Clique-critical graphs: Maximum size and recognition

Liliana Alcón
Departamento de Matemática, Universidad Nacional de La Plata, C.C. 172 (1900) La Plata, Argentina

Received 22 December 2004; received in revised form 10 May 2005; accepted 18 January 2006
Available online 18 May 2006

Abstract

The clique graph of $G . K(G)$, is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in $K^{-1}(G)$ has at most $2 m$ vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs. J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete. © 2006 Elsevier B.V. All rights reserved.

Keywords: Clique graphs; Clique-critical graphs; NP-complete problems

1. Introduction and basic definitions

We consider simple, finite, undirected graphs. Given a graph $G, V(G)$ and $E(G)$ denote, respectively, the vertex and edge sets of G. A complete set of G is a subset of $V(G)$ inducing a complete subgraph. A clique is a maximal complete set. Let $\mathscr{C}(G)$ be the family of cliques of G, the clique graph of $G, K(G)$, is the intersection graph of $\mathscr{C}(G)$. It is said that G is a clique graph if there exists H such that $K(H)=G$. Not every graph is a clique graph; characterizations of clique graphs are given in [4.1]. however the time complexity of the problem of recognizing clique graphs is still open.

For a given G. let $K^{-1}(G)$ be the set of graphs H such that $K(H)=G$. The operation of adding to H a new vertex adjacent to all vertices of a given clique does not alter its clique graph, i.e. if H^{\prime} is the resulting graph, then $H^{\prime} \in K^{-1}(G)$ if and only if $H \in K^{-1}(G)$. It follows that if $K^{-1}(G)$ is not empty then it is an infinite set.

On studying $K^{-1}(G)$, it is natural not to take into consideration the graphs obtained by that or other enlarging operation. This motivated the notion of clique-critical graph introduced in [2] as minimal graphs in $K^{-1}(G)$, minimality in the sense that no induced subgraph belongs to $K^{-1}(G)$. Escalante and Toft proved that the number of clique-critical graphs in $K^{-1}(G)$ is always finite and they described the way of adding vertices to clique-critical graphs to obtain all graphs in $K^{-1}(G)$.

We present next a restatement of the characterization of clique-critical graphs given by Escalante and Toft and obtain a simpler description of the way of adding vertices to a graph without changing its clique graph. In Section 2, we prove that any clique-critical graph in $K^{-1}(G)$ has at most $2|E(G)|$ vertices. At the end of their paper [2], in a later note added in proof. Escalante and Toft suggest $3|E(G)|$ for this bound. We show that our bound is tight. In Section 3, we prove that the problem of determining if a graph is clique-critical is NP-complete.

[^0]Let H be a graph and $v \in V(H)$. As usual, $H-v$ denotes the graph induced by $V(H) \backslash\{v\}$. The vertex v is critical (or clique-critical) if $K(H) \neq K(H-v)$. A graph H is critical(or clique-critical) if every one of its vertices is critical.

The following lemma is a reformulation of the characterization of critical vertex given by Escalante and Toft in (6) of [2] in terms of the cliques of the graph.

Lemma 1. A vertex v of a graph H is critical if and only if there exist cliques of H, C_{1} and C_{2}, such that either
(i) $\{v\}=C_{1} \backslash C_{2}$,or
(ii) $\{v\}=C_{1} \cap C_{2}$.

Corollary 2. A graph H is critical if and only if for each vertex v of H there exist cliques of H, C_{1} and C_{2}, such that either
(i) $\{v\}=C_{1} \backslash C_{2}$,or
(ii) $\{v\}=C_{1} \cap C_{2}$.

The way of adding vertices to a graph without changing its clique graph is described in the following corollary. For $x \notin V(H)$ and $V^{\prime} \subseteq V(H)$, let $H+x_{V^{\prime}}$ denote the graph obtained by adding to H the vertex x and making it adjacent to every vertex of V^{\prime}; and let $H\left[V^{\prime}\right]$ be the subgraph of H induced by the vertices of V^{\prime}.

Corollary 3. The equality $K(H)=K\left(H+x_{V^{\prime}}\right)$ holds if and only if
(i) the cliques of $H\left[V^{\prime}\right]$ are cliques of H, and
(ii) the cliques of $H\left[V^{\prime}\right]$ are pairwise intersecting.

2. Bound

The following lemma gives an upper bound for the number of vertices of any critical graph belonging to $K^{-1}(G)$. Notice as a consequence of it that a graph G with m edges is a clique graph if and only if there exists H with at most $2 m$ vertices such that $K(H)=G$.

Lemma 4. Let G be a clique graph with $m>1$ edges. Any critical graph belonging to $K^{-1}(G)$ has at most $2 m$ vertices.
Proof. We can assume G is connected and non-trivial. Let H be a critical graph such that $K(H)=G$ and let C_{u} denote the clique of H corresponding to the vertex u of G. If H is a star, G is a complete, then the bound is true. Assume H is not a star and let A be the set of cardinality $2 m$ whose elements are the ordered pairs (u, v) for $u v \in E(G)$. We claim that the following application f, from a subset of A into $V(H)$, is surjective, thus $|A|=2 m \geqslant|V(H)|$.

$$
f(u, \mu)= \begin{cases}C_{u} \backslash C_{v} & \text { if }\left|C_{u} \backslash C_{v}\right|=1, \\ C_{u} \cap C_{v} & \text { if }\left|C_{u} \backslash C_{v}\right| \neq 1 \text { and }\left|C_{u} \cap C_{v}\right|=1 .\end{cases}
$$

Indeed, if $x \in V(H)$, since H is critical, by Lemma 1, there exist C_{u} and C_{v}, cliques of H, such that $\{x\}=C_{u} \backslash C_{v}$ or $\{x\}=C_{u} \cap C_{v}$.

If $\{x\}=C_{u} \backslash C_{v}$, then $f(u, v)=C_{u} \backslash C_{v}=\{x\}$.
If $\{x\}=C_{u} \cap C_{v}$ and $\left|C_{u} \backslash C_{v}\right|=0$, then $C_{u} \subseteq C_{v}$, this is a contradiction since they are maximal complete sets.
If $\{x\}=C_{u} \cap C_{v}$ and $\left|C_{u} \backslash C_{v}\right|>1$, then $f(u, v)=C_{u} \cap C_{v}=\{x\}$.
If $\{x\}=C_{u} \cap C_{v}$ and $\left|C_{u} \backslash C_{v}\right|=1$, then there are two possibilities: first, $\left|C_{v} \backslash C_{u}\right|>1$, in this case $f(v, u)=C_{v} \cap C_{u}=\{x\}$; and second, $\left|C_{v} \backslash C_{u}\right|=1$, in this case, both cliques have exactly two vertices and, since $m>1$ and G is connected, there exists another clique C_{h} intersecting C_{u} or C_{v}, moreover, the intersection contains exactly one vertex. If this vertex is not x, (Fig. 1a), then $\{x\}=C_{u} \backslash C_{h}$ and thus $f(u, h)=C_{u} \backslash C_{h}=\{x\}$. If the vertex is x, since H is not a star, we can assume either $\left|C_{h} \backslash C_{u}\right|>1$, (Fig. 1b), in this case $f(h, u)=C_{h} \cap C_{u}=\{x\}$; or $\left|C_{h} \backslash C_{u}\right|=1$ and there exists C_{w} such that $C_{w} \cap C_{h} \neq \emptyset$ and $x \notin C_{w}$, (Fig. 1c), in this case $f(h, w)=C_{h} \backslash C_{w}=\{x\}$. The proof is completed.

Fig. 1. The cliques C_{u}, C_{v}, C_{h}, and C_{w}.

To show that the bound is sharp, we will exhibit, for each positive integer $m>1$, a graph G with m edges and a critical graph $H \in K^{-1}(G)$ with $2 m$ vertices.

The graph G is the bipartite graph $K_{1, m}$ which, clearly, has m edges. The graph H can be depicted as the complete graph K_{m} plus a vertex v^{\prime} and an edge $v v^{\prime}$ for each vertex v of K_{m}. Trivially, $|V(H)|=2 m$; by Corollary $2, H$ is critical; and, clearly, $K(H)=K_{1, m}$.

3. Recognizing clique-critical graphs

In this section, we study the time complexity of recognizing clique-critical graphs.
Theorem 5. The problem of recognizing clique-critical graphs is NP-complete.
Proof. Let H be any graph. A certificate of H being a critical graph is, for each vertex of H, a pair of cliques satisfying (i) or (ii) of Corollary 2. Verifying the exactness of this certificate requires polynomial time, thus the problem belongs to NP.

In [3], it was proved that determining if a connected graph has two disjoint cliques is NP-complete, we will reduce our problem from that one.

Given a non-trivial connected graph G and $x \notin V(G)$, let G^{\prime} be the graph obtained from $G+x_{V(G)}$ by adding a vertex v^{\prime} and one edge $v v^{\prime}$ for each of the vertices $v \in V(G)$, (Fig. 2). We claim that G has two disjoint cliques if and only if G^{\prime} is critical. Indeed, clearly, any vertex v^{\prime} is a clique difference and any vertex v is a clique intersection, then, by Corollary 2 , we need only see what happens with x. In no case, since G is connected and non-trivial, x can be a clique difference and, on the other hand, x is a clique intersection if and only if G has two disjoint cliques. The proof is complete.

Fig. 2. The graph G.

References

[1] L. Alcón, M. Gutierrez, A new characterization of clique graphs, Matematica Contemporãnea 25 (2003) 1-7.
[2] F. Escalante, B. Toft. On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182.
[3] C.L. Lucchesi, C. Picinin de Mello, J.L. Szwarcfiter, On clique-complete graphs, Discrete Math. 183 (1998) 247-254.
[4] F.S. Roberts. J.H. Spencer. A characterization of clique graphs. J. Combin. Theory B 10 (1971) 102-108.

[^0]: E-mail address: liliana@mate.unlp.edu.ar.

