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Abstract

In this text we attempt to unify many results about 
the K operator based on a new theory involving 
graphs, families and operators. We are able to build 
an “operator algebra” that helps to unify and auto­
mate arguments. In addition, we relate well-known 
properties, such as the Helly property, to the families 
and the operators.

As a result, we deduce many classic results in clique 
graph theory from the basic fact that CS = I for 
conformal, reduced families. This includes Hamelink’s 
construction, Roberts and Spencer theorem, and Ban- 
delt and Prisner’s partial characterization of clique- 
fixed classes [2]. Furthermore, we show the power of 
our approach proving general results that lead to poly­
nomial recognition of certain graph classes. 
Keywords: Helly graphs, intersection graphs

1 Introduction

In this text graphs are finite, undirected, and sim­
ple. In addition, we will not be concerned with the par­
ticular representation of graphs, so isomorphic graphs 
will be the same graph for us.

The clique operator (denoted by A") takes a graph 
G and returns the intersection graph of the maximal 
cliques of G. Besides being among the best studied 
graph operators (such as the line graph, the block 
graph and the power graph operators, for instance — 
see Prisner’s book Graph Dynamics for a review [14]), 
K is far beyond the most interesting one.

Many questions about K are still open. Probably 
the most important of them is the one related to the 
computational complexity of recognizing clique graphs 
(i.e., graphs that are A'(G) for some G). Even though 
a characterization of clique graphs due to Roberts and 
Spencer [16] implies that the problem is in NP, still 
nobody knows whether it is polynomially solvable or 
NP-complete.

A good portion of the research on the clique oper­
ator has focused on graph classes. Images under K of 
chordal graphs, clique-Helly graphs, trees, and many 
others have been characterized. Many properties of 
these images have also been discovered. For instance, 
Escalante [3] has shown that the class of clique-Helly 
graphs is clique-fixed.

In the last few years [8, 9, 10] we have been trying 
to unify the results about the K operator based on the 
following:

• Relating graphs to families. Although the K op­
erator takes graphs and returns graphs, it can 
be seen as a two-step process: first construct the 
family of cliques; then construct the intersection 
graph. The intermediate object is a family. Fam­
ilies are equivalent to hypergraphs, and they have 
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an important feature that is of great help: duality. 
Graphs lack duality.

• Defining basic operators. Thus, the K operator 
can be written as K = LG, where C is the oper­
ator that returns the family of cliques of a graph, 
and L is the intersection graph operator (takes a 
family and returns its intersection graph). Two 
other basic operators are the dual operator D for 
families (takes a family and returns another fam­
ily where sets and points are interchanged, and 
the “belongs to” relation is inverted), and the two- 
section operator S defined as S = LD. These 
operators satisfy D2 = I (the identity for fami­
lies) and SC = I (the identity for graphs). Other 
operators can be defined, such as U, which adds 
singletons to a family, or M, which keeps only 
maximal sets in a family. Thus, in such a way we 
are able to build an “operator algebra” that helps 
to unify and automate arguments.

• Relating properties to the families and the op­
erators. In the literature a number of important 
properties appear, such as being a conformal fam­
ily (when CS(E) = being a Helly family
(when D(y) is conformal), being a reduced family 
(when M(fF) = J7), and being a separating fam­
ily (when D(fF') is reduced). Besides, the opera­
tors themselves also carry useful properties. Op­
erator C always returns conformal, reduced fami­
lies. Operator U separates, while maintaining the 
image under S (i.e SU = S). Operator M re­
duces, while maintaining the image under S (i. 
e. SM = S'). Relating these properties to the 
families and the operators also helps to unify and 
automate arguments.

As a result of our research we have reached the con­
clusion that many important results in clique graph 
theory rely on the fact that CS = I for conformal, re­
duced families. This includes Hamelink’s construction, 
Roberts and Spencer theorem, and Bandelt and Pris- 
ner’s partial characterization of clique-fixed classes [2]. 
We demonstrate the power of our approach proving 
general results that lead to known polynomial recog­
nition of certain classes.

The remaining of this paper is organized as fol­
lows. Section 2 contains the basic definitions, includ­
ing those about the operators. Sections 3 and 4 con­
tain definitions and results about several graph classes 
previously studied, but with proofs in the context of 
our new theory. Section 5 presents our concluding re­
marks.

2 Definitions and basic results

2.1 Graphs, families, and their classes

Next we introduce graphs, families, and their 
classes. To minimize misunderstanding throughtout 
the text, we try and use a somehow consistent nota­
tion, summarized as follows.

Vertices: lowercase roman letters (u, u, ...).

Graphs: uppercase roman letters (G, H,...).

Graph Classes: boldface names (Chordal, ...).

Elements: lowercase roman letters (u, v, ...).

Sets: uppercase roman letters (A, B,...).

Families: calligraphic letters (tF, A, B, ...).

Family Classes: slanted names (Conformal, ...).

In addition, the following diagram shows “hierar­
chical” roles of these objects.

elements

graph family
classes classes

graphs
I

families
I

vertices sets

2.1.1 Graphs

For a set V, let [I']2 denote the set of all two-element 
subsets of V. A graph is a pair (V, E) where V is a 
finite, nonempty set and E C [V]2. The elements of V 
are vertices and the elements of E are edges. Notation 
for edges: [u, v} = uv or vu.

Two graphs (V,E) and (V',E') are isomorphic 
when there is a bijection a : V e-> V' such that 
a(E) = E', where a(E) = {«(e) | e £ E} and 
a(uv) = a(u)a(v). This is an equivalence relation. We 
will not distinguish isomorphic graphs and will gener­
ally write G = H when G and H are isomorphic.

A class of graphs is a subset of graphs closed under 
isomorphism.

A graph (V,E) is a subgraph of a graph (V',E') 
when V C V' and E C E1. Notation: (V,E) < 
(V',E'). In addition, (V,E) is an induced subgraph 
of (W,E') when E = E' C [V]2. Notation: (V,E) C 
(V',E').
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Notice that G C H implies G < H.
A set C of vertices of a graph (V, E) is complete 

when any two vertices of C are adjacent. A maximal 
complete subset of V is called a clique.

2.1.2 Families

A family is a pair (I,F) where I is a finite, nonempty 
set and F is a mapping from I to the class of all sets 
such that F(z) is a finite, nonempty set for all i G I. 
We usually denote the set F(i') by Ft and a family 
(I, F) by (Fi fi^i. We will call elements the elements 
of U?e/ Fi and members the sets Fj.

Two families F = (F;)j.e/ and A = (Aj)jej are 
isomorphic when there are two bijections a: I i-> J 
and b : U.,., Aj such that b(Fi) = Aa(^
for all i G I. This is an equivalence relation. We will 
not distinguish isomorphic families and will generally 
write F = A when F and A are isomorphic.

A class of families is a subset of families closed 
under isomorphism.

A family (Fi fi^i is a subfamily of (or: is contained 
in) a family (Aj)jEj when I C J and F; = Aj for all 
i G I. Notation: (Fj)jS/ C (Aj)jGj.

There is still another important relation among 
families:

A family (Fj).j6/ is below another family (Aj)jej 
when there is a mapping a : I —> J such that Fj C 
Aa{i.) for all i e I. Notation: (Fj)ieJ <

In this case we also say that (Aj)Jgj is above

This relation is a preorder, that is, it is reflexive 
and transitive, but not antisymmetric. However, it is 
antisymmetric (and hence a partial order) for reduced 
families, defined later in Section 2.3.

Notice that F C ,4 implies F < A.

2.2 Operators

Let Graph be the class of all graphs and Family be 
the class of all families.

We define the intersection operator L : Family —> 
Graph as follows. Given a family F = (Fj)jG/, L(F) 
is the graph (F, F) where F = I and E = {ij | i 
j and Fj Cl Fj 0}.

We define the family-of-cliques operator C : 
Graph —> Family as follows. Given a graph G = 
(F, F), C(G) is the family (Fj)jG/ where I is the set 
of all cliques of (F, F) and Fj = i for all i G I.

We define the dual operator D : Family i-> Family 
as follows. Given a family F = (FJ,e/, P(F) is the 
family (A_,)jej where J = and Aj = {j G
/1; e Fi}.

It is important that families do not have empty 
members. Otherwise all we would get is that F2(F) 
would be a subfamily of F instead of the stronger re­
sult in Theorem 1.

We define the two-section operator S : Family *—> 
Graph as follows. Given a family F = (Fj).j€/, 
S(F) is the graph (F, F) where F = |Jie/ F, and 
F = {uu | there is i G I such that, u,v G F,}.

Theorem 1 If A, F are families, G and H are 
graphs, we have:

• FC A=^ L(F) C ¿(.4)

• F < A L(F) < L(A)

• GG II C(G) C C(H)

• G < H => C(G) < C(H).

. f c A => F(F) < D(A)

. F<A^D(F) <D(A)

• D2(F) = F for every family F.

. FC .4 0 S(F) C S(_4)

. F<A=> S(F) < S(A)

• SC(G) = G for all graphs G.

• LD = S and SD = L

2.3 Reduced and separating families

A family (Fj);e/ is reduced when i / j => F,- 2 Fj 
for all pairs i,j G I.

It is straightforward to verify that this property is 
invariant under isomorphism, so we can speak of the 
class of all reduced families, namely, Reduced.

Theorem 2 If A and F are reduced families with 
A < F and F < A, then A = F.

Proof: Let F = (F,),f / and .4 = (A_j)jej. If F < A 
and A < F there are mappings a : I —> J and a' : J 
I such that Fi C .4n((1 for all i G I, and Aj C Foqjj 
for all j G J.

Then we have that

i U = i U -u»€/ jeJ
and

(1)
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But F is a reduced family then i = for all
i G I. Exchanging the roles of F and A we can also 
obtain that aa' is the identity. Hence a and a' are 
bijections. By (1), Fi = Therefore (Fi)iei and
GM are isomorphic. Hence F = A. □

Let (Fj.),-e/ be a family. We say that u G Uje/F; is 
separated by the family when P|/e/ Fi = {//}. A 
family is separating when it separates every element 
in U/g/Fj.

It is straightforward to verify that this property is 
invariant under isomorphism, so we can speak of the 
class of all separating families, namely, Separating.

The following theorem tells us that both properties, 
reduced and separating are dual.

Theorem 3 A family is separating if and only if its 
dual is reduced.

2.4 Operators for reduction and separa­
tion

In this section we introduce operators that make a 
family either reduced or separating, without changing 
its image under either S or L. So, we are looking 
at four operators: one that reduces maintaining the 
image under 5, another that separates maintaining the 
image under S, and two others that do these things 
maintaining the image of the family under L.

The first operator, called M (for “maximal sets”), 
acts in the following way. Given F = (Fj).j6/, throw 
away all F, properly contained in another F,/, then 
remove duplicates (if any), creating a subfamily. This 
operator has the following properties:

Theorem 4 For any family F we have:

• AI(F) is reduced.

• M(F) C F < .W(F)

• SM(F) = S(F).

Thus M reduces a family, maintaining its image 
under S.

The second operator, called U, acts as follows. 
Given a family F = (Fj)je/, it adds members of the 
form {//} for each u G Uig/M has the following 
properties:

Theorem 5 For any family F we have:

• U(F) is separating.

• F(F) < F C [/(F)

• SU(F) = S(F).

Thus U separates a family, maintaining its image 
under S.

The analogous operators for L can be readily ob­
tained from M and U since LD = S and SD = L.

Theorem 6 For any family F we have:

• DMD1F} is separating.

• LDMD(F) = L(F)

• DUD(F) is reduced.

• LDUD(F} = L(F).

2.5 Helly and conformal families

A family (F,)7Gj is called intersecting when Fj l~l 
Fj 0 for all pairs G I. A family (Fj)jGj is Helly 
or has the Helly property when all its intersecting sub­
families of the form (Fj)je/<, for 0 / I' C I, have a 
nonempty intersection.

It is straightforward to verify that this property is 
invariant under isomorphism, so we can speak of the 
class of Helly families. We denote by Helly this class.

Theorem 7 (Three-Point Condition) A fam­
ily (Fi)iEi is Helly if and only if for each triple 
x,y,z G Fj there is an element w G Fi with

|Fj n {x, y, z}| > 2 => w G Fj,

for all iel.

A family F is conformal when its dual is a Helly 
family. We denote by Conformal the class of all con­
formal families.

Theorem 8 (Three-Set Condition) A family 
(Fi)iei is conformal if and only if for each triple 
i,j, k G I there is an index I E I with

(FjnFJ)U(FJnFfc)U(F*nF i)CF,. (2)

2.6 Operators for conformalization and 
hellization

The reader may have noticed that a family can be 
made Helly by addition of elements, and can be made 
conformal by addition of sets. This section formalizes 
these results. It turns out that one can always make 
a family Helly maintaining its image under L, but not 
always under S. For conformal, the situation is dual: 
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one can easily conformize maintaining the image under 
S, but not, in general, maintaing the image under L.

Let us start with conformization. The composite 
operator CS performs the desired task. First, a useful 
lemma.

Lemma 1 If F is conformal then CS(F) C F.

Proof: Notice that a clique R in S(IF) is a clique in 
LD(F). Since D(.C) is Helly, and R is a maximal 
intersecting subfamily of D(fF), there is an element 
in its common intersection, which is a set in IF. 
This set contains R, and, by maximality of R, this 
set is actually equal to R. Then R is a member of F\ □

Theorem 9 For any family IF we have:

• CS(IF) is conformal and reduced.

• SCS(fF) = S(R)

• Family IF is conformal if and only if CSlfF) =
M(IF)

• If IF is conformal and red,need, then CS(F) = F

• If IF' is any conformal family with S(F') = S(IF), 
then M(F') = CS(tF).

Proof: The first statement is true because the family 
of cliques of any graph is conformal and reduced. In 
fact, it satisfies the Three-Set Condition, because (F,ri 
Fj) U (Fj n Ffl) U (Fk A Fi) is a complete set whenever 
Fi, Fj, and Fk are cliques. And every complete set is 
contained in some clique. Also, cliques form a reduced 
family because they are maximal complete sets.

The second statement is an immediate consequence 
of SC = I. For the third one, first note that F < 
CS(fF) for every family F. Together with Lemma 1 
and Theorem 2, this shows that families IF and CS(IF) 
are each one below the other one, that is, differ only 
by contained sets. Hence they have the same re­
duction, but since CS(F) is reduced, this implies 
CS(IF) = M(F). The reverse follows by noticing that 
IF is conformal if and only if M(IF) is conformal, by the 
Three-Set Condition. Of course, if IF is also reduced, 
then CS(IF) = IF, which is the fourth statement.

For the last one, notice that S(IF') = S(IF) implies 
CS(IF') = CS(IF). Since IF' is conformal, CS becomes 
M, and the result follows. □

We make a little digression here to offer the converse 
of the result IF < A => S(F) < S(A).

Theorem 10 If A is conformal, then S(IF) < S(A) 
implies IF < A.

Proof: We have

F < CS(F) < CS(A) C A.

The first relation is a general property of CS, the 
second is true by hypothesis and because C preserves 
<, and the third is a consequence of the conformality 
of A □

Coming back to our main theme, we have seen 
that CS produces actually a conformal, reduced family 
while maintaining S. This shows that S( Conformal) = 
Graph. Moreover, unlike operators M and U, this is 
essentially the only way to make a family conformal 
maintaining S, since any other such family differs from 
the one given by CS by contained sets.

On the other hand, there is no general technique for 
conformalization maintaining /.. Not all families can 
be fixed in this way.

Let us now look at hellization procedures. The situ­
ation is analogous. The operator DCSD = DCL pro­
duces a Helly family with the same L (showing that 
L(Helly) = Graph), and there is no way, in general, 
to produce a Helly family with the same S as a given 
family. Deciding which families are hellizable main­
taining S is equivalent to deciding which graphs are 
clique graphs.

2.7 Composition of operators

Compositions of the operators L, C, D, S have sev­
eral important properties. We already had the op­
portunity to see some trivial: DD is the identity for 
families, SC is the identity for graphs, LD = S, and 
SD = L. Table 1 shows the other possible compo­
sitions of these operators and what we know about 
them.

Table 1: Compositions of operators. A dash in­
dicates impossible composition.

L c s D
L - LC = K - LD = S
C cl = ir - CS = Ib -
s - sc = I - SD = L
D - DC - DD = I

“Only for Helly, separating families. 
6Only for conformal, reduced families.

In this table, I denotes the identity operador. We 
use the same letter for the identity in Graph as in 
Family.
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The composition LC is K by definition, of course.
The compositions CS and CL are very interesting. 

Under certain conditions they can be simplified to I 
and D, respectively, and this will play a key role in de­
termining the image under K of several graph classes. 
In Theorem 9 we saw that for CS previously. The 
result can be easily passed to CL by composing with 
D.

Theorem 11 We have

• Family F is Helly if and only if CL(F') = 
MD(F).

• If F is Helly and separating then CL(F) = D(F).

The behavior of these compositions leads to a trivial 
result about the injectivity of S and L.

Theorem 12 S is an injective operator for confor­
mal, reduced families. L is an injective operator for 
Helly, separating families.

In addition, the following is true: C(Graph) = 
Conformal A Reduced.

2.8 Complete edge covers

During our study of the clique operator, we often 
need to search for “a family of complete sets that cov­
ers all the edges of a graph”. For instance, Roberts 
and Spencer [16] look for such a family that has the 
Helly property. It is interesting to note that there are 
other ways of expressing this concept, one of them us­
ing the < relation for families, and the other using the 
S operator.

A technical detail: to handle isolated vertices cor­
rectly, we require that the family covers the edges and 
the vertices. For graphs without isolated vertices, cov­
ering the edges is enough.

Let G be a graph and F a family. We say that 
F = (Fj)jg/ is a complete edge cover of G = (V, E) 
when U = Ft, Ft is a complete set of G for each 
i G I, and uv G E => G I with u, v G Fj.

Define also A(G~) for G a graph as follows. If G = 
(V,E), A(G') is the family (Fi)iei where I = V’ U L, 
F, — i11} f°r 1 S U, and F, = {u, v} for i = uv G E. 
The family A(G) is the family of all vertices and edges 
of G.

1. F is a complete edge cover ofG.

Theorem 13 For a graph G and a family F the fol­
lowing are equivalent:

2. A(G) <F< C(G).

3. G = S(F).

Proof: 1) => 2): A(G) < F because all vertices and 
edges of G must be contained in a member of F. On 
the other hand each member of F is a complete set of G 
and it is contained in a clique of G. Hence F < C(G').

2) 3): By Theorem 1 we have that SA(G') < 
S(F) < SC(G). But both extremes of the inequality 
are G, and then S(F) = G.

3) => 1): Since G < S(F) all vertices and edges
of G are contained in some member of F. But also 
S(L") < G then all members of F are complete sets of 
G. Hence F is a complete edge cover of G. □

3 Classes

In this work we will be interested in several partic­
ular classes of graphs and families. This section sum­
marizes the definitions and some properties of these 
classes.

The operators of Section 2.2 were defined for graphs 
and families, but they can be extended to classes in the 
usual way. For instance,

L(Class} = {¿(JF) | F G Class},

and so on.

3.1 Family classes

Table 2 presents most of the family classes we study.
We have the following class containments:

Interval C RDTP-V C DTP-V C TP-V C Subtree

Interval C RDTP-E C DTP-E C TP-EPiHelly C TP-E

Interval C CircularArc

Apart from these we have the already defined 
classes Reduced, Separating, Helly, and Conformal. 
It is interesting to see how these classes relate to one 
another. Table 3 shows some of this information.

3.2 Graph classes

Each family class defined above can potentially lead 
to two graph classes, by taking its image under the 
operators S and L. Sometimes S (Class) = L(Class), 
but this is not true for any of the above families.

Table 4 shows the corresponding graph classes.
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Table 2: Family Classes.

Class A family belongs to this class when 
its instances satisfy ...

Subtree

TP-V

TP-E

DTP-V

DTP-E

RDTP-V

RDTP-E

Interval

CircularArc

there is a tree T such that 
V’(T) = U-£i Fi and each F) in­
duces a subtree of T.

there is a tree T such that 
V(T) = Ujer-Pi and each Fi in­
duces a path of T.

there is a tree T such that 
E(T) = |JJgJ Fi and each Fi in­
duces a path of T.
... there is a directed tree T such 
that V(T) = \J,ej F and each Fi 
induces a directed path of T.
... there is a directed tree T such 
that E(T') — U,e/ Fi and each Fi 
induces a directed path of T.
... there is a rooted directed tree 
T such that V(T) = (J.gi and 
each Fi induces a path of T.
... there is a rooted directed tree 
T such that E(T) = \JieI F, and 
each Fi induces a path of T.
... there exists a total order on 
Uie/ such that each Fj is an in­
terval with respect to this order.

there exists a circular order 
on / Fi such that each Fi is an
interval (arc) with respect to this 
order.

Table 3: The first table indicates which families are 
reduced, closed under M, closed under DUD, sepa­
rating, closed under U, and closed under DMD\ the 
second table indicates which families are Helly, closed 
under DCL, conformal, and closed under CS.

Class R M DUD S U DMD
Subtree N Y Y N Y Y
TP-V N Y Y N Y Y
TP-E N Y Y N Y Y
DTP-V N Y Y N Y Y
DTP-E N Y Y N Y Y
RDTP-V N Y Y N Y Y
RDTP-E N Y Y N Y Y
Interval N Y N N Y Y
CircularArc N Y N N Y Y
Reduced Y Y Y N N N
Separating N N N Y Y Y
Helly N Y Y N Y Y
Conformal N Y Y N Y Y

Class H DCL C CS
Subtree Y Y N Y
TP-V Y Y N N
TP-E N N N N
DTP-V Y Y Y Y
DTP-E Y Y Y Y
RDTP-V Y Y Y Y
RDTP-E Y Y Y Y
Interval Y Y Y Y
CircularArc N N N Y
Reduced N N N Y
Separating N Y N N
Helly Y Y N N
Conformal N N Y Y
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Table 4: Graph Classes.

Class L(Class) S (Class)
Subtree Chordal DuallyChordal
TP-V UV DuallyChordal
TP-E UE DuallyUE
TP-E A Helly UEH DuallyUEH
DTP-V DV DuallyDV
DTP-E DE Dually DE
RDTP-V RDV DuallyRDV
RDTP-E RDE Dually RDE
Interval Interval Indifference
CircularArc CA DuallyCA
Helly Graph S(Helly)
Conformal S(Helly) Graph
Helly A Conformal Helly Helly

In general by A (respectively DuallyA) we denote 
the class of graphs L(A) (respectively S(A)).

There is also a class Helly of graphs whose family 
of cliques satisfies the Helly property, that is, Helly = 
C~l (Helly).

4 Using the operators

Now we will prove several known results in the set­
ting of the present paper, and relate the constructions 
with the operators.

4.1 Intersection and two-section classes

We try to unify properties of all classes of graphs de­
fined as intersection or two-section graphs of a family 
class. Let A be a family class and L(A) (resp. S(A)) 
the class of all graphs obtained by intersection (resp. 
two-section) of families in A. First, we will obtain 
trivial characterizations for classes L(A) and S(A).

As we saw in Theorem 13, G = S(F) is equivalent 
to “F is a complete edge cover of G'”. It follows that 
G e S(A) is equivalent to “there is a complete edge 
cover of G in A.”

Theorem 14 If A C Conformal and Af(A) C A then

G e S(A) <t=$> C(G) e A.

Proof: If G = S(F) with T E A, then 
C(G) = CS(F) = M(F), because T is confor­
mal (see Theorem 9). However, this last family is in 
A, since A is closed under M. The converse is true

because SC = I. □

The dual of this Theorem is:

Theorem 15 If A C Holly and DAID(A) C A then

G e L(A) DC(G) 6 A.

Example 1 It is easy to see that Helly, Helly A 
Conformal, Subtree, TP-E A Helly, DTP-V, DTP-E, 
RDTP-V, and Interval are Helly. To prove that all of 
them are closed under DMD, a hint is to think that 
D AID (F) is the family obtained from F by deleting all 
dominated elements in F. Then, applying Theorem 15 
we obtain several results that have been obtained in dif­
ferent works by different authors:

Fulkerson-Gross’s Theorem [4], which characterizes 
interval graphs, Gavril’s results [5, 6, 7] for chordal 
graphs, UV-graphs, and RDV -graphs, and, the Clique­
tree Theorem [131 for DV-graphs and other families.

4.2 The behaviour of K

In this section we will show how we can obtain re­
sults related to the clique operator. First, we will ob­
tain a trivial result about clique-families of graphs in 
L(A), from Theorem 11.

Theorem 16 If A C Helly then CL(A) = AID(A).

The following corollary gives a sufficient condition 
for all the graphs obtained as intersection graphs of 
families in A to have the Helly property in their clique­
family.

Corollary 1 If A C. Helly A Conformal then L(A) C 
Helly.

Proof: By Theorem 16 we have CL(A) = MD(A1). 
But D(A) is Helly because A is conformal, and 
subfamilies of Helly families are also Helly families. □

Example 2 Since DTP-V, DTP-E, RDTP-V and 
Interval are Helly and conformal families, we obtain 
that the clique family of graphs in each of DV, DE, 
RDV and Interval have the Helly property. In other 
words, the classes DV, DE, RDV and Interval are 
contained in Helly.

In the following theorem we will see how the be­
haviour of the clique operator is similar in some classes 
of intersection graphs.

Theorem 17 [8, 9] If (i) A C Helly, (ii) DMD(A) C 
A, and (Hi) U(A) C A then KL(A) = S(A).
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Proof:

KL(A) = LCL(A)
= LAID (A)
= SDAID(A)
Ç 5(A)

because K = LC 
by Theorem 16 
because L = SD 
by (ii) .

Conversely

5(A) = SU(A)
= LDU(A)
= LCSDU(A)
= KLU(A)
Ç A'L(A)

because SU = S 
since S = LD
DU (A) reduc., conf. (?) 
K = LC and L = SD 
by (¿¿¿) .

□

Example 3 As we said previously Helly, Helly A 
Conformal, Subtree, TP-E A Helly, DTP-V, DTP-E, 
RDTP-V , and Interval are Helly families closed un­
der DMD. It is trivial that all of them are also closed 
under U. Then, applying Theorem 17 we obtain sev­
eral results that have been obtained in different works 
by different authors.

Subtree __  __ _ D (Subtree)

L L
K

Chordal _______ DuallyChordal

K

Chordal n Helly

Figure 1: Computing A'(Chordal) and iterations.

• A'(Graph) = S (Helly)

• A'(Helly) = Helly [3]

• A'(Chordal) = DuallyChordal [1, 17]

• A'(UEH) = DuallyUEH [9].

• A'(DV) = DuallyDV [15]

• A'(DE) = DuallyDE [10]

• A (RDV) = DuallyRDV [15]

• A'(Interval) = Indifference [12]

Clearly we can obtain a dual result from Theo­
rem 17.

D
Interval _______

L
K

Interval ______

D(Intervaï)

Figure 2: Computing A( Interval) and iterations.

Theorem 18 [8] If A C Conformal, M(A) C A, and 
DUD(A) C A then KS(A) = L(A).

Then we can obtain the Bandelt-Prisner result 
about clique fixed classes [2], as well as prove the be­
haviour of the K operator in several classes.

• A'(DuallyUEH) = UEH.

• A'(DuallyDV) = DV [15]

• A (DuallyDE) = DE

• A (DuallyRDV) = RDV [15]

D
DTP-V ______

L

DV

D(DTP-V)

L

DuallyDV

Figure 3: Computing A'(DV) and iterations.
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• A'(Indifference) = Indifference [12]

In Figures 1, 2, and 3 we show the effect of K and 
its iterations on some classes.

Some of these new classes, such as Dually A, have 
been characterized by properties of a complete edge 
cover of their graphs using the equivalence between 
G £ 5(A) and “there is a complete edge cover of G 
in A.” In particular, since A (Graph) = S (Helly), we 
can also obtain Roberts and Spencer’s Theorem for 
clique graphs [16].

Unfortunately this characterization does not lead to 
a good algorithm for recognition of these new classes 
of graphs. Nevertheless, for some particular classes a 
general polynomial time algorithm works, as we will 
see in the following section.

4.3 An algorithm for recognizing two- 
sections

In this section we rephrase the techniques of Pris- 
ner and Szwarcfiter [15] in terms of operators and 
apply them to a generic class of graphs A. Prisner 
and Szwarcfiter define the graph G' obtained from G 
by adding a new vertex v' and an edge vv' for each 
v g V(G). The result we are interested in focuses on 
class DV, the class of intersection graphs of paths of 
directed trees, viewed as sets of vertices [13], and on 
DuallyDV, its image under K. Prisner and Szwarc­
fiter show that

,, r, .. tat, f G is clique-Helly andG g DuallyDV | K((?Z) J*  Dy ‘ (3)

This result in some sense reduces the recognition 
of DuallyDV to the recognition of DV. We will try 
to generalize the idea for the other classes that ap­
pear in the last column of Table 2. All these classes, 
with the exception of Indifference and Helly, lack 
a polynomial time recognition algorithm. Since they 
were defined as the image under the clique operator A' 
of a recognized class, a natural idea is study an “in­
verse” of K. More clearly, if we want to know whether 
a graph G is in DuallyA it is sufficient to find a graph 
H in A such that K(H) = G. However, the inverse 
image of each graph is an infinite set. What element 
of this inverse image is convenient to select?

Prisner and Szwarcfiter used K(G') for this pur­
pose. In fact, it is not difficult to prove directly that 
KK(ff) is G for every clique-Helly graph G. We will 
use the same construction, but we would like to point 
out two interesting facts here. First, A'(G') can be 
written in terms of operators as LUC(G). Second, 
the construction of A'(G'), or LUC(G), as we will call 

it from here on, is the very one used by Hamelink in 
his celebrated proof that all clique-Helly graphs are 
clique graphs [11].

In the sequel we rewrite result (3) above, but replac­
ing DV by a generic class A which shares with DV 
some fundamental properties. The proofs use opera­
tor techniques, and the fundamental properties men­
tioned were deduced from the fact that they are the 
ones needed for the proofs to work.

Theorem 19 If (i) A C Helly, (it) CS(A) C A, (Hi) 
DMD(A) C A, and (iv) U(A) C A then

G E DuallyA
G is clique-Helly and
LUC(G) g A

Proof: Since G E DuallyA = 5(A) there is a family 
IF E A such that G = S(F). But C(G) = CS(F) E A 
by (ii). Hence C(G) is Helly by («), and conformal and 
reduced like all families of cliques. Then LUC(G) E 
L(A), by (iv).

To prove the converse we will show that 
KLUC(G) = G and thus G will be a graph in S(A) 
by Theorem 17. Indeed

KLUC(G) LCSDUC(G)
LDUC(G)
SUC(G)
SC(G)
G

K = LC,L = SD 
OS = I here 
because LD = S 
because SU = S 
because SC = I

□

The classes Interval, RDTP-V, DTP-V, RDTP-E, 
DTP-E. Subtree and TP-Er.Helly satisfy the hypothe­
ses of this theorem. But in order to obtain a poly­
nomial time algorithm to recognize S(A) we need a 
polynomial upper bound on the number of cliques of 
these graphs.

Theorem 20 If class A is Interval, RDTP-V, 
DTP-V, RDTP-E, DTP-E, or TP-EQ Helly, then we 
have that:

G € 5(A) => |C(G)| < n(n -I-l)/2,

where n = |V(G)|.

Proof: Recall that all these classes are conformal. 
Hence if G E 5(A), there is a family F in A such that 
G = S(F). Then G(G) = CS(F) = M(F) since A 
is conformal. In other words, the maximal members 
of F are exactly the cliques of S(F). But, in these 
particular cases, it is clear that there are at most 
n(n + l)/2 different maximal members of F because
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each one is a path and therefore is determined by two 
elements: the end points. □

Unfortunately S {Subtree) is a graph class for which 
there is no polynomial bound on the number of cliques, 
because any graph with a universal vertex is in this 
class.

Thus, these results show that if A is a class of 
graphs recognizable in polynomial time that fulfills 
the hypotheses of Theorems 19 and 20, then K(A) = 
DuallyA will be recognizable in polynomial time 
as well. As seen, this is the case of the classes 
UEH, DV, DE, R.DV and Interval.

5 Conclusion

In this text we attempted to unify many results 
about the K operator based on a new theory involv­
ing graphs, families and operators. We were able to 
build an “operator algebra” that helps to unify and au­
tomate arguments. In addition, we related well-known 
properties, such as the Helly property, to the families 
and the operators.

As a result, we deduced many classic results in 
clique graph theory from the basic fact that CS = I for 
conformal, reduced families. This includes Hamelink’s 
construction, Roberts and Spencer theorem, and Ban- 
delt and Prisner’s partial characterization of clique- 
fixed classes [2]. Furthermore, we showed the power 
of our approach proving general results that lead to 
polynomial recognition of certain graph classes.
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