Clique-critical graphs: Maximum size and recognition

Liliana Alcón

Departamento de Matemática. Universidad Nacional de La Plata. C.C. 172 (1900) La Plata, Argentina

Received 22 December 2004; received in revised form 10 May 2005; accepted 18 January 2006

Available online 18 May 2006

Abstract

The clique graph of G, $K(G)$, is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in $K^{-1}(G)$ has at most $2m$ vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs. J. Combin. Theory B 17 (1974) 170–182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.

Keywords: Clique graphs; Clique-critical graphs; NP-complete problems

1. Introduction and basic definitions

We consider simple, finite, undirected graphs. Given a graph G, $V(G)$ and $E(G)$ denote, respectively, the vertex and edge sets of G. A complete set of G is a subset of $V(G)$ inducing a complete subgraph. A clique is a maximal complete set. Let $\mathcal{C}(G)$ be the family of cliques of G, the clique graph of G, $K(G)$, is the intersection graph of $\mathcal{C}(G)$. It is said that G is a clique graph if there exists H such that $K(H) = G$. Not every graph is a clique graph; characterizations of clique graphs are given in [4,1], however the time complexity of the problem of recognizing clique graphs is still open.

For a given G, let $K^{-1}(G)$ be the set of graphs H such that $K(H) = G$. The operation of adding to H a new vertex adjacent to all vertices of a given clique does not alter its clique graph, i.e. if H' is the resulting graph, then $H' \in K^{-1}(G)$ if and only if $H \in K^{-1}(G)$. It follows that if $K^{-1}(G)$ is not empty then it is an infinite set.

On studying $K^{-1}(G)$, it is natural not to take into consideration the graphs obtained by that or other enlarging operation. This motivated the notion of clique-critical graph introduced in [2] as minimal graphs in $K^{-1}(G)$, minimality in the sense that no induced subgraph belongs to $K^{-1}(G)$. Escalante and Toft proved that the number of clique-critical graphs in $K^{-1}(G)$ is always finite and they described the way of adding vertices to clique-critical graphs to obtain all graphs in $K^{-1}(G)$.

We present next a restatement of the characterization of clique-critical graphs given by Escalante and Toft and obtain a simpler description of the way of adding vertices to a graph without changing its clique graph. In Section 2, we prove that any clique-critical graph in $K^{-1}(G)$ has at most $2|E(G)|$ vertices. At the end of their paper [2], in a later note added in proof, Escalante and Toft suggest $3|E(G)|$ for this bound. We show that our bound is tight. In Section 3, we prove that the problem of determining if a graph is clique-critical is NP-complete.

E-mail address: liliana@mate.unlp.edu.ar.

0166-218X/© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.03.024
Let H be a graph and $v \in V(H)$. As usual, $H - v$ denotes the graph induced by $V(H) \setminus \{v\}$. The vertex v is critical (or clique-critical) if $K(H) \neq K(H - v)$. A graph H is critical (or clique-critical) if every one of its vertices is critical.

The following lemma is a reformulation of the characterization of critical vertex given by Escalante and Toft in (6) of [2] in terms of the cliques of the graph.

Lemma 1. A vertex v of a graph H is critical if and only if there exist cliques of H, C_1 and C_2, such that either

(i) $\{v\} = C_1 \setminus C_2$, or
(ii) $\{v\} = C_1 \cap C_2$.

Corollary 2. A graph H is critical if and only if for each vertex v of H there exist cliques of H, C_1 and C_2, such that either

(i) $\{v\} = C_1 \setminus C_2$, or
(ii) $\{v\} = C_1 \cap C_2$.

The way of adding vertices to a graph without changing its clique graph is described in the following corollary. For $x \notin V(H)$ and $V' \subseteq V(H)$, let $H + x_{V'}$ denote the graph obtained by adding to H the vertex x and making it adjacent to every vertex of V'; and let $H[V']$ be the subgraph of H induced by the vertices of V'.

Corollary 3. The equality $K(H) = K(H + x_{V'})$ holds if and only if

(i) the cliques of $H[V']$ are cliques of H, and
(ii) the cliques of $H[V']$ are pairwise intersecting.

2. Bound

The following lemma gives an upper bound for the number of vertices of any critical graph belonging to $K^{-1}(G)$. Notice as a consequence of it that a graph G with m edges is a clique graph if and only if there exists H with at most $2m$ vertices such that $K(H) = G$.

Lemma 4. Let G be a clique graph with $m > 1$ edges. Any critical graph belonging to $K^{-1}(G)$ has at most $2m$ vertices.

Proof. We can assume G is connected and non-trivial. Let H be a critical graph such that $K(H) = G$ and let C_u denote the clique of H corresponding to the vertex u of G. If H is a star, G is a complete, then the bound is true. Assume H is not a star and let A be the set of cardinality $2m$ whose elements are the ordered pairs (u, v) for $u, v \in E(G)$. We claim that the following application f, from a subset of A into $V(H)$, is surjective, thus $|A| = 2m \geq |V(H)|$.

$$f(u, v) = \begin{cases} C_u \setminus C_v & \text{if } |C_u \setminus C_v| = 1, \\ C_u \cap C_v & \text{if } |C_u \setminus C_v| \neq 1 \text{ and } |C_u \cap C_v| = 1. \end{cases}$$

Indeed, if $x \in V(H)$, since H is critical, by Lemma 1, there exist C_u and C_v, cliques of H, such that $\{x\} = C_u \setminus C_v$ or $\{x\} = C_u \cap C_v$.

If $\{x\} = C_u \setminus C_v$, then $f(u, v) = C_u \setminus C_v = \{x\}$.

If $\{x\} = C_u \cap C_v$ and $|C_u \setminus C_v| = 0$, then $C_u \subseteq C_v$, this is a contradiction since they are maximal complete sets.

If $\{x\} = C_u \cap C_v$ and $|C_u \setminus C_v| > 1$, then $f(u, v) = C_u \cap C_v = \{x\}$.

If $\{x\} = C_u \setminus C_v$ and $|C_u \setminus C_v| = 1$, then there are two possibilities: first, $|C_v \setminus C_u| > 1$, in this case $f(v, u) = C_u \cap C_v = \{x\}$; and second, $|C_v \setminus C_u| = 1$, in this case, both cliques have exactly two vertices and, since $m > 1$ and G is connected, there exists another clique C_h intersecting C_u or C_v, moreover, the intersection contains exactly one vertex. If this vertex is not x, (Fig. 1a), then $\{x\} = C_h \setminus C_b$ and thus $f(u, h) = C_y \setminus C_b = \{x\}$. If the vertex is x, since H is not a star, we can assume either $|C_h \setminus C_u| > 1$, (Fig. 1b), in this case $f(h, u) = C_h \cap C_u = \{x\}$; or $|C_h \setminus C_u| = 1$ and there exists C_w such that $C_w \cap C_h \neq \emptyset$ and $x \notin C_w$, (Fig. 1c), in this case $f(h, w) = C_h \cap C_w = \{x\}$. The proof is completed. \[\square\]
To show that the bound is sharp, we will exhibit, for each positive integer \(m > 1 \), a graph \(G \) with \(m \) edges and a critical graph \(H \in K^{-1}(G) \) with \(2m \) vertices.

The graph \(G \) is the bipartite graph \(K_{1,m} \) which, clearly, has \(m \) edges. The graph \(H \) can be depicted as the complete graph \(K_m \) plus a vertex \(v' \) and an edge \(vv' \) for each vertex \(v \) of \(K_m \). Trivially, \(|V(H)| = 2m \); by Corollary 2, \(H \) is critical; and, clearly, \(K(H) = K_{1,m} \).

3. Recognizing clique-critical graphs

In this section, we study the time complexity of recognizing clique-critical graphs.

Theorem 5. The problem of recognizing clique-critical graphs is NP-complete.

Proof. Let \(H \) be any graph. A certificate of \(H \) being a critical graph is, for each vertex of \(H \), a pair of cliques satisfying (i) or (ii) of Corollary 2. Verifying the exactness of this certificate requires polynomial time, thus the problem belongs to NP.

In [3], it was proved that determining if a connected graph has two disjoint cliques is NP-complete, we will reduce our problem from that one.

Given a non-trivial connected graph \(G \) and \(x \notin V(G) \), let \(G' \) be the graph obtained from \(G + x V(G) \) by adding a vertex \(v' \) and one edge \(vv' \) for each of the vertices \(v \in V(G) \), (Fig. 2). We claim that \(G \) has two disjoint cliques if and only if \(G' \) is critical. Indeed, clearly, any vertex \(v' \) is a clique difference and any vertex \(v \) is a clique intersection, then, by Corollary 2, we need only see what happens with \(x \). In no case, since \(G \) is connected and non-trivial, \(x \) can be a clique difference and, on the other hand, \(x \) is a clique intersection if and only if \(G \) has two disjoint cliques. The proof is complete. \(\square \)
References