormal 
system can be chosen to be complete.

For frames with finite excess and frame bounds 1 < A < B, there exist an 
orthonormal basis B = { of an extension AS D 71, and an oblique projection
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1032 J. ANTEZANA, G. CORACH, M. RUIZ, AND D. STOJANOFF

Q G L(JC) onto Tf such that Qen = fnj n & if and only if the rank of TT* — I 
is at most e(J7), where (T, Ti,£) is any preframe operator for F with domain Tf. 
These results complete previous work by Casazza, Han and Larson [2].

In Section 2 we collect some preliminary facts. In Section 3, we present the 
mentioned extensions of the theorem of Han and Larson [4].

We thank Ole Christensen for his useful comments.

2. Preliminaries

Let W be a separable Hilbert space, and let L(W) be the algebra of bounded 
linear operators on Tf. For an operator A G L(Ti), we denote by R(A) the range of 
A and by N(A) the nullspace of A.

Definition 2.1. The reduced minimum modulus of an operator T G L(Tf) is 
defined by
(2) y(T) = inf{||Tx|| : ||x|| = 1 , x G W}-

It is well known that y(T) = 7(T*) = -/(TT)1/2. Also, it can be shown that 
an operator T has closed range if and only if 7(T) > 0. In this case, 7(T) = 
||Tt||-i. □

Frames. We introduce some basic facts about frames in Hilbert spaces. For com­
plete descriptions of frame theory and applications, the reader is referred to the 
survey by Heil and Walnut [5] or the books by Young [7] and Christensen [3].

Definition 2.2. Let be a separable Hilbert space, and let F = be a
sequence in TF

i. F is called a frame if there exist numbers A, B > 0 such that, for every
feH,

(3) A||/||2<^|a/„)|2<B||/||2.
new

ii. The optimal constants A, B for equation (3) are called the frame bounds 
for F.

iii. The frame F is called tight if A = B, and normalized tight if A = B = 1.

Definition 2.3. Let F = {/n}new be a frame in Ti. Let A and TF be separable 
Hilbert spaces such that If is a closed subspace of TF. Let B = fp, : n G N} be 
an orthonormal basis of A. From equation (3), it follows that there exists a unique 
T G L(A, Tf') such that

= fn , n G N.
We shall say that the triple (T, A,B) is a preframe (or synthesis) operator for F. 
Another consequence of equation (3) is that R(T) = Ti. In particular, if TF = Ti, 
then T is surjective.

Remark 2.4. Let F = {/n}new be a frame in Ti, and let (T, IC,B) be a preframe 
operator for F.

i. The frame bounds of F can be computed in terms of the pre frame operator:
(4) A = 7(T)2 and B = ||T||2.

ii. The adjoint T* G L(W/, A) of T is given by T*(x) = 52neN(ai, fn)<Pn, x G Ti. 
It is called an analysis operator for F.
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iii. If (7j, ASi, Bi) is another preframe operator for Pthen there exists a unique 
unitary operator U G L(ASi, AS) which sends Bi onto B, and therefore I\ = 
TU. It follows that S = TT* = TiT*; then Sf = £„eN (/, /„) f G Tf. 
If we consider S as acting on Tf, it follows from (3) that A.I < S < B.I, 
so that S' is a positive invertible operator on Ti. Moreover, the optimal 
constants A, B for equation (3) are

B = Ill'll = X5*) and A = -/(S) = ||1|~1 = min{A : A G cr(S)}.

S is called the frame operator of T. Note that by the previous observa­
tion the frame operator does not depend on the chosen pre frame operator. 
Hence, T is tight if and only if S = Al and normalized tight if and only 
if S = I. □

Definition 2.5. Let T = {./„)„ be a frame in Tf, and let (T, AS, B) be a preframe 
operator for T. The cardinal number

e(fF) = dimSV(T)

is called the excess of the frame. Note that by Remark 2.4 e(J7) does not depend 
on the chosen preframe operator. In particular,

e(J') = dim |(c„)„eN G t2 : cnfn = o|,
new

which is the nullity of the pre frame operator induced by the canonical basis of t2. 
Holub [6] and Balan, Casazza, Heil and Landau [1] proved that

e(J^) = sup{ \I\ : I C N and {fn}n£i is still a frame on Ti}.

This characterization justifies the name “excess of J7”. The frame T is called a 
Riesz basis if e(J7) = 0, i.e., if T is the image of an orthonormal basis of AS by an 
isomorphism T G L(AS, Ti).

3. Projections and frames

Frames and projections are related in a variety of ways. For instance, since a 
frame T for Tf admits a preframe operator (T, AS, B) and T G L(AS) is surjective with 
range Ti, any right inverse U of T provides a projection UT G L(AS). In this paper 
we study another type of relationship between frames and projections. Namely, we 
consider an extension of a theorem by Han and Larson [4]. Along this section we 
use the fact that every subspace S of Ti induces a representation of elements of 
L(Ti) by 2 x 2 block matrices; that is, we shall identify each A G L(Ti) with a 2 x 2- 
matrix ( 411 ^12 ) , which we write to emphasize the decomposition which

yA2i A22J
induces it. For example, it is easy to see that Q G L(Ti) is an oblique projection 

/ I x \ s
with R(Q) = <S if and only if Q has matrix form Q = ( Q Q j ± , for some 

X G L(5X,5).
In [4], Han and Larson characterized normalized tight frames as follows.

Theorem 3.1 (Han and Larson). A sequence T = {/n}n£N in « Hilbert space Ti 
is a normalized tight frame if and only if there exist a Hilbert space AS ATi and an 
orthonormal basis B = {en}n£N of K. such that the triple (Ph, TC,B) is a preframe 
operator for TF, i.e., fn = Ph en, n G N.
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In what follows we shall study the following question: given a frame F = 
in W, does there exist a Hilbert space K D W, an orthonormal basis {en}new of 
AS and an oblique (i.e., not necessarily orthogonal) projection Q G L(JC) such that 
Qen = fm n G N? In other words, does a preframe operator (Q, AS, B) exist for F 
such that Q is idempotent?

This is not true in general. Indeed, there exist at least two obstructions:
i. Every oblique projection Q satisfies that y(Q) > 1, because

QQ* > QPr^Q* = PR(Q), Ri,QQ*) = R(Q), and y(F) = 1

for every orthogonal projection P. Therefore, if there exists a representation 
of a frame F as above, then its frame bounds must satisfy 1 < A < B. This 
obstruction is not essential because it can be fixed by multiplying the frame 
by a convenient positive constant.

ii. Even if the frame bounds of F satisfy 1 < A < B, the representation may 
not exist if e(F) is finite. For example, suppose that F is a Riesz basis and 
fn = Qen for an oblique projection Q G L(JC) and an orthonormal basis 
B = {en}n£N of AS D B. Then, since (Q,AS,B) is a preframe operator for 
F, it holds that dimSV(Q) = e(F) = 0. Thus, AS = B, Q = I and F = B. 
This means that orthonormal bases are the only Riesz bases which admit 
such a representation.

The paper [2] has a section addressed to this problem. There is, however, an 
inaccuracy in the statement of its Theorem 3.2. Indeed, it states that every frame 
for B can be obtained as the image of an orthonormal basis of an extension of B 
by an oblique projection. The next theorems complete, in some sense, the results 
of Casazza, Han and Larson [2], section 3.

In the rest of this section we shall show that the mentioned representation can 
be obtained for frames which satisfy the frame bounds restrictions and which have 
infinite excess. For frames with finite excess (and good frame bounds), the represen­
tation can be obtained by considering orthonormal systems instead of orthonormal 
bases. We also give equivalent conditions on a frame with finite excess in order to 
admit such a representation with an orthonormal basis.

Theorem 3.2. Let F = {/n}new a frame in an infinite dimensional Hilbert 
space B, with frame bounds 1 < A < B. Denote 1C = B ® B. Then there exist 
an oblique projection Q G L(JC) with R(Q) B.\ {0} and an orthonormal system 
{fr} in AS, such that

fn®0 = Q bn , n G N .

Moreover, if e(F) = oo, then the sequence (A„)„ can be supposed to be an 
orthonormal basis of K., i.e., (Q, AS, is a preframe operator for F.

Proof. Let (T, B, B) be a preframe operator for F, with T G L(B). By hypothesis,
TT* > Al > I. Denote by X = (TT* - I)1/2 e LfBfr. We shall identify B
with B ® {0}, i.e., we identify ~ /n®0 G K. Let T : B —> AS be defined by 

— ( TT* 0 ATx = Tx ® 0. Then TT* ~ I Q " I G L(AS). Let

«=('" o Ke£(n
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Then it is clear that Q is a projection on X with R(Q) = TL ffi 0. Moreover,

IH + XX* 0 
0 0

i.e., |Q*| = \T*\.
Consider the (right) polar decomposition T = |T*|V; V G L(TC) is a partial 

isometry with initial space 2V(T)X and final space R(T') = TL. Define U : W X 
by

(5) Ux = VPN(T')±x® Pn^x, xeH.

Then, U is an isometry and T = \T* |U. The partial isometry of the right polar 
decomposition of Q extends to a unitary operator W on X, because dim(7V(Q)) = 
dim(J?(Q)±). Moreover, Q = |Q*|W. Then

T = \T*\U = \Q*\U = Q W*U.

Therefore, if B = {e„}„eN,

fn = Ten ~ Ten © 0 = Ten = Q(W*Uen') = Qbn , n e N,

where (t, : = {IU*Uen}neN, which is clearly an orthonormal system in X.
Suppose now that e(Fj = dim2V(T) = oo. We shall show that the isometry U 

defined in equation (5) can be changed to a unitary operator from TL onto X, still 
satisfying that T = \T* |U. In order to do this, take

Ux = VP^fr^-i-X © Y P^(r)X, x G U.

where Y G L(TL) is a partial isometry with initial space N(T) and final space TL. 
It follows that U isometrically maps AT/4 onto 7® {0} and 2V(T) onto {0}®7T 
Then the sequence bn = W*Uen, n G N, turns out to be an orthonormal basis of 
X. □

Remark 3.3. Using the notation of Theorem 3.2, if Xq = span ) ) and Qq = Q| ,
then it might be possible to consider orthonormal bases instead of orthonormal sys­
tems. Nevertheless, Theorem 3.4 below shows that this argument fails, in general. 
In fact, TL is not necessarily contained in Xq, in which case Qq is not a projec­
tion. □

In the case that eQFj < oo, we have the following theorem.

Theorem 3.4. Let X = {.I,. }„ : be a frame in Ti with frame bounds 1 < A < B. 
Suppose that e{P') < oo. Then, the following conditions are equivalent:

(1) There exist a Hilbert space X such that Li CIC, a projection Q G L(X), and 
an orthonormal basis B = (T)„ of X such that fn = Qbn for all n G N.

(2) If (T, £, £) is a preframe operator for P, then dim R(TT* — Igf) < eQFf

Proof Recall that the frame operator TT* of T does not depend on the preframe 
(T, £, £) chosen. We shall consider a preframe (T, TL, £) for some orthonormal basis 
S, of TL. If the first condition holds, then (GfX,B'} is another preframe operator 
for T. Therefore e(Pj = dim N(T) = dim N(Q) = dim(AS © TL). We shall identify 
X © TL with 2V(T), and so X with TL ® N(T). We shall also identify TL with 
TL ® {0}, in particular, fn ~ fn ® 0 G X. Let T : TL —> X, given by Tx = Tx ® 0.
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Then tt* ~

( In X\ 
k 0 0 J

( TTt

k 0
TL
N(T)

o \ tl
0 J N{F) & L{Xf Let X & L(N(T'),H') such that Q =

Since T and Q are preframe operators for F, then

tt* = QQ* f I-h+XX*
k 0

Thus, TT* -IH= XX*, while dimR(XX*) < dimR(X) < dimW(T).
Conversely, if dimJ?(TT* — I) < dimfV(T), we consider, as in the proof of 

Theorem 3.2, X = {TT* - I)1/2 G L{H)+. Note that dim N{X')1- = dimR(X) < 
dimfV(T). Then there exists a partial isometry V : 2V(T) TL with VV* = 
Pn^x)^- As before, we use the Hilbert space X = TL ® N{T'), and the operator 
t G L{TL, X{, given by tx = Tx ® 0. Let Y = XV G L{N{T'),TC), and

Q ( q o ) N(T) G L^'

Then Q2 = Q, R{Q) = H ® {0} and |Q*| = \t*\, because YY* = XVV*X* = 
XPN{x®X* = XX*, so that

w*4i+0yy* o)-(i+r* s)=^
The rest of the proof follows the same lines as the first part of the proof of Theorem 
3.2, but taking X = TL® N(T). Note that, in this case, the isometry U defined in 
equation (5) becomes a unitary operator from TL onto X. Then, if W is the unitary 
operator considered in the first part of the proof of Theorem 3.2, the sequence 
bn = W*Uen, n G N, becomes an orthonormal basis of X. □

Remark 3.5. Theorem 3.1 can also be generalized by replacing the orthonormal 
basis by a Riesz basis in X\ in this way, we get arbitrary (i.e., not nec­
essarily normalized tight) frames. This result was proved by Han and Larson [4], 
Proposition 1.6, but with a different formulation. The translation to this setting is 
the following:

A sequence F = {.I,. : in a Hilbert space TL is a frame if and only if there
exist a Hilbert space X®TL and a Riesz basis f.r'/.)/.> of X such that fn = L'y xn, 
n G N. Moreover, the Riesz basis can be chosen in such a way that it has the same 
lower frame bound as F, and the sequence (I —F^)xn, n G N, is a normalized tight 
frame for X®TL.

We give an alternative proof for completeness: Suppose that F is a frame. Let 
(T, TL,B) be a preframe operator for F. Let X = TL® N(T). We shall identify TL 
with TL ® {0} C X, writing x x ® 0, for x e TL. Let V \TL ^~ /C be defined by:

Vx = Tx ® PN(ryx = TPN(TyX ® PjyyyX, x eTL.

Since T(2V(T)X) = R{T) = TL, it follows that V is bounded, linear and bijective. 
Hence, if B = {en}n£N , then xn = Ven is a Riesz basis in X. Note that fn ~ 
fn ® 0 — Pnxn, n G 14. By Theorem 3.1, the sequence {I — Pitfon — Pxipn 
n G N, is a normalized tight frame for N(T) = X ®TL. Finally, q(V) = y(T) and 
||R|| = max{l, ||T||}. Therefore, the optimal lower frame bound of is the
same as those of F. The converse is clear. □
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