
ELSEVIER

Available online at www.sciencedirect.com
DISCRETE
APPLIED
MATHEMATICS

Discrete Applied Mathematics 141 (2004) 3-17
www. elsevier.com/locate/dam

Cliques and extended triangles. A necessary 
condition for planar clique graphs

Liliana Alcón* 1, Marisa Gutierrez

1. Introduction and basic definitions

We consider simple, finite and undirected graphs. Given a graph G. I'(G) denotes its 
vertex set and n = | l'(G ). A complete of G is a subset of E(G) inducing a complete 
subgraph. A clique is a maximal complete. We also use the terms complete and clique 
to refer to the corresponding subgraphs. A complete C covers the edge uv if the end 
vertices, u and r, belong to C. A complete edge cover of G is a family of completes 
covering all its edges.

Given .A = a family of nonempty sets, the sets F, are called members of
the family. E is pairwise intersecting if the intersection of any two members is not the
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Abstract

By generalizing the idea of extended triangle of a graph, we succeed in obtaining a common 
framework for the result of Roberts and Spencer about clique graphs and the one of Szwarcfiter 
about Helly graphs. We characterize Helly and 3-Helly planar graphs using extended triangles. 
We prove that if a planar graph G is a clique graph, then every extended triangle of G must 
be a clique graph. Finally, we show the extended triangles of a planar graph which are clique 
graphs. Any one of the obtained characterizations are tested in O(/t:) time.
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empty set. The intersection or total intersection of is the set = n,ez F„ 
obeys the Helly (k-Hellv) property if the total intersection of any pairwise intersecting 
subfamily (with at most k members) is nonempty.

Let ^(G) be the family of cliques of G. The clique graph of G, K(G), is the 
intersection graph of ^(G). G is a clique graph if there exists a graph H such that 
G=K(H). The only general characterization for clique graphs so far known is the one 
given by the following theorem. Recognizing clique graphs through this characterization 
is in general difficult; it is an open problem determining the time complexity of clique 
graphs recognition [5],

Theorem 1 (Roberts and Spencer [3]). A graph G is a clique graph if and only if 
there exists a complete edge cover of G satisfying the Hellv property.

A special family of completes of G that covers its edges is the family ^(G). G is 
a Hellv (k-Hellv) graph if ^(G) obeys the Helly (¿-Helly) property ([2], it contains 
some related topics). It follows that Helly graphs are always clique graphs. Helly 
graphs can be recognized in polynomial time using the following characterization.

Theorem 2 (Szwarcfiter [4]). A graph G is a Helly graph if and only if every ex­
tended triangle of G has a universal vertex.

Since Helly graphs are clique graphs, and they have been characterized looking 
at its triangles, what can we say about the triangles of clique graphs? Is there a 
more general result than Theorem 2 about the triangles of clique graphs? In Section 
2 we show an affirmative answer to this question. We present a generalized notion of 
extended triangle which allows a blending of the techniques of Roberts-Spencer and 
Szwarcfiter,

In Section 3 we obtain a characterization of Helly planar graphs and 3-Helly pla­
nar graphs by describing a simple family of admissible extended triangles. Section 4 
contains our advance in the recognition of planar clique graphs; the mam result pro­
vides a necessary condition for planar clique graphs: that any extended triangle must 
be a clique graph. The planar extended triangles which are clique graphs are totally 
characterized in Section 5.

2. Extended triangles generalization

A triangle T of a graph G is a complete containing exactly three vertices. The set 
of triangles of G is symbolized by T(G). The extended triangle of G relative to the 
triangle T is defined in [4] as the subgraph induced in G by the vertices adjacent to at 
least two vertices of T and it is denoted by I". It is easy to prove that the following 
definition is equivalent: T' is the subgraph induced in G by the vertices of the cliques 
of G containing at least two vertices of T. It follows the way we generalize the idea 
of extended triangle:
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Definition 3. Let F be a complete edge cover of a graph G and T gT(G). The sub­
family of .jF formed by the members containing at least two vertices of T is denoted 
by Fy.

The extension—according to the family .jF—of the triangle T is the subgraph Ty 
induced in G by the vertices belonging to the members of

The extension—according to the family F(G)—of T is called the extended triangle 
of G relative to T and it is simply denoted by T' instead of

Notice that given .jF, any complete edge cover of G, Ty is an induced subgraph of 
the extended triangle T'.

The following lemmas give a useful relation between Fy and T/ They generalize 
previous works in [3,4].

Lemma 4. Let F be a complete edge cover of G. The following conditions are equiv­
alent-.

(i) F has the Helly property.
(li) For every TeT(G), the subfamily Fy has the Helly property.

(hi) For every T gT(G), the subfamily Fy has nonempty intersection.

Proof. If F has the Helly property, then any subfamily has the Helly property, in 
particular Fy has the Helly property. On the other hand, if Fy has the Helly property, 
since Fy is pairwise intersecting, then it has no empty intersection. Now suppose 
the third condition is true but F has not the Helly property, then there must be a 
subfamily F' = (F,)lEy pairwise intersecting with empty intersection. We can consider 
it a minimal one, then for every LgI', Let v,„ be a vertex belonging
to that intersection. Since the total intersection of the subfamily is empty, then zo./i Gl', 
z'o f i\ implies ty f ty.

Since F' has at least three members, we can consider three different vertices ty„ 
ty and ty in such conditions. These vertices form a triangle T of G. Clearly F' is a 
subfamily of Fy, and by hypothesis Fy has no empty intersection, thus F' has no 
empty intersection. Contradiction. □

Lemma 5. Let F be a family of completes of G and T gT(G). If the subfamily Fy 
has nonempty intersection then the subgraph T-y has a universal vertex. The converse 
is true if F is the family F(G} of cliques of G.

Proof. Let uGffFy. We claim that u is a universal vertex of TV, indeed: let v f u 
and vGV(.T&d. There exists FeFy such that vgF. Thus u and v belong to the 
complete F, then u is adjacent to v.

The other assumption says that if the subgraph Tf GI = T' has a universal vertex 
then the subfamily F(G)y has no empty intersection. Let u be a universal vertex of 
T'. Let C &F(G)y and vG C, v f u. Since vG F(T'), then u is adjacent to v. Since 
C is a clique, then ugC. It follows that it G QF(G)y. □
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We obtain Theorem 2 from these lemmas:

Theorem 6 (Theorem 2 generalization). The following conditions are equivalent’.

(i) G is a Helly graph.
(li) The family ^(G) has the Helly property.

(hi) For every T eT(G), the family ^(G)t hots the Helly property.
(iv) For every T eT(G), the family ^(G)t has no empty intersection.
(v) For every TeT(G), the subgraph TV{G} = T' has a universal vertex.

(vi) For every T e T(G), the subgraph TV{G} = T' is a Helly graph.

Using the previous lemmas we also can re-state Theorem 1 and relate it with The­
orem 2.

Theorem 7 (Theorem 1 generalization). The following conditions are equivalent:

(i) G is a Clique graph.
(n) There exists a complete edge cover of G satisfying the Helly property.

(in) There exists ¿F, a complete edge cover of G, such that for every T eT(G), the 
subfamily ¿Ft has the Helly property.

(iv) There exists ¿F, a complete edge cover of G, such that for every T eT(G), the 
subfamily ¿Ft has no empty intersection.

(v) There exists ¿F, a complete edge cover of G, such that for every T eT(G), the 
subgraph T/G has a universal vertex and this vertex belongs to every member of 
the subfamily ¿Ft-

3. Helly and 3-Helly planar graphs

The well-known planar graphs (see [1]) are those admitting a representation on the 
plane such that two edges do not intersect except at common end vertex. Kuratowsky’s 
theorem shows that a graph is planar if and only if it does not contains a subdivision 
of X5 or A'3 3.

A planar graph G is a Helly graph if and only if it is a 4-Helly graph because 
its largest clique contains at most 4 vertices [3, Lemma 2], Any 4-Helly graph is a 
3-Helly graph but the converse is not true. Thus we can define the following subsets 
of planar graphs: planar Helly graphs = planar 4-Helly graphs C planar 3-Helly graphs 
C planar graphs. We will characterize them using the extended triangles.

Let G be any graph and v.v' e V(G). We write v v' to mean that v and v' are 
adjacent, otherwise we write v v'.

For a given triangle T = {v, y.c} of G, we call:

Jfv = {f & U(G): v v, v -- y, ~ c}.

If- = {t> € U( G): v - v, v ~ z, v y}.
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Fig. 1. Extended triangles of type 2 and 3.

Vvz = {t> & V(G): v ~ y, v -- z, v x},

Vxyz = {« G V(G): v - x, v ~ y, v ~ z}.

Definition 8. Let G be a graph and I" the extended triangle of G relative to the triangle 
T = {x.y.z}. Say that:

T' is of type 1 if at least one of the sets Tfv, I',- or is empty.
T' is of type 2 if Vxy = {zi}, Vxz = {yi}, Vyz = {xi}, Vxyz = {w}, Xi ~ w, yi ~ w 

and zi w.
T' is of type 3 if Lxy = {zi}, Gxz = {y1}, Vyz = {x1}, Vxyz = {w,wf, Xi - w, yi ~ w 

and zi w.

Notice that if I" is an extended triangle of type 2 (type 3) of a planar graph, then 
T' is isomorphic to the graph A (to the graph B) of Fig. 1, thus each class contains a 
unique planar graph. This is easy to prove since graphs A and B are maximal planar. 
On the other hand, there is an infinite number of planar extended triangles of type 1.

Lemma 9. Let T = {x.y.z} be a triangle of a planar graph G.

(1) If w G Ixc, zi ,z2 G lxv and w Z] then w ~ z2.
(2) If w G Vxyz, zi G Vxy, i'i G Vxz, w ~ zi and w ~ yi then zi y2.
(3) If w, w' G f xl,- then w w'.
(4) If w,w' G fxl,-, zi G rxv iwZ zi w then zi w'.
(5) If up is a universal vertex of the extended triangle of G relative to T, then

ureT or ut^Vxvz. Moreover, if ureT then one of the sets Vxv, Vxz or VK js 
empty.

Proof. (1) If w ~ z2 then the vertices w.x.y and the vertices z,zi,z2 form a Kty, 
which is a contradiction because G is a planar graph. (2) The vertices w.x. v and z 
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form a K4; if z\ ~ yi then there is a subdivision of a K5 considering yi the fifth 
vertex. (3) If w ~ w' then the vertices w.w'.x.y and z conform a K5. (4) The vertices 
w,v, y and z form a Ky if w' zi then there is a subdivision of a K5, considering w' 
or ci the fifth vertex. (5) It is clear because of the definition of the sets. □

Now, we give the characterization:

Theorem 10. Let G be a planar graph.

(1) G is a Helly graph if and only if every extended triangle of G is of type 1 or 
type 2.

(2) G is a 3-Helly graph if and only if every extended triangle of G is of type 1, 
type 2 or type 3.

Proof. If F C 1(G). F f {u./v,...} means that the vertex 11 belongs to the set F and 
that the vertex v does not belong to it.

(1) If G is a Helly graph and T' is an extended triangle of G, by Theorem 2, there 
exists up, a universal vertex of T'. Suppose there is a triangle T = {v, y.c} which is 
not type 1, then lf„ Jf- and Iq- are not empty, so, by Lemma 9, item 5, t/pG lx,,-. 
Since tip must be adjacent to every vertex belonging to the subsets Jfv, If-, or 
and to any other vertex in then, by Lemma 9, items 1 and 3, every one of these 
sets contains at most one vertex, thus every one of them contains exactly one vertex; 
it follows that T' is a type 2 extended triangle.

It is clear that any extended triangle of type 1 or type 2 has a universal vertex, then 
the converse is true by Theorem 2.

(2) Let G be a 3-Helly planar graph and suppose there exists a triangle T = {v, v.c} 
of G, such that the extended triangle T' is not type 1; then there are different ver­
tices ci e Jfv, yi G lx- and aj G FK. Thus, there are cliques Ci D {v,y,ci,/c,/vi,/yi}, 
C2 2 {v,yi,c,/y,/vi,/ci}, C3 D {vi,y,c,/v,/yi,/ci}. Since G is 3-Helly and these 
three cliques are pairwise intersecting, then there exists w, a common vertex. 
It is clear that w f {v, v.c.vi, vi.ci}. If T' has no more vertices, then T' is of 
type 2.

Now, assume there exists w', another vertex of T'; we claim that w' G and so 
T' is of type 3, indeed: if w'G Jfv, since the cliques Ci, Cr and C3 already contain 
four vertices, there must be another clique C4 D {v,y,w',/c,/w}. Notice that c * w' 
because w' G Jfv; and w w' because of Lemma 9, item 1. Now Cp = {v,yi.c.w}, 
C3 = {vi, y.c.w} and C4 are pairwise intersecting and they have not a common vertex, 
contradiction. We conclude w' f Jfv and by symmetry w' f If- and w' f I\,-, thus 
w' G Ixix’ as we claimed.

To prove the converse suppose G is a planar, not 3-Helly graph. Then there must 
be three cliques Ci, Cp and C3 pairwise intersecting with empty total intersection. 
Let the vertices belonging to the respective intersections be named v, y and z; and 
let T be the triangle that they form. Since these cliques must contain at least three 
vertices and they have not a common vertex, it follows that there exists zi z and 
Ci □ {v,y,ci,/c}; yi y and Cp f {v,yi,c,/y}; aj v and C3 D {vi,y,c,/v}. Now 
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it is easy to see that the extended tnangle relative to T is not type 1, not type 2 and 
not type 3. Contradiction. □

These characterizations lead to O(/r) recognition algorithms for Helly and 3-Helly 
planar graphs. Remember that the triangles of a planar graph can be listed in linear 
time [1],

4. Planar clique graphs

The following theorem shows a way to obtain from a Helly complete edge cover of 
a planar graph G, a Helly complete edge cover of every extended triangle of G. Thus 
if G is a planar clique graph, then every extended triangle of G is a clique graph.

Theorem 11. Let ^ = (F,),ei be a Helly complete edge cover of a planar graph 
G, and T' an extended triangle of G. The family :!F' = (F, n where I’ =
{i el: \F, A F(T')| 5 3} is a Helly complete edge cover of T'.

Proof. For every i el, =F, A F(T') is a complete of T' because F( is a complete
of G and T' is an induced subgraph of G. Suppose there is an edge uv of T' which is
covered by no member of thus for every i el' if u eF[ then v f Ff so for every 
ieZ such that \F, A F(T')| > 3 if ueF, A F(F') then v <f F, A 1(7): so for every 
i el, if n and veF, then \F, A F(T')| < 3; this means that

F, e .(F and //, v eF, implies F, A V( T') = {//, t>}. (1)

We will see that this is not possible. Let T = {v.y.c}.
Case 1: //,veT. In this case any vertex in a complete containing u and v belongs to 

F( F), then by implication 1 any member of :F containing u and v does not contain 
more vertices, then it is a Kr. This is not possible since ;F has the Helly property.

Case 2: ueT and v f T. Since ve F(T') we can assume v ~ v and u f x. By 
implication 1, the tnangle {//, t>,v} cannot be included in a member of :F so there 
must be different members covering the edges: xv, py and yv. These members are 
pairwise intersecting then they must contain a common vertex. Clearly, the common 
vertex belongs to F(T'). This contradicts implication 1.

Case 3: t/,v f T. We will consider two subcases: when both vertices are adjacent 
to a same pair of vertices of T, and when they are adjacent to different pairs.

Subcase 3.1: u and v are adjacent to v and y (Fig. 2a). Again, by implication 1, the 
tnangle {//, p,v} cannot be included in any member of :F, so there must be completes 
Fi D {//,v./x./y./z}, Fr f {u.x./v}, and Fi D {x, p,/h}, Since they are pairwise 
intersecting, they must contain a common vertex, say w. Notice that w {x.y.z.v.u}, 
and that w F(T'), then w is adjacent neither to y nor to z (Fig. 2b). Now, consider 
the tnangle {//, p.y}, by the same reason there must be completes F4 D {//,y,/p,/w} 
and F5 D {p,y,/H,/w}. Since Fi, F4 and F5 are pairwise intersecting, they must contain 
a common vertex w' f {v.y.c,p,w,u} (Fig. 2c). Clearly {//, p.m’.m''} conform a K4, so 
considering v or y as the lillli vertex there is a subdivision of a If. Contradiction.



10 L Alcon. M Gutierrez! Discrete Applied Mathematics 141 (2004) 3-17

Subcase 3.2: u is adjacent to x and y, and v is adjacent to y and : (Fig. 3a). As in 
the previous subcase, because of implication 1, the triangle y} is not included in 
any member of then there must exist completes of F\ 2 {//, t>, w,/x,/y,/s}, Fs 2 

{//,y,M’,/x,/s,/i>}, and Ft 2 {i>, y,wjxj:ju}, furthermore w
(Fig. 3b). Now, suppose there exists IFF such that {x.y,;/} CF. Again, there must 
exist w' eFnFi CtFp Clearly w' {x, y.s,and w' E this contradicts im­
plication 1 since {u.v.w'} C F\. We get that the triangle {x.y,;/} is not included in any 
member of JF then there must be members F4 D {x,y,/i/,/w} and F$ D {x,H,/y,/w}. 
Since they and Fs are pairwise intersecting, they must contain a common vertex, say 
w', which clearly does not belong to {x.y.s,(Fig. 3c). Notice that {//.y.w.w'} 
conform a X4, so there is a subdivision of a K$ considering x or v as the lillli vertex. 
Contradiction. We have proved that = (F{ )lEp is a complete edge cover of T', 
suppose it has not the Helly property, then there is a subfamily pairwise intersecting 
without a common vertex, let (F[ )1&j, J c F be a minimal one. Notice that |J| < 4 
because the completes have at most four vertices. Since p|(£f Ft 0, p|(£f F{ = 4. 
and 3 < |F,'| < 4 then for each i&J, F,=F' U {/;} where he V(G) and h'g V(T'). 
Assume |J|=4. Since the subfamily is minimal, any three members contain a common
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Fig. 4.

vertex, then there are four vertices mutually adjacent; these vertices with the vertex h 
conform a X5, which is a contradiction.

If |J| = 3, say J = {1,2,3}, call v„ = v„ a vertex belonging to the intersection of F[ 
and Fr then we have F\ D {¿.’12. 1’13.//}; Fi D {1’12,1’23,/?} Ft D {1’13,1’23,/?} (Fig. 4a). 
Since h F( T') and every set must contain at least three vertices of T', then every 
one of these sets must contain another vertex of T', and it cannot be the same vertex 
for the three sets. Then there are two possibilities: (a) One of the three fourth vertices 
belongs to one intersection, for instance suppose there is another vertex veFtOFc (Fig. 
4b), then 1’12,1’13,1’23.v.h conform a K5, which contradicts planarity, (b) None of the 
three fourth vertices is in one intersection, then they are different vertices: t’i, 12 and 
t’3, and the situation is F? ={p1, t’n. 1’13,/?}, F2 = {t’2,1’12.1’23./?}, and Ft = {t>3,1’13, vitJi} 
(Fig. 4c).

Since the vertex /? is not in T', at most one of the vertices 1’1,1’2,1’3,1’12.1’13.1’23 

is a vertex of the triangle T. The remaining vertices are adjacent to at least two 
vertices of the triangle T, then it is easy to see that there is a subdivision of a K5. 
Contradiction. □

Corollary 12. Let G be a planar graph. If G is a clique graph then every extended 
triangle of G is a clique graph.

5. Planar extended triangles which are clique graphs

We have obtained, for a given planar graph, a necessary condition to be a clique 
graph: that every extended triangle of the given graph must be a clique graph. Then 
it is natural to ask: is it easy to know if an extended triangle of a planar graph is a 
clique graph? The answer is yes. In Theorem 14 we present a total characterization of 
the extended triangles of a planar graph which are clique graphs. This characterization 
leads to an O(u2) algorithm to decide if a planar extended triangle is a clique graph.

Before enunciating the theorem we will prove the following useful lemma about 
Helly complete edge covers of an extended triangle of a planar graph.
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Fig. 5. Item of Lemma 13

Lemma 13. Let G be a planar graph and T' the extended triangle of G relative to 
the triangle T={v, y.s}. Let be a Helly complete edge cover of T' and up G p| .dcT, 
then:

(1) If u G F(7>) and u f up, then u up.
(2) Either iip^T or iipGVxv:.
(3) IfweVxv: then weV(Tf).
(4) If |Lxyz| = 2 then uTeT.
(5) If u G Vxv and u f V(Tf), then either

(i) Ltv = W, and there exists u’Glxlz such that u ~ w (Fig. 5a), or
(ii) there exists w such that and w' G Fxv- such that u ~ w ~ w'.

Furthermore, weV(Tf) and w' = up (Fig. 5b).
(6) If |Vxv| > 2 then either uT =x or uT = y.

Notice that we can obtain results analogous to items 5 and 6, beginning from Vx: or 
FVJ instead of Vxv.

Proof. (1) It is clear since F(If) = U-^'f and belongs to every member of 
which are completes.

(2) By definition the members of .IF covering the edges of T are members of .^p, 
then v, y.cG F(7>), thus if up f T, it follows from the previous item that up is 
adjacent to v, y and then Up G Ixlz.

(3 ) Suppose w G Jfv: and w F(If). Then there must be members of 3F satisfying: 
Fi D {u’.v./y./c}, Fs ¡2 {u’.y./v./c}, F? D {u’.c./v./y}. There are two possibilities: (a) 
there exists a member of containing the triangle {v. y.c}: let it be Fg D {x,y,z,/w} 
(notices that w f Fg because w f F(Tf)). Since the four completes are pairwise 
intersecting, they must contain a common vertex: h f {x.y.z.w}. Then there is a F5. 
Contradiction.

(b) There is not a member of IN containing the triangle {v, y,-}, so there must 
be different completes covering its edges: F4 D {v,y,/c,/w}, F5 D {x,z,/y,/w}, F, D 
{y,c,/v./w}. It is easy to see that these completes cannot be the previous ones, and, 
since every one of them contains two vertices of T, then they must contain up. It 
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follows that up cannot be x, y, z or w, then we have to add to F4, F5 and /f the 
vertex up E On the other hand, Fi, Fr and F4 are pairwise intersecting, then they 
must contain a common vertex h {x.y.z.w}. By Lemma 9, item 3, tip w, then 
h up. Thus h is adjacent to v, y, w and up\ again we contradict plananty.

(4) Let w.w' E Ixl-. By Lemma 9, item 3, they are not adjacent. In accordance with
the previous item w' E V(T&), and since w' ~ w, then up w. Analogously, //y w'.
We conclude that up I-xv-, It follows from the second item that up E T.

(5) Let uG Ixv and suppose that u Iz(7>-), i.e. u does not belong to any member 
of 3F containing at least two vertices of T. Since every edge is covered by a member of 
the family there are completes F\ D {//,v,/y,/s}, Fp A {u.y./v./s}, F3 D {v.y,///}. 
Since they are pairwise intersecting and iF has the Helly property, they contain a 
common vertex w which is not v, y,s, or //; actually these completes satisfy:

Fi D {w, u.v./y./s}, Fs A {w, u.y./v./s}, F3 D {w,v, yju}.

Let us see that in this conditions,

FeF, v, yEF implies weF (2)

we will use it later. Suppose F -F and F D {v,y,/w}, clearly F is not Fi, nor F2 
and nor F3. The four completes F, Fb F2 and F3 are pairwise intersecting so they 
contain a common vertex which is not v. y.z^u or w, then the common vertex must 
be a vertex h which is adjacent to v. and w, so there exists a K5. This contradicts 
planarity. We have proved implication 2.

Now, let us consider two cases: when the vertex w is adjacent to z and when it is 
not. (1) Assume w ~ z, then w E We only need to prove that Jxv = {//}. Suppose 
there exists //'E I'xv. By Lemma 9, item 1, //' r* w, then by implication 2, //' does 
not belong to any member of containing v and y, thus //' F(F^). It follows that
there must be completes F4 D {v, u'jyjzjw} and F5 D {y.i/'./x./z./w}. Again, these 
completes and F3 D {v.y.w,/»,///'}, must contain a common vertex, say /?. Clearly 
// {v.y.s.w,//,//'} and /? is adjacent to v, y and w. Notice that u and z are also
adjacent to these three vertices, then there is a F3 3. Contradiction. We have proved 
that I-xv = {//} and u ~ w E lxvz.

(11) If w s, then, by implication 2, z does not belong to any member of F contain­
ing v and y, then there must be completes F4 D {v,s,/y,/w} and F5 D {y,s,/v,/w}. 
These completes and F3 D {x.y.w./i/./r} are pairwise intersecting, then there ex­
ists m''eF3 nF4AF5 Clearly w' {v, y.s, iyw}. Notice that w'E IX1-, u’ElXv and 
// — w ~ w'. On the other hand, by Lemma 9, item 1, w' //, then actually the 
completes satisfy Fi D {w,u.x./y./z./w'}, Fp {w,u,yjxjzjw'}, Ip = {w'.w.x.y}, 
F4 D {u’',v,s,/y,/u’,///} and F5 D {u’',y,s,/v,/u’,///}. Since F3 = {w',w,v,y} then 
■.■.1(7,). as we wanted to prove. Since the completes F3 = {w'.w.v.y}, F4 D 
{w'.x.r./y./w,/«} and F5 D {w'.y.r./x./w,/«} are members of .(Fp (every one of 
them has two vertices of T), then each one must contain the vertex Up, it follows that 
up = w'.

Finally, we have to prove that I- Xl,={“. w}■ Suppose there exists other vertex //' E F<v. 
We claim that //' F(Tjr). Indeed, in the opposite case, there exist FhF such that 
{v, y,//'} C F, then, by implication 2, weF and so w ~ u. This contradicts planarity.
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Now, since //' L(Tjr), there must be completes />, D {x,H',/y,/z,/w,/w'} and /’- D 
{y, i/'JxJzJwJw'} (it is easy to see that these completes cannot be the preceding 
ones, and that //' w'). Again these completes and F3 = {x.y.w.w'} must contain a
common vertex which clearly does not belong to {x, y.M’.u''}. Contradiction: F3 cannot 
be a K5.

(6) If 1I| > 2, since the previous item, every vertex in Jfv must belong to L(Tjr), 
then by item 1 every vertex in Vxv must be adjacent to up. It follows that up z. By 
Lemma 9, item 1, at most one vertex of Fxv could be adjacent to a vertex of Jfvz, 
then in the present case uT T-xlc. We conclude, because of item 2, that uT must be 
x or y, as we wanted to prove. □

Theorem 14. Let G be a planar graph and T' the extended triangle relative to the 
triangle T = {x.y.z} of G. T' is a clique graph if and only if at least one of the 
following conditions is satisfied:

(1) Vxy = 0 or Vxz = $ or Vyz = 0.
(2) Vxy = {zi} and zx ~ we Vxyz, or

= {yi} and Vxyz, or
Fy: — {xi} and xi ~ w G Vxyz.

(3) Vxy = {z],zp}, Cxz = {yi,y2}, Vyz = {xbx2}, Vxyz = {w}, and
w zi ~ z2, w ~ yi y2, w ~ Xi x2.

Proof. Suppose that T', the extended triangle relative to the triangle T = {x.y.z} of 
the planar graph G, is a clique graph, and that T' sal is lies neither condition 1 (Remark 
1: the subset Fxv, Txz and I\z are nonempty) nor condition 2 (Remark 2: if Fxv, Txz 
or contains exactly one vertex, then the vertex is adjacent to non vertex of ixvz), 
we are going to show that T' satisfies condition 3.

Since T' is a clique graph, there is a Helly complete edge cover iF of T', then we 
can consider .iFp, Ty. and up as in the previous lemma. Item 2 of that lemma says 
that up G T or up G Vxvz, let us show that in the actually conditions up f T. Suppose 
up G T, for instance up=z. By Remark 1, there exists zi G Vxv. Since zi >%>z = up then 
zi f F(Tf). Because of item 5 of Lemma 13 there are two possibilities: (1) Jbv = {-i} 
and there exists w G Iziz such that zi ~ w. This is not possible because of Remark 
2; or (11) there exists w'G ixvz such that Up = w'. This is not possible since we have 
supposed up G T.

We conclude that up f T, then up G ixvz. By Lemma 13, items 3 and 1, and by 
Lemma 9, item 3, J-xv-={h7’}, On the other hand, it follows from item 6 of the previous 
lemma, that every one of the sets lxv, l',z and I\z contains at most two vertices. Let 
us see that none of them contains exactly one vertex. Suppose Vxv = {zi}, By Remark 
2, zi cannot be adjacent to up, then zi f F(7f). Actually we have Fxv = {zi} and 
zi f F(Tf), then item 5(i) of the previous lemma must be true, but this contradicts 
Remark 2.

We conclude that every one of the sets lxv, Fxv and Fvz contains exactly two 
vertices. Both vertices cannot be vertices of Tf since they ought to be adjacent to uT 
and this contradicts Lemma 9, item 1, then in each case at least one of them is not 
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m F(Tjr). It follows from 5(h) of Lemma 13, that condition 3 must be true, as we 
wanted to prove.

The converse says that T' must be a clique graph if it satisfies 1, 2 or 3.
Assume first that F satisfies condition 1, say Fxv = 0. Then : is a universal vertex 

of T', so T' is a Helly graph and hence T' is a clique graph. A special case will 
be important in what follows: Assume that Cv = 0 and that w G I has degree 3 
in T'. Then Fw = {v.y.c.u’} is the only clique of T' containing w. There are at 
most two cliques of F containing both v and y: one is certainly Fw and the other is 
FH,' = {v, y,c,w'} if Lns={i'i’.i'i’/}: indeed, the common vertex neighbours of v and y are 
w w' and this is an induced path (henceforth, every reference to w' and objects
related to it must be disregarded if Ixls = {w}). Let = }-Fw> )U{F4,F5} where
F4 = {v,c,w'} and F5 = {y.c.w'}. Thus 3? is a complete edge cover of T' and satisfies 
Helly property since Q.F. Notice that Fw is the only member of iF' containing the 
vertex w or the edge vy.

Assume now that T' satisfies condition 2, say Jxl, = {ci} and zi ~ welF By 
Lemma 9, items 1 and 3, besides zi there are at most two neighbours of w in T —T. say 
vi G and i’i G lx- (again, references to them will be conditioned to their existence). 
Let F' = (F — ci) — {wxi.wyi}. Then T" falls within the special case discussed 
above, so consider its Helly complete edge cover rF' = (F(T") — Fw>) U {F4,F5}. 
Define Fo = {v.w.ci}, F\ = {y.w.ci}, F_ = {v.M'.yi} and F3 = {y.H'Ji}. Therefore, 
-Fi = rF' U {F0.F1.F2.F3} is a complete edge cover of T'. Note that Fo and Fi are 
the only member of FC containing ci, and that w is only in Fv.F0.F1.F2 and F3. We 
still have that r.yeFeFi implies F = FW.

We will show that FC has the Helly property. Let F^ be a pairwise intersecting 
subfamily of FC We can assume that .FJ is not a subfamily of .F, and by symmetry 
we need to consider only the following two cases:

Case 1: FoG-Fp There are two subcases:

(A) Fi e F^. Suppose there is an F e F^ such that w F. Then F G FC FnF0 = {x} 
and FnFi = {y}, so x.yGF and then wgF after all. Contradiction.

(B) Fi so FAF0 C {v.w} for all Fe/j, F Fo. If Q-FJ = 0, there exist
FG& -FJ such that F A Fq = {v} and G A Fq = {w}. Then G = F3, and w F 
implies FAG C {y.vi}. Since v GF, then Vi F and FAG = {y}, but so v.y GF 
implies F = F„„ a contradiction.

Case 2: but F0,Fi ^tF'\. Again, two subcases:

(A) F3 e/j, Assuming that there is an FG.Fi such that w F, we get F A F? C 
{v.yi}, andFAFi C {y.vi}. But thenv.yGF, F=FW and wgF. Contradiction.

(B) F3 F'y Suppose that there is an FgFJ such that v F. It follows that
F {FH,,Fo,Fi,F2,F3,F4,F5}, so Fg^T") and w F. In particular, FA
Fr = {yi}. By Lemma 9, items 2 and 4 the neighbours in F of yy are in 
F-U{v,c,u'}. Hence, the neigbours in T" of yy are in F-U{v,c}. Thus, F G F(T" ) 
and yi GF imply vgF, a contradiction. We conclude that xeQ/J, in this 
subcase.
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Finally consider that T' satisfies condition 3. It is easy to see that in this case the 
family depicts in following is a Helly complete edge cover of T', thus it is a clique 
graph:

{x,si,s2}. {.v.-i.-c}. {v.y.si.w}.

{•Wi.i’c}. {-.vi.vc}. {x.s.yi.w}.

{y.Xi.Ay}. •jswi.-w}. {y.s.xi.w}.

Corollary 15. Let T' be an extended triangle of a planar graph G. If T' is of type 
1, 2 o/' 3 then I" is a clique graph.

6. Remarks

It is known that a graph G is a clique graph (Helly graph, ¿-Helly graph) if and 
only if the graph obtained from G by removing the edges which are cliques of G, is 
a clique graph (Helly graph, ¿-Helly graph), therefrom, the results presented in this 
work hold for a class of graphs wider than planar.

We have proved that if a planar graph is a clique graph, then its extended trian­
gles are clique graphs. We have found counterexamples that show that the converse 
is not true, i.e. there exists a planar graph such that every one of its extended trian­
gles is clique graph but the whole graph is not a clique graph. However, Theorem 
11 says that if a planar graph G is a clique graph then every extended triangle of 
G admits a Helly complete edge cover coming from a same Helly complete edge 
cover of the entirely graph G, this means that every extended triangle of G must be 
a clique graph and every extended triangle must admit a Helly complete edge cover 
“compatible'’ with the one of the other extended triangle. Then we think that the exis­
tence or not of a Helly complete edge cover of a planar graph G could be determined 
knowing the different possible Helly complete edge covers of each extended triangle 
of G.
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