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White dwarf stars as strange quark matter detectors - II
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ABSTRACT
We study the properties of the non-radial pulsations of strange dwarf stars. These objects are 
white dwarfs (WDs) with a compact core made up of strange quark matter (SQM). We show 
that the SQM core compresses the surrounding normal matter strongly enough to give rise 
to the occurrence of a sharp peak in the Brunt-Váisálá frequency. This, in turn, allows for 
the existence of a completely new resonant cavity for gravity (g-) modes, which is absent in 
standard WDs. We study the cases in which the mass of the SQM core is 10 2. 10 s, 10 4 and 
I0 5 of the total stellar mass, which have been added to a 0.525 Mq WD model adequate to 
account for the period structure of the DAV G117B15A, showing that this new resonant cavity 
is present for such a large range of core mass fractions.

Due to the extremely short wavelength of g-modes in the new resonant cavity, we treat 
oscillations there with an asymptotic analysis up to an intermediate, evanescent zone (located 
at ~ 10 per cent of the stellar radius). At such a point, we consider the asymptotic treatment 
as a boundary condition for a self-consistent numerical calculation of the g-mode spectrum of 
oscillations. In particular, we consider dipolar oscillations, which are currently identified with 
the observed oscillations in standard WDs. We find a very distinctive signal for the presence 
of a SQM core inside a WD: the difference of periods between two consecutive modes is far 
shorter than it is in standard WDs due to the oscillations in the new resonant cavity, being 
even shorter than a second. This confirms previous expectations based on very simplified 
calculations.

Our calculations indicate that, while the period spacing between consecutive modes is a 
smooth function of the period, the square of the amplitude of the modes near the SQM core 
is a strongly varying function. While some modes will have large amplitude there, and thus 
large kinetic energy, others will have far lower energy. Then, if (as usual) we assume that 
the excited modes are those with low kinetic energy, we expect a very particular spectrum of 
dipolar oscillations of WDs with SQM cores. The spectrum should be characterized by several 
well-detached sets of a very large number of evenly (in period) spaced modes. This should be 
considered as a clearly distinctive, observable signature of the presence of SQM inside WDs. 

Key words: dense matter - stars: oscillations - white dwarfs.

1 INTRODUCTION

Strange quark matter (SQM) is a particular form of quark matter 
with a high content of strangeness per baryon s/n-Q — 1 that has 
attracted the attention of researchers since the proposal that it may be 
the actual ground state of hadronic matter (Bodmer 1971; Terazawa 
1979; Witten 1984). As a natural consequence of such a proposal, 
it has been envisaged that the currently called neutron stars should 

be in fact made up of SQM. These hypothetical objects have been 
called strange stars [see Alcock & Olinto (1990) and references 
therein]. Other situations of astrophysical interest at which SQM 
could play a role are during the explosion of a massive star as a 
supernova. It has been proposed that the combustion from nuclear 
matter to SQM is not possible by means of deflagration (Horvath & 
Benvenuto 1988) but by detonation (Benvenuto & Horvath 1989). 
This detonation wave may be the ultimate reason of the occurrence of 
these theoretically elusive explosions. While this exotic mechanism 
was proposed long ago in order to circumvent problems with the 
explosion mechanism of such stars, state-of-the-art models based 
on standard physics still fail to explode (Buras et al. 2003).

© 2006 The Author. Journal compilation © 2006 RAS

mailto:obenvenu@astro.puc.cl
mailto:obenvenu@fcaglp.unlp.edu.ar


554 O. G. Benvenuto

Remarkably, if SQM were the actual ground state for strongly 
interacting matter, we should expect it to be found even at zero pres
sure, and then it is a natural candidate for dark matter (Witten 1984). 
An obvious major problem in this line of research is to find ways to 
prove the actual existence of SQM somewhere in the Universe.

Recently, some observations (see e.g. Li et al. 1999; Drake et al. 
2002) indicate that the radius of some compact stars is so small that 
they are in conflict with standard neutron star models. In these cases, 
it has been suggested that the unexpected compactness of these 
objects can be accounted for if they are made up not by neutron 
matter but by SQM. This has again sparkled the interest on the 
possibility of the actual existence of SQM. Note that, if SQM were 
absolutely stable, we would expect the existence of bare strange 
stars (e.g. Page & Usov 2002; Xu 2002) in which the quark matter 
surface is in direct contact with vacuum.

An interesting proposal for a place at which such an exotic sub
stance may exist is at the interior of the so-called strange dwarfs 
(hereafter SDs). These objects are white dwarf stars (WDs) with a 
small core of SQM (Glendenning, Kettner & Weber 1995a,b; Var
tanyan, Grigoryan & Sargsyan 2004). As SQM can coexist with 
normal matter if it has a density below that corresponds to neutron 
drip (Pdnp fs 4 x 1011 g cm we may expect the existence of ob
jects with a SQM core with a mass value between zero (a standard 
WD) and a critical value for which normal matter in hydrostatic 
equilibrium has a density equal to If normal matter were at 
even higher densities, we would have an unstable situation in which 
the whole star would be converted to SQM in a very energetic event.

Regarding the way a WD may convert into a SD, we consider the 
most probable way that the star in some previous evolutionary stage 
accretes chunks of SQM coming from the interstellar medium. If this 
were the case, SDs would be useful to perform indirect estimations 
of the density of chunks of SQM and its viability as dark matter 
candidate. Note that SQM is a possible ground state of dense matter 
for chunks of total baryon number larger than 100 (see e.g. Farhi 
& Jaffe 1984). Due of this reason, we consider it not possible a 
spontaneous decay to SQM of more than xs 100 baryons in the core 
of a WD. Such a decay is strongly suppressed because of the absence 
of strange quarks in nuclei inside standard WDs.

The most direct way in which we could expect to differentiate SDs 
from standard WDs is by comparing the mass-radius relation for 
both objects. At present, the radii of some WDs have been measured 
rather accurately and, in principle, they may be expected to be useful 
for such a comparison. It has been shown that SDs are more compact 
than a WD of the same mass and internal chemical composition; 
however the difference in the radius is too small to be useful in 
getting conclusive evidence in favour of the existence of SDs [see 
the results presented in Panei, Althaus & Benvenuto (2000) and 
Vartanyan et al. (2004)].

In principle, we could expect a very different cooling history 
for these two kinds of dwarfs, but this has been shown not to be 
the case, since the evolution is very similar to the standard one 
corresponding to WDs (Benvenuto & Althaus 1996a,b). Thus, WD 
population studies are of little help for our purposes. However, this 
is not the case regarding the non-radial pulsations of these stars.1 * * 

1 It is worth remarking here that radial pulsations of SDs have been studied
in the papers proposing the existence of SDs (Glendenning et al. 1995a,b).
In these works, the main aim of such a study was to test the stability of these
configurations. In any case, radial pulsations are not useful for comparing
with observations because the observed range of periods in compact, de
generate variable stars should correspond to gravity (g) modes. Up to now,

Pulsations are very sensitive to the density profile and, as we will 
show below, provide a very interesting test to perform. It is the aim 
of this work to study the properties of non-radial pulsations of SDs, 
in particular its spectrum of oscillations. A short, exploratory study 
of the problem addressed in this paper can be found in Benvenuto 
(2005, hereafter Paper I).

The referred spectrum of oscillations has been observed in some 
variable stars, and it is usually attributed to pulsating WDs, but may 
also correspond to SDs. Although the treatment to be presented in 
this paper is only possible in pulsating WDs, we should remark 
that there is no obvious reason to expect variable WDs to be a 
special kind of WDs. Thus, variability is expected to be a common 
phenomenon for all WDs as they cool down across the interval of 
effective temperatures at which oscillations are observed (the so- 
called instability strip).

There are two kinds of observed degenerate variable stars usually 
identified as WDs. DAVs correspond to objects with hydrogen-rich 
outermost envelopes, whereas the DBVs have helium envelopes. 
Because the majority of observed WDs belong to DAVs, in this 
work we will be concerned with stellar models with hydrogen dom
inated outer envelopes. Worth noting, for example, is the case of 
G117B15A, which maybe considered as the best-studied DAV WD. 
It has three periods, 215, 271 and 307 s, that are interpreted (Bradley 
1998; Benvenuto et al. 2002) to correspond to dipolar oscillations 
(I = 1, where I is the harmonic degree corresponding to the spheri
cal harmonic Y<j>) which describes the angular dependence of 
the oscillation pattern) with radial orders (number of nodes of the 
radial part of the eigenfunction) k = 2, 3 and 4, respectively. No
tably, it has been possible to detect the secular change of period due 
to the evolution of the object [P = (2.3±1.4)x 10 5 s s 1 |, being 
one of the very few effects of quiescent stellar evolution detectable 
on human time-scales (Kepler et al. 2000). Some researchers have 
been involved in disentangling the structure of G117B15A in terms 
of a defined internal structure and mass. These studies agree in a 
model with a carbon-oxygen rich core, surrounded by an almost 
pure helium layer embracing about 1 per cent of the stellar mass. 
Finally, the outermost layer is made up almost exclusively of hy
drogen and has a mass fraction of about 10 4. The mass of the star 
has been found to be about 0.525 Mq, which represents a medium 
value, and its effective temperature is ^11 800 K.

Since sometime ago, G117B15A has been recognized as avalu- 
able laboratory for non-standard physics. For example, it has been 
possible to put constraints on the mass of axions (Isern, Hernanz & 
Garcia-Berro 1992; Corsico et al. 2001), and also bound the possi
ble variation of the value of the gravitational constant (Benvenuto, 
Garcia-Berro & Isern 2004). The interest in this particular WD is 
due to not only the high precision of the observations now available, 
but also the remarkable ability of WDs to show differences in struc
tural and/or evolutionary properties that may reveal the occurrence 
of exotic physics in their interiors. As a matter of fact, the results 
we will describe are so different from those expected for standard 
WDs that they are worth comparison in some way with the whole 
population of DAVs. In any case, as a starting point, we will consider 
models of WDs compatible with the observations of G117B15A.

In this work, we will adopt the above-mentioned WD model 
that fits the pulsational properties of G117B15A, and ‘add’ the ex
otic core. Then, we evolve the model in the same way as done in 
Benvenuto & Althaus (1996a,b) down to the corresponding effective 

no variability has been detected in such stars that can be attributed to radial 
pulsations.
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temperature, and the computation of pulsational modes is done as 
described in Corsico et al. (2001). As we will show below, the inclu
sion of a SQM core in the stellar model will modify the agreement 
between the theoretical predictions with the observations. We will 
consider linear, adiabatic, non-radial pulsations and assume that the 
SQM core does not pulsate, as it is almost incompressible near zero 
pressure conditions. In some sense, this problem may be associated 
to the situation in which a massive WD undergoes crystallization as 
it moves across the instability strip, as it is expected to be the case 
of BPM 37093 (see e.g. Metcalfe, Montgomery & Kanaan 2004). 
However, this is not the case: crystallization induces only a tiny 
density change, and the major differences in the oscillation pattern 
are due to the elastic properties of the solid. Also, the crystal is ex
pected to grow as the WD cools down, meanwhile the SQM core is 
expected to remain constant in mass.

We should add a word of caution about this method. In performing 
this study, we will assume that the chemical composition of the SD 
is essentially the same as that corresponding to a normal WD star of 
the same mass. This means that we have assumed that the presence of 
a SQM core has not had a noticeable effect on the pre-WD evolution 
of the object. Exploration of this point is beyond the scope of the 
present work. It is expectable that the chemical composition of the 
SD will be very dependent on the epoch at which the star accretes 
the SQM core (if it gets a SQM core this way). In any case, we 
should remark that the change in the density profile comparing a 
WD with a SD is so large that a change in the chemical composition 
will produce a minor effect compared to the ones presented below.

The remainder of this paper is organized as follows. In Section 2, 
we describe the differential equations of non-radial, linear adiabatic 
pulsations. In Section 3, we describe the properties of SDs as non- 
radial, adiabatic pulsators. In Section 4, we describe the asymptotic 
treatment for the oscillations in the neighbourhood of the compact 
SQM core. In Section 5, we describe the numerical results for the 
oscillations of the considered models and, finally, in Section 6 we 
present the discussion of the results and some concluding remarks. 
We also present Appendix A with the purpose of showing the actual 
existence of a resonant cavity for g-modes near the SQM compact 
core by means of a simplified model.

1
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7 r represents the radial displacement of the fluid and p/ and 4>/ are 
the Eulerian variations of the equilibrium values of the pressure p and 
the gravitational potential 4>, respectively, g is the local acceleration 
of gravity and A/*  the stellar mass. a>2 is the dimensionless square 
of the angular frequency of oscillation, a2.

The adimensional quantities Vg, U, Ci and A*,  inherent to the 
non-perturbed model, are defined as

V
T
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(10)

2 THE DIFFERENTIAL EQUATIONS 
OF NON-RADIAL PULSATIONS

The differential equations that govern linear, non-radial pulsations 
of spherical stars in the adiabatic approximation are (Unno et al. 
1989)

dyi
dx

= (Vg - 3) + £(£ +1)
Ci a>2 72 + Vg ys, (1)

d>2
dx

— (Ci <x>2 — A*)  yj + (A*  — U + 1) y2 — 31*  73> (2)

dy3
dx

= (1 - U) y3 + y4, (3)

dy4
dx

= U A*  yi+UVgy2 + [£(£ + 1) - U Vg] y3 - U y4, (4)

where.', is the independent variable defined as v =r /R,r is the radial 
coordinate and R is the stellar radius. The dependent variables are 
defined as

dlnMr dn p r3
dlnr Mt

A*  = - N2 =r 
g

1 dlnp 
H dr

(11)

(12)

(13)

Here, T i is the first adiabatic index, c2 is the square of the local 
velocity of sound, MT is the mass contained in a (non-perturbed) 
sphere of radius r and V2 is the Brunt-Vaisala frequency.

Equations (1)—(4) have to be supplemented with the adequate 
boundary conditions. The outer boundary conditions are given by 
Unno et al. (1989)

71 - 72 + 73 = 0, 
(£ + 1) 73 + 74 = 0,

71 = b
(14)

where the last equation is the normalization condition, usually em
ployed in previous works. For the case of the central boundary con
ditions, these are imposed by the very particular conditions present 
in SDs. At the last fluid layer of the model (that may be limited by 
crystallization of the normal matter underlying layer or directly by 
the SQM core, see below), radial displacement and the perturbation 
of the gravitational potential must be zero. Thus,

71 =0; 73 = 0. (15)

3 PROPERTIES OF SD STARS AS 
NON-RADIAL, ADIABATIC PULSATORS

In order to study the pulsational properties of SDs, we have to em
ploy a detailed stellar model. As described above, we will con
sider a model of a carbon-oxygen WD of 0.525 Mq that has re
vealed (Benvenuto et al. 2002) as adequate in accounting for the
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Log (1-Mr/M.)

Figure 1. The chemical composition (in mass fraction) of the normal matter 
portion of the models considered here. The star has a thin hydrogen-rich 
(solid line) layer above a helium layer (dotted line). The stellar core is made 
up of carbon (short-dashed line) and oxygen (long-dashed line). The SQM 
core is not included in this figure.

pulsationalproperties ofthe well-studied DAV G117B15A.2 In Fig. 
1, we show the chemical profile of the model as a function of its 
mass. This model is modified by the inclusion of a SQM core. In 
this paper, we will consider different mass fractions for the SQM 
core (2 sqm = Msqm/M t where A/sqm and M t are the mass of the 
SQM core and the mass of the star, respectively. These fractions are 
Qsqm = 10 2, 10 ’. 10 4 and IO5. For these values of <2sqm, the 
density pB at the bottom of the normal matter envelope is log pB = 
10.0136, 8.3326, 7.1723 and 6.6138, respectively (cgs units), while 
in the case of no SQM core the central density is log />._ = 6.3805. 
For models of the mass and chemical composition considered in this 
paper, we have pB « for <2sqm 5 x 10 2. In this work, we 
will not consider SQM cores as massive as this because we think it 
represents an absolute upper limit, unlikely to occur in nature.

2 Note, however, that this mass value is somewhat lower than the minimum
mass for a carbon-oxygen WD with solar composition(see Han, Podsiad- 
lowski & Eggleton 1994). The issue of the dependence of the value of the
minimum mass for a WD of a given chemical composition in the presence 
of a SQM core is not trivial and would demand a detailed numerical study
beyond the scope of the present work.

As already shown (see e.g. Glendenning et al. 1995a,b; Ben
venuto & Althaus 1996a), SDs have a very steep density profile near 
the SQM compact core. The density profile of the normal matter 
phase is shown in Fig. 2 for the case of the models considered 
in this paper. Interestingly, for core mass fraction values in the 
range considered here, compression of the normal material may be 
so strong that the lowermost layers may undergo crystallization. 
Crystallization is due to the Coulomb interactions, whose strength 
is determined by the coupling constant T given (for the case of a 
one-component plasma) by

(Ze)2 
akT

(16)

Log r [cm]

Figure 2. The density profile forthe normal matter part of models of SDs for 
the cases in which £2sqm = 10-2, 10-3, 10-4 and 10-5 represented with 
short dashed, long dashed, dot-short dashed, and dot-long dashed lines, 
respectively. For comparison, we show the density profile corresponding to 
a standard WD of the same mass.

where Ze is the charge of the nucleus and a the radius of the Wigner- 
Seitz sphere given by 47td3/3 = l/pn (pn is the nuclei number 
density).

The critical value for crystallization, T = 171, is attained for the 
case of a 0.525 Mq SD, even inside the instability strip of hydrogen
rich WDs if Q sqm > 5 x 10-4. This interesting behaviour is shown

Log r [cm]

Figure 3. The Coulomb coupling constant as a function of the radius of 
the models for the normal matter part of models of SDs shown in Fig. 2. 
Lines have the same meaning as there. In solid line, we show the coupling 
constant for the case of a standard WD of the same mass located inside the 
instability strip corresponding to DAVs. Horizontal short dash-long dash 
line represents the critical value of the coupling constant (T = 171) above 
which normal matter should undergo crystallization.
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Figure 4. The inner profile of the quantities that determine the non-radial 
pulsation of stellar models as a function of the value of 2 SQM- Lines have 
the same meaning as in Fig. 2. We also show the curves corresponding to a 
standard WD. Note the enormous differences between the profiles of these 
functions corresponding to SDs and standard WDs. This is the key ingredient 
in the analysis presented in this paper. For more details, see the main text.

in Fig. 3. For lower <2sqm values, the material is fluid for all the 
normal matter phase of the star. We should remark here that for 
the case of standard carbon-oxygen, intermediate mass WDs, the 
onset of crystallization occurs for temperatures far lower than those 
corresponding to the DAV instability strip.

Now that we have defined the structural properties of the object, 
we are in a position to study the pulsational properties of the object. 
The main ingredients are the coefficients of the differential equations 
(equations 1^1) that determine the non-radial pulsation of the model 
given above: Vg (equation 10), U (equation 11), Ci (equation 12) 
and A*  (equation 13). In Fig. 4, we show the profile of these four 
quantities as functions of the fractional radius. We note, as it may 
be expected, that the profiles suffer from enormous variations due 
to the presence of a SQM dense core as compared with the case 
of standard WDs. As a matter of fact, the asymptotic behaviour for 
small values of the radius is completely changed. While in the case of 
standard WDs (depicted in solid lines in the panels of Fig. 4) U and 
Ci tend to constant values, in the case of SDs, these functions drop 
precipitously showing a dependence &. r~3. The opposite situation 
is found for Vg and A*,  while in the standard case these functions 
drop to zero, for the case of SDs we find that they have a minimum 
(very dependent upon the exact value of 2sqm) and tend to grow for 
lower values. This fact clearly shows that the pulsational properties 
of SDs and WDs should be deeply different.

r/R*

Figure 5. The ‘propagation diagram’ formodels of SDs with Q sqm = 10-2, 
IO-3, IO-4 and 10-5 and for a standard WD model of the same mass. The 
lines have the same meaning as in Fig. 2. Curves labelled with N2 depict the 
Brunt-Vaisala frequency while the lines labelled with L2 represent the Lamb 
frequency for dipolarmodes. The three horizontal dashed lines depict, in the 
scale of the figure, the three main modes (215, 271 and 307 s) observed in 
G117B15A. The regions for oscillatory behaviour are those in which cr2 < 
A2; L2 (g-modes) or cr2 > A2; L2 (p-modes). If these conditions are not 
fulfilled simultaneously, then we have an evanescent behaviour. Note that the 
presence of a SQM core gives rise to a sharp increase of the Brunt-Vaisala 
frequency very near the centre of the star. This, in turn, gives rise to the 
appearance of a further oscillatory cavity at the bottom of the normal matter 
part of the star. This supplementary cavity is responsible for the drastic 
changes (to be shown below) in the spectrum of non-radial oscillations of 
SDs as compared to standard WDs. In the inset, we show, in more detail, the 
Brunt-Vaisala frequency at the bottom of the normal matter portion of the 
considered models.

This is even more clear in Fig. 5 where we show the propagation 
diagram for the considered models. In the reference frame of the 
so-called local analysis [see section 15.2 of Unno et al. (1989)], we 
consider the coefficients of the equations of oscillation as constants 
and look for an exponential solution of the form exp(i£rr), where kT 
is given by

, (a2 - L2) (a2 - 2V2)1L ■ (17)

For an oscillating solution, we need kT to be real. This will be 
fulfilled in two separate situations: a2 < V2; L2 (g-modes) or a2 
>N2; L2 (p-modes). In zones in which none of these conditions 
is satisfied, the wave is exponentially decreasing. For the case of 
standard WDs, g-modes are oscillating in the outer part of the star. 
For example, for the case of the tree modes observed in G117B15A, 
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these modes oscillate for r/R*  > 0.40 (see Fig. 5) while for layers 
with lower radii the waves are exponentially decreasing.

Now, the enormous modification of the innermost structure of 
the object due to the presence of a compact SQM core produces 
an extremely sharp increase in the Brunt-Váisálá frequency. As it 
is clear in Fig. 5, there appears a completely new region, near the 
SQM core, in which we simultaneously have a2 <N2 ; L2, and, thus, 
this is a new region in which there is a true oscillatory behaviour. 
As a matter of fact, it is immediate to realize from equation (17) 
that the wave number of the waves in this region will be extremely 
short. Thus,/or period values in the range observed for DAVs the 
modes will have a very large number of nodes, and the order of 
the oscillation will be very large. This is in sharp contrast with the 
well-known phenomenology of g-modes in standard WDs.

The calculations presented in this paper have been performed 
with a computed code tailored for computing pulsations of WDs. 
Consequently, we are employing the code in conditions very differ
ent from those attained in WD interiors, for which it is well tested. 
We feel it is fundamental to have at hand a simple model that re
produces the peak in the Brunt-Váisálá frequency near the SQM 
core. Such a model, based on very simplified physics, is presented 
in Appendix A. There, it is shown that the above-mentioned peak 
in the Brunt-Váisálá frequency is a real effect and not a numerical 
artifact. This result supports the numerical results presented in the 
main part of the paper.

Due to the very short wave number of the modes in the layers 
just outside the SQM core, it is adequate to treat the non-radial 
oscillations in the frame of an asymptotic analysis for modes with 
low t and high order. An important result of the asymptotic theory 
is that the separation of consecutive g-modes is given by

r n
V =------------- / —dr, (18)

nrt rJr,
where ra and rb are the turning points at which we have kT = 0. Now, 
for fixed limits of integration (as it is the case of sufficiently high 
order modes) we find that the separation of consecutive periods is 
constant.

In the case of SDs, the lower limit of the oscillating cavity will 
correspond to the lower limit of the fluid phase (see above). Now 
the spike in the integrand N/r is so sharp that consecutive modes 
will be far closer than for the case of standard WDs. This is a 
very distinctive characteristic of the pulsation of SDs that is directly 
comparable with observations.

4 ASYMPTOTIC TREATMENT NEAR THE 
COMPACT CORE

From the results of the previous section, it is clear that the modes 
will have a strongly oscillating behaviour in the innermost cavity. 
Because of this reason, an asymptotic treatment of the problem for 
this region is very adequate. We believe so because in this case 
we will be able to separate two largely different behaviours, one in 
which the modes have a long wavelength (as it is usual for WDs in 
the standard cavity for g-modes) and another with extremely short 
wavelengths (in the innermost cavity due to the existence of the 
compact SQM core).

Specifically, we will try to get a function that will describe the 
modes throughout the entire innermost resonant cavity up to the 
evanescent zone which separates the inner and the standard reso
nant g-mode cavities. In doing so, we will employ this function 
as a boundary condition for performing a detailed, self-consistent 
numerical calculation of the eigenmodes for the entire stellar model.

In performing the asymptotic analysis of the modes, we will 
closely follow the treatment presented in Unno et al. (1989), and 
assume the Cowling approximation (i.e. we neglect the perturba
tions on the gravitational potential). We should remark that in the 
case of the very particular stellar models we are studying, and for 
the innermost resonant g-modes cavity, the Cowling approximation 
is almost exact. At these conditions, the solution of the equations of 
motion can be written in terms of the Airy functions as 

71,2 « (aAz(f) + fiBi(lff). (19)

These functions can be approximated by means of their asymptotic 
expansions

aÆ(?) + ^(?)^7^ÿ7î

(f >0)

1

V^1/4 ; (f < 0).

Here, < is given by

f = sign(7r2)

(20)

(21)

where rtp is the position of the turning point.
In the oscillating zone (below the turning point), we have a <gtL t; 

V; thus kT ~ y/k(f + 1)V/or. On the contrary, in the evanescent 
zone we have L . o and N a; consequently kT ~ + 1)/r.

As stated before, at the bottom of the fluid phase we have to set 
the radial displacement to zero. This provides the equation

fi = a tan (22)

where b stand for the bottom of the fluid phase.
Finally, the boundary conditions at the fitting point are given by

71 = a

a2rf
yt = a —

g

1
®

Here, ® is given by

and

(23)

(24)

(25)

(26)

The value of the amplitude a will be found as one of the results 
of the numerical calculation of the g-modes for the whole stellar 
model.

5 NUMERICAL RESULTS

In this section, we will describe the results found in computing 
the dipolar g-modes for the full stellar models. Here, we employ 
the boundary conditions given by equations (23) and (24) for the 
bottom of the grid in which we divided the stellar model.
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r/R.

Figure 6. The Brunt-Vaisala frequency overthe radius of the starformodels 
of SDs with Q sqm = 10 2, IO2, 10 4 and I O '2 and for a standard WD of 
the same mass. Lines have the same meaning as in Fig. 2. In the inset, we 
show in more detail the profile of this function at the bottom of the normal 
matter portion of the models considered here. The integral of this function 
between turning points provides the period separation between consecutive 
modes.

The numerical calculation of the spectrum is very time consuming 
because of the enormous number of g-modes found in the period 
interval detected in variable WDs. Because of this reason, we will 
restrict ourselves to modes with periods between 150 and 500 s. The 
main numerical results we found are presented in Figs 7-10 where 
we display the period spacing of consecutive modes, the coefficient 
a of equations (23) and (24) and the amplitude of the eigenfunction 
y>2 at the stellar surface as a function of the period of the modes.

In all the considered cases (2 sqm = 10-2, 10 3, 10~4, and 
10 '2 ). we find that the period spacing between consecutive modes 
is below 1 s. This is in sharp contrast with the case of the same 
stellar model without any SQM core (shown in Fig. 11), for 
which period spacing is few tens of seconds. For all the period 
interval considered, we find ’.v at the stellar surface (proportional to 
horizontal displacement) is of the order of the radial displacement. 
Remarkably, the shortest period spacing corresponds to the case 
of Qsqm = 10 4. This is due to the fact that for such a SQM core 
mass fraction, there occurs the sharpest peak in the Brunt-Vaisala 
in non-crystallized normal matter.

The coefficient a which is proportional to the amplitude of the 
oscillation at the inner resonant cavity is a function that undergoes a 
sharp variation in the considered period interval. The square of this 
amplitude is directly related to the energy associated with the modes. 
Thus, modes with periods near to any of the minima should be far 
easier to excite than others between consecutive minima. Thus, the 
spectrum of dipolar oscillations of SDs should be characterized by 
several clusters of modes well separated by each other. These min
ima correspond to period values at which the outer, normal matter 
envelope has a node at the fitting point. This is largely determined 
by the structure of these normal layers. Each of these clusters should 
be formed by a large number of modes nearly evenly spaced.

Pk M

Figure 7. Period spacing of consecutive modes (bottom panel), the coef
ficient a of equations (23) and (24) (middle panel) and the amplitude of 
the eigenfunction y2 at the stellar surface (upper panel) as a function of the 
period of the modes for the case of Q sqm = 10 2.

6 DISCUSSION AND CONCLUSIONS

From the results presented above, it is clear that the spectrum of non
radial pulsations of strange dwarf stars (SDs) is completely differ
ent from the one expected for a standard WDS without any compact 
core. We find that the spectrum of dipolar oscillations of SDs should 
be characterized by several clusters of modes well separated by each 
other. These clusters should be located on the minimum of the am
plitudes at the fitting point we considered (at M).10 R, see previous 
sections for further details) which are shown in the middle panels 
of Figs 7-10. At these period values, we have a small amplitude for 
the oscillations near the SQM core, which will allow them to reveal 
at the stellar surface with a noticeable amplitude. Also, at these pe
riods, the kinetic energy associated to the modes will be far lower 
than for other modes with larger amplitudes (note the logarithmic 
vertical scale of the middle panels of Figs 7-10).

Inside the cluster of modes, we expect the occurrence of a 
large number of modes nearly evenly spaced. This is the very 
characteristic of SDs. In the case of a rotating WD, we should ex
pect a splitted triplet (related to the azimuthal quantum number m = 
— 1, 0, 1). Here, the number of modes inside each cluster should be 
so large that they cannot be interpreted as due to, e.g., rotation (we 
would need to have a very large harmonic degree I). Consequently, 
this should be considered as a direct evidence of the presence of a
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Figure 8. Same as Fig. 7 but for the case of 2 SQM = 10 3 Figure 9. Same as Fig. 7 but for the case of Q sqm = 10 4

pk w

high-density SQM inside a WD. Thus, these results may be con
sidered as a direct indication that, in some sense, WDs may be 
envisaged as SQM detectors as recently proposed in Paper I.

A relevant point is related to the conditions at which observa
tions of variable WD would be able to reveal the existence of a 
SQM compact core. As discussed above, we have found that there 
should exist cluster of modes separated by large gaps in period. 
However, in order to estimate the actual number of modes excited 
to observable amplitudes in each cluster we have to perform a deeper 
analysis considering the energetics of the modes in SDs. We plan 
to present such study in a subsequent publication. In any case, we 
can perform a preliminary estimation of the requirements for an 
observation to be useful in detecting a SQM core. We arbitrarily 
considered a signal containing a cluster of 20 modes of equal am
plitude and evenly spaced in frequency with spacing Am = 0.01, 
centred in a> = co0 and performed its Fourier transform to get the 
spectrum of frequencies A(m). If T represents the time interval of 
observations, we find that the structure of modes of the cluster is 
noticeable for T sa 900 (see Fig. 12). In other words, we need Aa>T 
^10. We can employ this result in order to estimate the minimum 
length of observation to reveal the presence of a SQM core, we 
find T > 110(P/100 s)2(AP/1 nisi d, where AP corresponds 
to P k+i — Pt- For a cluster of modes centred at P = 300 s, we 
find that (employing the AP values given in the previous section) T 
should be larger than 2, 50, 200 and 10 d for the cases of 2 sqm = 

10 2, IO;. 10 4 and I On respectively. We think that by employing 
the Whole Earth Telescope (see e.g. Winget et al. 1990) it is possible 
to perform an analysis with the hope of detecting a period clustering 
like the one found here even with the presently available observa
tional facilities. In any case, note that, in performing this rough 
estimation we have considered ideal data without any noise; clearly 
we need a further study of the detectability of SQM cores in WDs.

Finally, we should remark that intermediate mass WDs ('i.'as 
0.6 Mq) are particularly suitable as SQM detectors because the 
compression in the bottom of the normal matter envelope is not 
strong enough to induce full crystallization [see fig. 12 of Benvenuto 
& Althaus (1996a)]. However, in massive WDs (MWD 1.0 MO) 
the effects due to the presence of a SQM core on the oscillation 
spectrum will be barely noticeable. In such a case, for the range of 
effective temperatures at which variable WDs are observed, theory 
predicts that even standard WDs should have already crystallized a 
large portion of the star. If a SQM core is present, the crystallized 
portion of the star will be even larger. This inhibits the oscillation of 
the layers in which the Brunt-Vaisala frequency peak occurs, and 
thus the effect on the oscillation spectrum induced by a SQM will 
be hardly distinguishable.
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Figure 12. The Fourier transform A(a>) of a cluster of 20 modes of equal 
amplitude and evenly spaced in frequency with spacing A® = 0.01, centred 
in a> = a>o- T represents the time interval of observations. Note that in order 
to find the structure of a cluster of frequencies we need to have data for T sa 
900. For further details, see the text.

Pk [s]

Figure 10. Same as Fig. 7 but for the case of fisQM = 10 5

Figure 11. The period separation of consecutive dipolar modes for a stan
dard carbon-oxygen WD star of 0.525 as a function of the pulsation period. 
Solid dots denote the position of the modes.
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APPENDIX A: AN APPROXIMATE, ANALYTIC 
TREATMENT OF THE BRUNT-V AIS AL A 
FREQUENCY NEAR THE SUPERDENSE CORE

In the case of SDs, the object attains conditions of higher densities 
and steeper slopes in most of the relevant physical quantities com
pared to the case of a standard WD object. Then, in our opinion, it 
is highly desirable to have at hand an analytic, approximate treat
ment for the Brunt-Vaisala frequency at the bottom of the normal 
matter envelope to be confident with the numerical results provided 
by a code working at conditions at which it has not been tested pre
viously. We should remark that there the Brunt-Vaisala frequency 
shows a steep increase, which is responsible for g-mode resonance 
at these layers.

In order to keep the analytic treatment as simple as possible, here 
we will consider the plasma as a mixture of ideal nuclei together 
with degenerate electrons, neglecting the Coulomb corrections, but 
keeping thermal effects to second order.3 Moreover, as at these lay
ers the density is high enough to consider that the electron gas is 
relativistic.

3 This is essential, since at T =0, the Brunt-Vaisala frequency vanishes.

We found it convenient to employ an expression for the Brunt- 
Vaisala frequency different from equation (13) (Lang 1999, p. 320) r/R,

Figure Al. A comparison of the numerical calculation of the Brunt-Vaisala 
frequency at the bottom of the normal matter envelope (solid lines) with the 
analytic treatment given by equations (Al), (A3), (A5) and (A8) (dotted 
lines). Curves are labelled with their corresponding value of 2 SQM

2= g£d£
Cp dr’ 

(Al)

where Cp is the specific heat at constant pressure and S is the specific 
entropy, both per gram of stellar material, and

d In p
31nT

(A2) and

As it is well known, at the very high degree of degeneracy present 
at these stellar layers, pressure is dominated by electron degener
acy, while thermal effects are due to non-degenerate nuclei. Then, 
neglecting the contributions of degenerate electrons we have

3 R
Cp = - — , (A3)

2 p.o

where /vis the mean molecular weight per nuclei defined as 1 //z0 = 
52, X, /A, (V and A, are the mass fraction and the atomic weight 
of the i component of the plasma) and the entropy is

(A7)

where we assumed a molecular weight per electron /ve = 2. Calcu
lating the derivative up to second order in temperature, we find

6mp R T 3rt2 / kT 
me2 p0 x x2 \mc2 (A8)

+ |— In (/,/)
2 p.o

(A4)

where symbols have their standard meaning. Taking the derivative 
of the entropy, we find

dS
dr

2V), (A5)

where V = d In T/d In P.
In computing <5 we will consider that the pressure and density are 

given by

Now, we are in aposition to compute the Brunt-Vaisala frequency 
provided by the analytic treatment. Considering the SD models de
scribed in the main part of the text, we calculate V2 by employing 
equations (Al), (A3), (A5) and (A8) and considering these layers 
as isothermal (V = 0). The results are displayed in Fig. Al where 
it can be noted that the analytic calculations are very close to the 
numerical results for a wide range of values of masses of the SQM 
compact core. The differences between both treatments should be 
attributed to the fact that in the analytic we have ignored interac
tions and the temperature gradient. In fact, VT =>= 0 because of the 
neutrino emissivity of the SQM core.

From these results, it is clear that the peak in the Brunt-Vaisala 
frequency at the bottom of the normal matter envelope is areal effect 
and not a numerical artifact. This justifies the treatment performed 
in the main part of the present paper.

R m4c5
—pT -I---------T
p-o 6n2K3

(A6)
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