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This paper formulates in a common framework some results from the fields of robust filtering, function approximation with 
orthogonal basis, and adaptive filtering, and applies them for the design of a general deconvolution processor for SISO systems. 
The processor is designed to be robust to small parametric uncertainties in the system model, with a partially adaptive orthogonal 
structure. A simple gradient type of adaptive algorithm is applied to update the coefficients that linearly combine the fixed robust 
basis functions used to represent the deconvolver. The advantages of the design are inherited from the mentioned fields: low 
sensitivity to parameter uncertainty in the system model, good numerical and structural behaviour, and the capability of tracking 
changes in the systems dynamics. The linear equalization of a simple ADSL channel model is presented as an example including 
comparisons between the optimal nominal, adaptive FIR, and the proposed design.
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1. INTRODUCTION

Deconvolution filters have a wide range of applications 
in communications, control and signal processing. Among 
other roles, they are used to reduce the distortion and ad­
ditive noise that contaminate a signal propagating through 
some channel. When noise levels are negligible and the trans­
mission part of the system is minimum phase and perfectly 
known, these filters are obtained as the inverse of the original 
system. However, if the system is nonminimum phase and 
noise is also present, a realizable deconvolution filter, that is, 
a filter that is stable and causal, and uses a finite smooth­
ing lag, cannot achieve perfect signal reconstruction. In such 
case, the design procedure focuses on minimizing some per­
formance index and thus, different optimal deconvolution 
filters are possible according to the objective functions used.

Another source of difficulty are the uncertainties in the 
model of the transmission path or in the noise spectrum. 

This phenomenon is related to modeling errors, noise in 
the data used for identification, the random nature of the 
noise description, and other physical causes as time varia­
tions, changing environments, component aging, and drift. 
The deconvolution filter has to be capable of tracking these 
changes or exhibit a robust behavior assuring a good perfor­
mance to the extent of these variations.

Different ways of dealing with these problems are avail­
able in the literature. If there is very little knowledge about 
the system, then blind or blind adaptive techniques have to 
be used [1, 2]. These methods rely in random models and 
make use of the statistical theory for signal separation. When 
the system can be described by uncertain parametric mod­
els, robust approaches are available. In [3] a mean square 
error (MSE) is averaged with respect to model errors and 
noise. Probabilistic descriptions of the models uncertainties 
are used and the problem is formulated and solved by means 
of a polynomial approach. These results are further extended 
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to nonlinear equalization applications in [4] and presented as 
a general polynomial equations framework for nominal and 
robust multivariable linear filtering in [5]. The problem of 
nonlinear equalization is also addressed in [6] where a design 
method for decision feedback equalizers (DFE) to be applied 
in transmission systems with small parameter perturbations 
is presented. A simple probabilistic structure for channel and 
noise models is used and then a closed-form result in the fre­
quency domain using calculus of variation and spectral fac­
torization is derived. This same methodology is used in [7] 
to solve the problem of linear deconvolution.

All these approaches yield time-invariant, that is, fixed, 
recursive structures for the optimal filters. However, in ap­
plications where the environment may suffer larger changes, 
the filters will also require some degree of adaptation. Time­
varying or adaptive deconvolution filters are the common so­
lution to this problem, increasing complexity, computational 
load, and cost. This type of solutions usually involves the use 
of transversal or finite impulse response (FIR) adaptive filters 
as an approximation to naturally recursive systems.

The contribution of this paper is the formulation of a 
comprehensible framework that concentrates some of the re­
sults given in the fields of robust filter design, function ap­
proximation by orthogonal bases, and adaptive filtering. The 
aim is the design of a general deconvolution processor, robust 
to parametric uncertainties in the system model and with a 
partially adaptive recursive orthonormal structure.

Robustness focuses on assuring a reasonable perfor­
mance over the range of “practical restricted complexity pa­
rameterized system models,” a set of rational functions iden­
tified from a finite noisy data record, and gaining properties 
similar to the designs of [3] or [7]. The recursive orthogo­
nal structure has a twofold function. First, it approximates 
recursive systems naturally, requiring less parameters than 
FIR approximations. Second, it gives the design the classical 
advantages of orthonormal bases, that is, modularity, good 
numerical conditioning, and simplified performance analy­
sis [8] along with other practical properties [9]. Adaptation 
is intended to extend the range of applicability of the de­
sign. Simple strategies can be used exploiting the orthogonal 
structure and updating only the coefficients that combine the 
basis functions. Because of its recursive nature, the perfor­
mance can be close to full adaptivity with a lower compu­
tational load than that required by long FIR adaptive filters 
[10, 11, 12, 13],

The design procedure is based on the optimization of a 
performance index that contemplates both the system model 
uncertainties and the usual quadratic error. The formulation 
is similar to that introduced in [6] for the nonlinear DFE and 
close to the development presented in [7]. The minimization 
follows the classical approach in the frequency domain and 
uses variational concepts. The results are presented in a the­
orem that establishes the optimum set of parameters of the 
robust orthogonal deconvolution processor.

The orthonormal structure is provided by time-invariant 
basis functions that have a simple construction [14] and al­
low the inclusion of different modes (poles). Adaptation is 
provided by a simple “gradient” updating algorithm. This 

algorithm updates the coefficients that linearly combine the 
basis functions. Some preliminary results in relation with this 
type of formulation were presented in [15] for a simplified 
deconvolution setup and in [16] for the application of echo 
cancellation. In this case, a fixed orthogonal basis (Laguerre) 
with a transversal filter type of adaptive structure was used 
for updating the coefficients.

The paper is organized as follows. Section 2 introduces 
some notation, general considerations, and the basis func­
tions. The main results are developed in Section 3. Section 4 
considers the coefficients updating algorithm. Section 5 
presents an example where the proposed design strategy is 
used to derive an equalizer for a simple ADSL communica­
tion channel model. Comparisons of performance are made 
in terms of the MSE that different designs can theoretically 
achieve. Finally, in Section 6, some conclusions are drawn.

2. THE SISO DECONVOLUTION PROBLEM
2.1. Notation and general description
Most common SISO deconvolution or inverse filtering prob­
lems are described by the simple scheme illustrated in 
Figure 1 where the signals involved are modeled:

x(k) = H(q \ a)a(k) + v(k),

v(k) = /)(>/' ,P) m(/c),
(1) 

a(k) = W(q 1)d(k),

s(k) = \'I{q i)[)(k'!+ a(k'!\q

= E{d2(k)}, a2 = E{n2(k)},
(2) 

= E{p2(k)}.

Hiq-1,«) and I)(q'\p) are linear time-invariant filters 
that form the system. They are functions of q '!, the unitary 
delay operator, that is, </'/(/<) = f(k - 1). These filters are 
not known exactly in the sense that they also depend on un­
known real parameter vectors a and p. We will use the simpli­
fied notation H and D when this dependence does not need 
to be put explicitly into evidence or, for example, H(a) and 
D(p) when the time information is not central in an argu­
ment. The same considerations apply when working in the 
transform domain with Z{f(k - 1)} = z 1 Hz). For exam­
ple, the following representations of //(z 1, a) are equivalent 
when used in the right context: H, / Hz '), and H(a).

The input shaping filters Wfq'1) and Tiq'1') are per­
fectly known invertible linear filters that model the stochastic 
sequences a(k) and c(k). The signals d(k), p(k), and n(k) are 
mutually independent, zero mean white stochastic sequences 
with variance <rj, a?, and u2, respectively. The symbol * is 
used to denote complex conjugation on |z| = 1 and trans­
position, so that if Giz .a) is a matrix of rational func­
tions, then G* = G" (z ',«) = Gr(z, a). The analytic part of 
H outside (resp., inside) the unit circle is denoted by {H}+ 
(resp., {H}_). The degree of a polynomial is indicated as 
&(■, ■), where the arguments stand for negative and positive 
powers of q (or z) in that order. If only one argument is used,
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Figure 1: Block diagram of the general SISO deconvolution system including an adaptation algorithm.

it refers to the degree of the polynomial in negative pow­
ers of the associated variable. For proper or strictly proper 
rational functions, &(■) is the degree of the denominator 
polynomial. For example, let H denote the rational function 
H = H(q~r,a) = (b0 + Eq' + ■ ■ ■ + bMq^M)/(l + ciiq1' + 

■ ■ ■ +a\-q then the numerator of H is (9(M, 0) =
the denominator is (9(N,0) = (9(N), and if N > M, H is 
(9(N). In (1), H is of (9(N), D is of (9(S) and the shaping 
filters Wiq'') and Tic]1') are 0(P) and (9(V), respectively.

The signals d(k), p(k), and n(k) play different roles de­
pending on the particular application. In classical deconvo­
lution, p(k) = 0 and d(k) is colored by IV to generate the 
input signal a(k). The corrupting noise is represented by 

1 )rz(/c). In this case, F is designed as a linear proces­
sor that produces an efficient estimate of a possibly delayed 
version of the signal a(k). Estimation is performed by lin­
ear filtering or smoothing operations on the noise-corrupted 
output signal of H, x(k).

The signal enhancement problem can also be considered 
letting p(k) £ 0. The signal of interest p(fc) (or '/ ( </ ' ))), 
corrupted by the interference a(fc), is to be recovered by sub­
tracting from s(fc) a filtered and noise-corrupted version of 
a(fc), that is, x(k). The filters H and D are not completely 
known. The error e(k) is actually the estimated value of p(k). 
The goal is to design the linear processor F that will effi­
ciently, in some well-defined sense, estimate the interference 
signal a(k) (or Wiqi)dik'i).

Yet another application that is contemplated by the 
scheme of Figure 1 is the problem of linear equalization, 
which is described in detail in the example of Section 5.

All these deconvolution problems casted in the common 
framework of Figure 1 and described mathematically by (1) 
share the same formulation and solution, as will be shown 
later in this section.

2.2. System uncertainty description
The system uncertainties are modeled as

H(a) = H(a0 + 8a) = H(a0) + AH, 
D(^)=D(p0 + 8/i) =D(p0)+AD,

where a = ao + 8a and p = p0 +8 p are the parameters vectors 
with ao and p0 representing the nominal or mean value of 
the parameters. The vectors 8a and 8p are independent zero 

mean random perturbations, with a priori known covariance 
matrices E[ 8« 8^] = ya and E[8^ 8j] = y^. The uncer­
tainty on the parameters represented by 8« and Sq results in 
an uncertain system which can be thought of as having dif­
ferent realizations for each particular value of the parameters 
a and p, as shown by (3).

There are several approaches for the description of the 
additive perturbations AH and AD. These methods range 
from adjusting simple models to the set of systems from time 
or frequency experimental data, to the development of usu­
ally detailed high-order models that tightly describe the un­
certainty boundaries in a certain range of frequencies of in­
terest. See for example [17,18,19,20]. The derivation in [20] 
could be of particular interest if a common orthogonal basis 
framework for the representation of the system, uncertainty 
and deconvolver, is pursued.

Without loss of generality, and keeping in mind the ex­
istence of more refined approaches, a simple linear approx­
imation is adopted following a formulation close to that of 
Lin et al. in [6] or Chen and Lin in [7].

Expanding H(a) and D(p) around the values H(ao) and 
D(Pq) in Taylor series and retaining the linear terms yields 

(4)

where dH(a)/da and dP(P)/dp are the Jacobian matrices of 
H and D, respectively. With the models (4), the statistical 
characterization of the system uncertainties is straightfor­
ward

E[AH] = 0, (5)

rAW=E[AH*(a) AH(a)]

pH(a)\* . (9H(a)\ <6)
\ da da ja=ao’

E[AD] = 0, (7)

Tad = e[aD*(/?) kD(p)]

(dD(p)\* (dD(p)\ (8)
“ K dp )ppyP\ dp
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2.3. A family of orthogonal basis function

A generalized type of orthonormal construction will be used 
for the deconvolution processor F. Some of the advantages of 
this type of realizations for adaptive infinite impulse response 
(HR) filters are discussed in [12].

If F is a linear time-invariant stable filter (or smoother), 
it can be expanded and represented as

00

^(r1) = D^fr'A)
M=0

(9)

with L„(q^1,A„) a complete set of orthonormal basis func­
tions in the Hilbert space Jf? of square (Lebesgue) integrable 
functions on the unit circle \z : |z| = 1} and analytic for 
|z| > 1. These basis functions are characterized by the subset 
A„ of parameters taken from the general (finite or infinite) 
set

linear combinations of those generated by (11), preserving 
orthogonality and assuring a real-valued impulse response 
[14]. For each pair of complex poles then, and if d = 0, the 
associated basis has the form

l;(<? \A)

_ r q-'{a +b'q~') pj q ' - At*
1 - (An + A;; )<y 1 + I A„ I k=o I ~ q 1^k

(13) 
L"(<? >A)

_ q'(a" + b"q1) '{-! q 1 -A*
1 — (A„ + A*)íj_1 + I A„ I k=0 1 — q ^-k 

wherexi = [a' b']T is chosen to belong to xfMxi = |1-A212 
with

A - {Ao,Ai,...,A„...} (10)

with A; e G. The practical idea is to approximate F in (9) 
with a finite number of terms and a finite set of parameters 
from A. The following basis functions were reported in [ 14] 
and will be used in the expansion (9):

= qdvn J j~[ ? > (U)
1 Q k=Q 1 Afc

M =
1 + I A„ I

2 Re{An}

2 Re{An}

1 + I A„ I
(14)

The other pair of coefficients grouped by vector X2 
[a" b"]r can then be found as a function of Xi by evaluating

P
-1

1

-P
Xl, (15)

where v„ = y/1 |A„|2 is the normalization constant, d is
0 or 1, and Ap is a finite set of parameters that depend on 
the function F. The functions in (11) have the property of 
allowing the inclusion of a variety of modes (different ba­
sis parameters usually coincident with the poles of F). Fur­
thermore, they provide a unifying formulation for almost 
all known system identification orthonormal constructions 
such as FIR, Laguerre, and Kautz models. Moreover, methods 
using balanced realizations of user-chosen dynamics such as 
that presented in [21] can also be generated by (11). From 
a practical point of view, the inclusion of different modes 
means that F may be exactly represented by (9) and with a 
finite number of terms if the basis parameters are adequately 
chosen. Another relationship stemming from (11) and useful 
for implementation purposes is the recursive form

t n T /-px

where q„+1 = vn+i/vn, C(X„) = 1 - 'A„ and C(A„) =
q'! - A„. Equations (11) and (12) are valid for real or com­
plex parameters. Usually, in linear dynamical systems and for 
physical considerations, complex poles appear in conjugate 
pairs and the impulse response of the system is real. In this 
case, the new basis functions associated with the complex 
poles pairs are built in a different way. The construction uses 

where p = (X„ +A*)/(1 + |A„|2). With these expressions, and 
if the components of Ap are real or complex conjugate pairs, 
the basis functions will have real impulse responses.

2.4. Problem formulation
From Figure 1, using (1), and with the system model given 
by (3), the error sequence e(k) is

e(k) = [d(k)W(q~l - H(a0)F) - n(k)D(JJ0)F + p(k)Tq~l]

- [d(k)W AH + n(k)AD]F.
(16)

Assuming the signals d(k), p(k), and n(k) are also statistically 
independent of the model uncertainties and using (5)—(8), 
the MSE over the models uncertainties becomes 

i = EA[e*(fc)e(fc)]

= mWi.q-1 - HMF) - n(k)D(p0)F + p(k)Tq-T

x [d(fc)Wiq - H(ao)F) - n(k)D(ji0)F + pik)Tq

+ W*d*(fc)F*rAHW(fc)W + n*(fc)F*rADFn(fc),
(17)

where the operator EA [ ■ ] is the expectation applied only over 
the uncertainties in the models AH and AD. As a measure of 



2014 EURASIP Journal on Applied Signal Processing

performance, the mean value of £ over time /y [ ■ ] is consid­
ered, and this is simply the MSE,

J(F)=Ek[X]

= - (q~,)*HF - F*H*q~l] (18)

+ F*V/*^+

where is the minimum phase right spectral factor of the 
spectral factorization [22]

= a2 W* W(H*ll + Tah) + <t„2(D*D + Tad). (19)

Taking into account the general objective of designing 
a deconvolution processor robust to parameter uncertainty 
with an orthogonal structure, the problem formulation may 
now be summarized in the following statement. Given the 
system (1), find the causal and stable deconvolution processor 
Fo, with the structure given by (9) and using the orthonormal 
functions (11), that minimizes the performance index J of (18).

3. PROBLEM SOLUTION

Theorem 1. For the system (1), the optimal causal and stable 
deconvolution processor with the orthogonal structure of (9) 
that minimizes the performance index J given by (18) is

2(N+S+P'l+l

Fo = V e0„L„(z *,A0). (20)
n=0

The maximum number of terms of (20) is M = 2(N + S + P) + 
I + 1 and Ao is the optimal basis parameter set,

A„ = {AS,AV,J (21)

with A, = {0,..., 0,pWi> • • • ypwP }> composed ofl+ 1 zeros and 
P additional parameters, pw, that are the poles ofW, andXv = 
[zi,... ,Z2(n+s'i+p} where the z, are the 2(N + S) + P zeros ofy.

The optimal coefficients of (20) are

®o = [$o0> 0ol> • • • > 0o2(N+S)+P+/] (22)

with

9°n ^L„(z fiAojttQz 1}+Ip 1)*z U. (23)

Q ffjlV'lV/U(y/') (24)

Proof. See the appendix. □

3.1. Comments on these results
This theorem establishes the parameters Ao and the coef­
ficients 0O that completely define the deconvolver Fo with 
the orthogonal structure given by (20), together with the 

maximum number of basis functions required. In this sense, 
the theorem solves one of the problems usually associated 
with the approximation of functions with orthogonal basis, 
which is the way the parameters have to be chosen to opti­
mally approximate a desired function [23]. In this case the 
desired function is the optimal deconvolution processor and 
the representation achieved using the bases is exact, it is not 
an approximation. This is so because of the multiple modes 
(parameters or poles) admissible by the basis functions. Also, 
these sets of parameters and coefficients represent the best 
choice in the MSE sense that defines a deconvolver capable 
of dealing with a whole family of systems as described by (3) 
and (4). Again, in this sense, we say the orthogonal decon­
volver is robust to parameter uncertainty in the system.

The poles of the orthogonal deconvolver are defined by 
Ao in (21). This set is composed by 1+ 1 poles in zero plus the 
poles of IV plus the zeros of if/. It can be directly verified that 
in the case when no noise is present (n(k) = 0 or D = 0), 
the input is white (IV = 1 ), the delay I = 0, El is minimum 
phase, and the parameters are unperturbed, then Fo = El 1 
and Ao just groups the zeros of H. For this case, the coeffi­
cients 0O will be such that the zeros of the numerator of the 
rational function resulting from (20) are the poles of H.

In the appendix during the proof of the theorem the fol­
lowing expression appears as an intermediate result for the 
optimal deconvolution processor: Fo = iQz 'i, i// 1. This ex­
pression is coincident with that obtained in [7] and maybe 
compared with the classical Wiener filtering results, for ex­
ample, in [24]. It is particularly useful to analyze and inter­
pret some of the characteristics of the optimal deconvolver 
that finally appear in the orthogonal structure. First, Fo may 
be considered as a cascade of two filters. The filter f/ 1 has 
an inherent recursive structure that is independent of the de­
lay (see in (19) that i/' is fixed and unique for a given system 
and shaping filter IV). From (24), the filter iQz ! i has the 
poles of IV and I + 1 poles in zero. When the design delay I 
changes, only this part of the deconvolution processor varies 
accordingly. When IV = 1, that is, when the input is white 
noise, the deconvolution processor is a cascade of an FIR fil­
ter and an HR filter. In this case, only the zeros part of Aj will 
be present. So, if IV = 1 and I = 0, the HR part of the decon­
volution processor is the optimal filter up to a scale factor. If 
I > 0, the deconvolver is a smoother and the FIR part of the 
processor performs the smoothing while the HR portion re­
mains unchanged. Any improvement in the performance of 
the deconvolution processor is generated by the FIR and the 
number of taps of this filter depends directly on the order of 
the delay I.

An additional comment applies referring to the structure 
of the deconvolver. The form of (20) is not the most practical 
from the point of view of implementation. Using the relation 
(12), the whole set of basis function can be generated as a 
cascade of first-order or second-order filters, depending on 
whether the poles are real or complex conjugate. This struc­
ture is illustrated in Figure 2 for the case when the basis pa­
rameters are real. It results in a very modular construction 
where additional basis functions can be easily incorporated 
if needed without affecting the existing structure.
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Figure 2: Practical structure for the optimal deconvolver, illustrated 
for M + 1 basis functions when the parameters A; are real.

3.2. Design algorithm
Before considering the incorporation of some adaptive capa­
bility to the deconvolver, the steps or algorithm for the opti­
mal robust orthonormal design are summarized.

(1) Given the system and signal descriptions, choose the 
parameters that will be considered uncertain so as to 
give a good representation of the measured effects.

(2) Evaluate I'\// and Tad with (6) and (8), respectively.
(3) Evaluate the spectral factorization (19).
(4) Evaluate (24).
(5) Evaluate the basis parameters (poles) of (21), that is, 

I +1 zeros, plus the poles of IV, plus the zeros of and 
build the basis.

(6) Evaluate the basis combining coefficients 0 with (23).
(7) The robust orthonormal deconvolution processor is 

built with (20) or using the equivalent representation 
based in the recursive expression (12) as shown for ex­
ample in Figure 2.

The recursive form is preferred from the point of view of 
implementation and also convenient for the development of 
the adaptation strategy for the 0.

4. COEFFICIENTS UPDATE

The robust orthogonal design can handle systems whose per­
turbation parameters 8„ and Sp are small enough for the Tay­
lor series expansion in (4) to remain valid. When the system 
departs from such region, the MSE performance deteriorates. 
In order to keep a desired performance for larger perturba­
tions and also for tracking slowly time varying systems, some 

degree of adaptivity is incorporated by updating only the co­
efficients of the linear combination of the basis functions. 
The main assumption is that the nominal or mean model 
for the system is still valid and representative of the real sys­
tem and only the uncertainty region results enlarged. The ba­
sis structure remains fixed as well as the parameters Ao and 
the new set of coefficients 0 that now approximate the op­
timal deconvolver will be close to the initial optimal robust 
design. Figure 1 includes an updating algorithm in the gen­
eral scheme of the deconvolver and Figure 3 illustrates the 
case when W = 1, I > 0, and Ao is real, so the deconvolver 
has the FIR-IIR cascade structure mentioned in the previous 
section with the coefficients © being updated by an adapta­
tion algorithm.

4.1. Updating algorithm
The coefficients calculated from (23) are now treated as time 
varying and denoted accordingly as

0 = 0(k)= [0o(fc),0i(fc),...,02(N+S)+p+/(fc)]r (25)

The updating algorithm is derived by minimizing an er­
ror functional ç(0, k) that is a function of the coefficients,

ç(0,k) =E{[s(k)-a(k-/)]2} 

= E{[s(k)-0r(k)X(k)]2}, 

where

TX(k) = [Lo,Ei>-• • ,E/,E/+i,... ,E2(n+s)+p+/] x(k) 

is a generalized regressor composed of the input signal to the 
deconvolution processor x(k), filtered by the basis functions. 
Depending on the number of zeros in Az, the generalized re­
gressor may include some delayed samples ofx(k), for exam­
ple, in the case illustrated in Figure 3. Expanding (26),

ç(0, k) = E{s2(k)} - 20r(k)U(k) + 0r(k)Rj(k)0(k) (28) 

with U(k) = E{s(k)X(k)} and Ri(k) = E{X(k)Xr(k)}. A 
gradient-based family of adaptive algorithms can be gener­
ated by using a coefficient-updating equation of the form

0(k+ 1) = 0(k) -pG(k), (29)

where

G(k) = ^^=2[RI(k)0(k)-U(k)] (30)

is the gradient vector of the error functional (28) in the coef­
ficients space and p is the convergence factor, a small positive 
real number. Different approaches for the evaluation of an 
estimate of the real theoretical gradient G(k) result in differ­
ent algorithms. One of the most popular approaches uses the 
instantaneous values of U(k) and Ri(k) as estimates of their

(26)

(27)
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Figure 3: Structure of the orthogonal robust adaptive deconvolution processor tor real basis parameters when IV = 1 and / > 0.

means, that is,

U(k) = s(k)X(k),
(31) 

Ri(fc) = X(fc)Xr(fc).

Using (31) in the gradient (30),

G(fc) = -2X(fc)ej(fc), (32)

where ei(fc) = s(k) -a(k-1) is the instantaneous error of the 
adaptive structure. Using this estimation for the gradient in 
(29), the equation for updating the coefficients is

0(fc+1) = 0(fc) + 2fiei(fc)X(fc) (33)

and the algorithm may be classified as a transform domain 
least mean square or LMS [25, 26]. With a slight increase 
in complexity, a recursive least squares or a lattice-like al­
gorithm [27] may also be derived, but this will not be pur­
sued here. The tracking capability and noise performance of 
this and other types of algorithms, related to these basis func­
tions, have been analyzed in [13] for the application of sys­
tem modeling. Also, issues related to convergence speed and 
other properties for orthogonal realizations of HR filters were 
discussed in [12].

5. EXAMPLE: LINEAR ROBUST ADAPTIVE 
EQUALIZATION FOR AN ADSL TYPE 
OF COMMUNICATION CHANNEL

The general problem of equalization and particularly adap­
tive equalization is well described in [28] and a review with 
comparisons between recursive and nonrecursive techniques 
is given in [29]. Linear equalization is a particular case of the 
general deconvolution problem where T = 0. Additionally, 
the reference signal s(k) (a delayed version of a(k)) is gener­
ated as the output of a decision device in the receiver, assum­
ing the decisions are correct. Figure 4 illustrates the adaptive 
linear equalization setup. The parts of the diagram in dashed 
lines represent the practical implementation for the genera­
tion of the reference signal in the receiver. The following sim­
plifying assumptions are made to design the equalizer for this 
example: the design delay is I = 1 and the data sequence is a 
white noise signal, IV = 1. The modeling assumptions are 
discussed first, then the robust orthogonal design is shown 
and finally adaptation is considered. Performance compar­
isons are presented in these steps.

5.1. Modeling
Figure 5 shows the frequency response (FR, normalized to 
0 dB at zero frequency) of a subscriber telephone loop, with 
a length of 2.9 Km (gauge 24AWG) with a bridge tap of 
100 meters of gauge 26AWG, used in this example for 
asymmetric digital subscriber line (ADSL) transmissions. It
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Figure 4: The setup of the general deconvolution system for the equalization problem. The outputs of the decision device are assumed to be 
correct.

Figure 5: Real (solid line) and approximated (dashed line) fre­
quency response of an ADSL loop.

was generated from the chain matrix characterization for 
this type of channels [30] with a bandwidth that extends to 
1.104 Mhz.

The FR exhibits a notch around a frequency of 500 kHz. 
The frequency location of this notch is related to the mini­
mum of the input impedance that presents an open circuited 
section of cable at frequencies for which the length is an odd 
number of quarter wavelengths. The attenuation or depth of 
the notch is proportional to the length and to the square root 
of the notch frequency. Also included in the same figure is the 
FR of a discrete third-order model designed to approximate 
the analog response. This model has the following expression 
in the transform domain:

b0 + biZ-1 + b2z-2 + b3z-3
H(z) = u--------- ;--------- y---------y, (34)

and is characterized by the nominal parameter vector 

a0
T= [b0 bi b2 b3 ai a2 a3]

= [0.03 0.0153 0.0173 0.0171 -1.0284 0.3307 -0.2216]r.
(35)

The response of this model is 4dB within the real FR 
curve and it will be used for the purpose of illustrating 
the potential performance of the proposed linear decon­
volver. Nevertheless, it should not be considered as a refer­
ence model for general ADSL systems or digital subscriber 
loops [31 ].

The effect of the variations of the individual numerator 
coefficients of H on the FR are illustrated in Figure 6. Pertur­
bations on bo have important effects in the depth of the notch 
and the gain of the high frequency portion of the response. 
Changes in b3 seem to affect the whole response in a rather 
mild way, preserving the basic shape and modifying the lo­
cation of the notch. The coefficients b2 and b3 affect both the 
location and depth of the notch but do not have much influ­
ence in the low frequency portion of the response.

Although H is not a physical model and its parame­
ters are not necessarily related to the loop parameters, the 
family of responses or channels generated by the changes 
in these parameters can be associated with the uncertain­
ties that arise when attempting to describe the loop. Usually 
the length, the exact location of bridge taps, and the pre­
cise conformation of the loop are not known. Additionally, 
most parameters are indirectly determined by impedance 
measurements. All these facts add up and make the deter­
mination of the exact response of the channel a difficult 
task. Uncertainties arise naturally about the overall gain of 
the loop and the location and depth of the notch, even 
though the shape (or mean value) of the response will not 
suffer considerable changes. Thus, it seems reasonable to 
consider an uncertain description for the channel as fol­
lows. The model (34) represents the nominal channel and 
bi the perturbed parameter. In this way, variations in bi 
model potential uncertainties, without distorting the basic 
shape of the FR over the whole range of frequencies of inter­
est.

One of the most severe types of interference in ADSL is 
the near-end crosstalk (NEXT) produced by the voltages and 
currents induced in the line by nearby pairs of wires [30,32]. 
The “average and asymptotic” NEXT power is proportional 
to J1-5 and depends on some parameters of the particular 
line. A first-order ARMA model D = (do + UiZ1 )/(l + C|Z 1) 
is used to shape the white noise sequence n(k) with a power 
spectrum similar to the NEXT interference. This filter is
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Figure 6: Frequency response of H when the numerator coefficients are perturbed, (a) Coefficient b0. (b) Coefficient bi. ( c) Coefficient b2. 
( d) Coefficient b}.

(d)

characterized by the parameter vector

/?0 = [d0 di ci]r = [0.0020 -0.00196 0.7209]r. (36)

To control the signal-to-noise ratio (SNR) at the input of 
the equalizer, the variance or power of the signal measured 
at the output of the channel H, is normalized to 1, and 
the gain of filter D is set in accordance with the following 
definition:

SNR-1010,(^-1010,(1), (37)

where a* is the variance of the colored noise at the output of 
D.

For adaptive equalization, transversal FIR filters are the 
standard choice for many reasons [22,27,28,33], so compar­
isons with classical fixed recursive and adaptive FIR designs 

are made. First, the number of coefficients required for an 
FIR equalizer will be evaluated. Figure 7 shows the minimum 
MSE (MMSE) attainable as a function of the number of taps 
used for the equalizer. The family of curves is parameterized 
by the SNR. The MSE is limited by the SNR, so for low SNR, 
the performance of the equalizer is necessarily poor and only 
a few coefficients in the FIR are enough to attain the optimal 
performance. As the SNR rises, the number of taps needed 
to reach the MMSE is larger. If an SNR of 80 dB is consid­
ered the “no-noise design,” then a minimum of 50 taps will 
be required by the FIR to approximate the optimal response.

5.2. Robust orthogonal design
Under the same design conditions, a similar analysis can be 
performed for the robust equalizer using the variance of the 
uncertain parameter b2 as a “tuning knob.” Figure 8 shows 
the MMSE attainable with the robust equalizer as a function 
of the SNR. The curves are parameterized by the variance <7^.
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Figure 7: FIR equalizer. MSE as a function of the number of taps of 
the FIR. The parameter of the curves is the SNR.

80 -60 -40 -20 0 20 40 60 80

Parameter change (bi )

Figure 8: Robust equalizer. MSE as a function of the SNR at the 
input of the equalizer. The parameter of the curves is the variance 
of the coefficient hi.

Figure 9: MSE versus percentage of variation of channel parameter 
bi. Solid line: fixed unperturbed HR and 50 taps FIR designs (the 
curves overlap). Dashed lines: robust designs for values of a? of 
0.001 (lower curve), 0.005, and0.009 (upper curves).

izer. The dashed-line curves correspond to robust designs for 
different values of aj: (the lower error curve corresponds to

= 0.001). For higher variances, the designs are more con­
servative, the MSE grows and the curves tend to be “flatter.” 
The performance is worst around the nominal value of the 
parameter but improves and even exceeds the nominal de­
signs for larger deviations of bi. This is very reasonable since 
robustness against channel uncertainty is obtained at the ex­
pense of lack of performance at the nominal value. These 
curves can be directly compared and coincide with those ob­
tained using the approach of [7].

From the previous analysis we select = 0.001, and 
the steps of the design algorithm for a SNR of 35 dB are as 
follows.

(1) The gains ofH andD are adjusted accordingto (37) for 
an SNR of 35 dB considering cr2 = crj = 1 and <7^ = 1,

H(z) nH(z)
dH(z)

For low SNR, even the unperturbed HR design (the lower 
curve for <r^ = 0.00001 is almost coincident with the un­
perturbed design) has a poor performance with an MSE that 
is nearly in a one-to-one relation with the SNR. The curves 
show that the design variance has to be below 0.001 to obtain 
an MSE that is under -100 dB, that is, to obtain a perfor­
mance similar to the FIR for the “no-noise design.”

The effect of the variance of the parameter bi in the de­
sign may be better appreciated in Figure 9 that illustrates 
the MSE when the parameter bi departs from its nominal 
value for an SNR of 35 dB. The solid line curves correspond 
to the fixed nominal (unperturbed) HR and 50-tap FIR de­
signs. This two curves overlap, confirming that the FIR fil­
ter can very well approximate the optimal recursive equal-

0.1644 + 0.0839z-1 + 0.0947z-2 + 0.0936z--3
1 - 1.0284z-1 + 0.3307z-2 - 0.2216z-3 , (38)

D(z) nD(z)
dD(z)

0.0067 - 0.0066z-1
1 + 0.7209z-1

(2)

(3)

Ta// =
0.001

(dH(z))*(dH(z))’ rAo = 0. (39)

0.1790+0.2003z-1+0.1567z-2+0.1552z-3+0.0620z-4
V/ 1.0000 0.3075z 1 0.4106z 2+0.0169z ' 0.1597z1'

(40)
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(4)

0.1644 + 0.0334z + 0.0013z2 + 0.0328z3 - 0.0925z4 - 0.0502z5 - 0.0135z6 - 0.0149z7
0.1790 + 0.0162z + 0.0098z2 + 0.0207z3 0.0902z4 - 0.0471z5 - 0.0139z6 - 0.0137z7 ' (41)

(5) The optimal basis parameters are

Ao = {0,0,-0.6797 ± 0.1312z, 0.1202 ± 0.8416z}. (42)

(6) The coefficients 0„ are

r 0.5768 * 
4.3072 

-6.3890 
2.6193

-3.6522
1.3904

(43)

(7) The robust orthogonal equalizer is completely speci­
fied by (42) and (43) when using the functions (11) in 
(20) or in (12).

5.3. Robust and adaptive design
The previous design procedure did not incorporate coeffi­
cient adaptation. When adaptive equalization is considered, 
the FIR and the robust orthogonal design coefficients 0 are 
updated by an adaptation algorithm. The performance of the 
equalizers is evaluated in terms of the MMSE attainable when 
bi changes slowly with time (when compared to the conver­
gence speed of the algorithms) and around the nominal de­
sign value. Figures 10 and 11 depict these results for two dif­
ferent SNRs. In Figure 10 the SNR is of 35 dB and the MMSE 
for the nominal design (solid line) is around -20 dB. The 
adaptive FIR is plotted with a dashed line and exhibits a great 
improvement in the performance when compared to fixed 
designs. This improvement is obtained at the cost of adapt­
ing all 50 coefficients. The dashed-dotted line corresponds to 
the robust adaptive orthogonal design that also improves the 
performance of the robust designs of Figure 9. It has almost 
the same performance as the FIR for positive perturbations 
of bi, but is over 4 dB above for negative variations of more 
than 50% in the channel parameter. The main structure of 
the equalizer is fixed and only 6 coefficients are updated to 
obtain this performance.

Figure 10 also includes the response of a deconvolver de­
signed as detailed in the previous sections but with an over­
parameterized orthogonal basis representation (dotted line). 
Additional parameters are added to the optimal Ao to im­
prove the performance for large deviations in bi. The coef­
ficients 0; associated with these new parameters are almost 
zero when the perturbations are small and start to have sig­
nificant values for larger departures. The optimal selection of 

these additional parameters is related in this particular case 
to the zeros of H, and more generally to the zeros of i// that 
change as the system is perturbed. In this example, the added 
parameters are {0.2225 ± 0.9045/}. This means that the to­
tal number of coefficients to be adapted is 8 and the perfor­
mance is almost the same as for the 50-tap adaptive FIR in 
the whole range of variation of bi.

Figure 11 shows the MSE when the SNR is 50 dB. Again 
the performance of the robust adaptive orthogonal designs 
approaches the totally adaptive FIR, with only 6 to 8 adaptive 
coefficients.

5.4. Remarks
The example was developed assuming that the uncertainty 
is described by only one perturbed parameter just for clarity 
and simplicity of tuning. The procedure may be applied sim­
ilarly, when more than one parameter is perturbed, including 
the coefficients of the denominator of H and D.

Over-parameterization of the basis functions may give 
significant improvement in the performance with little ad­
ditional cost. A technique to find an optimal and systematic 
procedure for the selection of the additional parameters is 
actually a subject of research along with the potential prob­
lems of this type of over-parameterized adaptive and recur­
sive structures [12, 25],

Possible extensions of the orthogonal adaptive structure 
to more specific applications in communications include the 
design of decision feedback equalizers. The feedforward and 
feedback filters of the DFE can be given an orthogonal struc­
ture with the basis (11) and a coefficient-updating strat­
egy, similar to that of Section 4, used to make both filters 
partially adaptive. The feasibility of this approach was ini­
tially investigated in [34] and could be used for comparisons 
with the robust fixed designs of Lin et al. in [6] or Sternad 
et al. in [4], since both of these approaches deal with the 
problem of robust DFE design. Also in this area, the par­
tially adaptive recursive structure for the feedback filter of 
the DFE may be a good alternative to long FIR adaptive fil­
ters [11, 31, 35], Other applications and performance anal­
ysis of this approach are currently the subject of further re­
search.

6. CONCLUSIONS

A design strategy for a general SISO robust orthogonal adap­
tive deconvolution processor has been presented. The ap­
proach reformulates and combines results from the fields of 
robust filtering, function approximation with orthogonal ba­
sis, and adaptive filtering. The design exhibits several of the
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Figure 10: MSE versus variations in channel parameter bi for an 
SNR of 35 dB. Solid line: fixed nominal unperturbed HR. Dashed 
line: adaptive FIR. Dashed-dotted line: robust orthogonal adaptive 
HR. Dotted line: robust orthogonal adaptive HR with additional ba­
sis parameters.

80 - 60 - 40 - 20 0 20 40 60 80

Parameter change % ( 1>| )

------ HR nom

--- FIR

— Rob HR
■■■■ Rob HR ap

Figure 11: MSE versus variations in channel parameter bi for an 
SNR of 50 dB. Solid line: fixed nominal unperturbed HR. Dashed 
line: adaptive FIR. Dashed-dotted line: robust orthogonal adaptive 
HR. Dotted line: robust orthogonal adaptive HR with additional ba­
sis parameters.

80 -60 -40 -20 0 20 40

Parameter change % (&i)

60 80
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advantages related to these fields: (i) it is robust to param­
eter uncertainties in the system model; (ii) it is recursive 
and will require a smaller number of parameters than FIR 
counterparts for similar performance, hence the total com­
putational burden is also smaller than for adaptive FIR de­
signs; (iii) it has an orthogonal structure with good numeri­
cal properties and is very modular from an implementation 
point of view; (iv) it is adaptive and recursive but with a fixed 
pole structure so it does not have the potential stability prob­
lems of adaptive HR filters [25, 27]; and (v) the complexity of 
the algorithms used for updating the coefficients is compara­
ble to those used for FIR adaptive filters.

The main result was presented in the form of a theorem 
that puts together the design of the robust recursive decon­
volver with an orthogonal basis representation and estab­
lishes how the basis parameters have to be selected.

An example was presented with the design of an equal­
izer for a simple ADSL channel model with NEXT interfer­
ence. The simulation results show that the proposed design 
can extend the range of operation of fixed linear designs. It 
performs as well as FIR designs which require much more 
adaptive coefficients to yield acceptable results. Moreover, it 
was shown that the performance can be further improved 
by an over-parameterization of the orthogonal basis with a 
small increase in the number of adaptive parameters.

We summarize our contribution as having presented a 
design procedure for a filtering structure with a good trade­
off between computational burden and performance, under 
a wide variety of conditions and uncertainties with appli­
cations throughout the signal processing, communications, 
and control fields.

APPENDIX

PROOF OF THEOREM 1

The proof proceeds in two steps. First, a general expression 
for the optimal deconvolver is obtained, and second, the ex­
act representation of this processor by means of the orthog­
onal basis is developed. For the first step, the minimization 
will be performed using the calculus of variations methodol­
ogy [36] following a procedure close to that of [6, 7].

Initially a perturbation to the optimal unknown proces­
sor Fo is included in the following form:

F = F0 + K<;(q-1), (A.1)

where ¿T'/ 1) is an arbitrary, rational in q'\ and realizable 
function, analytic on and outside the unit circle, and k is a 
small bounded real constant. Replacing (A.l) in (18) and us­
ing Parseval’s theorem to express the performance index in 
the transform domain,

dj:
z

(A.2)
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The simultaneous necessary and sufficient conditions to 
be satisfied for a minimum in J are [36]

OK 1 c=0
(A.3)

a2/1
>0-

OK‘ | K=0
(A.4)

The conditions imposed by (A.4) mean that the integral 

¿4 (A-5)
j J|z| = i z

must be positive, and this is always satisfied because the in­
tegrands involved have the symmetric form /*(z_1)/(z_1) 
and are always greater than zero when integrated over the 
unit circle. The condition of (A.3) implies that the following 
integral must be equal to zero:

[(Fow*C ¿¡W'WCH'z
(A.6) 

+ (F* Y' i/< - <>d W* WfHz1)] — = 0.

Defining Q = ff^W*applying the {■}+ and 
{■} - operators, and writing condition (A.6) as two integrals 
give the following equivalent condition:

(A.7)

Applying Cauchy’s theorem, (A.7) is satisfied if the following 
part of the integrand is zero,

Iff - {Qz '}+ = 0, (A.8)

since it is the only one which may have poles inside the unit 
circle. Finally, from (A.8) the expression for the optimal ro­
bust deconvolution processor is

Fo = {Qz-l}^-i. (A.9)

Three comments on this result follow. First, a realizable 
Fo can only eliminate the parts of the integrand that involve 
{■}+ terms (the filter is analytic outside the unit circle and 
as so, causal). Second, the {■}_ term is a rational function 
starting with a free z to cancel the pole at the origin of the in­
tegrand in (A.7). Third, for symmetry reasons, if one of the 
integrals in (A.7) is zero, so will be the other. This derivation 
is usually followed in the classical Wiener filtering approach 
(see for example [37]), and the reader may compare this re­
sult with the ones in [6, 7, 24].

We now perform an analysis of the operations involved 
in (A.9) to establish bounds on the maximum degree of the 
polynomials that conform the optimal deconvolver and jus­
tify the parameter assignment of the orthogonal basis.

Recalling that H and D are up to 0(N) and 0(S), respec­
tively, and assuming that at least one of the denominator pa­
rameters of these functions is perturbed, then, from (6), l'\// 
is rational with numerator polynomial of (9(N,N) and de­
nominator (9(2N,2N). For Tad, the degrees are (9(S,S) for 
the numerator and &(2S,2S) for the denominator, respec­
tively. Both polynomials of the rational spectral factorization 
y/* of (19) have degrees upper bounded by (9(2N + 2S + 
P,2N + 2S + P). Performing the product to calculate Qz ' 
results in a rational function of (9(P + l,3N + 2S + P) for 
both numerator and denominator polynomials. All the poles 
of Q are outside the unit circle, except those afforded by W of 
0(F). Thus, IQz ' ] i is 0(P) if / = 0, or (9(P + /) for the nu­
merator polynomial if / > 0. The optimal deconvolver is then 
conformed by a cascade of two filters. One is yz 1 of maxi­
mum (9(2N + 2S+P). The other is i Qz ' ] , with a maximum 
number of terms for the numerator polynomial of P + /.

To represent exactly the optimal deconvolver by means 
of the basis functions (11), the parameter set A has to be as­
signed to match the pole structure of Fo. This means setting 
the P poles of W, plus / + 1 poles at the origin to account for 
the delay, plus 2N + 2S + P additional poles that are the zeros 
of i//. This justifies the parameter assignment of (21) and the 
number of terms involved in (20).

Finally, (23) is the standard inner product used to deter­
mine the coefficients that linearly combine the basis func­
tions once the parameters have been optimally assigned. This 
concludes the proof.
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