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ABSTRACT. Using a bijection between the set Bq-t of all Bessel sequences in 
a (separable) Hilbert space Tl and the space L(^2,7Y) of all (bounded linear) 
operators from Z2 to 7Y, we endow the set F of all frames in 7Y with a natural 
topology for which we determine the connected components of T. We show 
that each component is a homogeneous space of the group GL(£2) of invertible 
operators of Z2. This geometrical result shows that every smooth curve in T 
can be lifted to a curve in GL(Z2): given a smooth curve 7 in F such that 
y(0) = E, there exists a smooth curve T in GL(Z2) such that 7 = T • E, where 
the dot indicates the action of GL(Z2) over F. We also present a similar study 
of the set of Riesz sequences.

1. Introduction

Let TL be a (complex, separable) Hilbert space, L(^2,W) the algebra of all 
bounded linear operators from £2 to TL and S the subset of L(f2 ,TL) consisting 
of all epimorphisms from T2 onto TL.

A sequence {£n} of elements of TL is called a frame if there exist positive con­
stants A, B such that

(1-1) Alien2 <El(W|2<B||£||2

for all e G T~L. Denote by T the set of all frames in H. Frames have been introduced 
by Duffin and Schaeffer in [13], in connection with nonharmonic Fourier series, 
but they attracted more attention since the begining of wavelet theory due, in 
particular, to the fundamental paper [11]. The reader will find many relevant 
results and facts on frame theory in the book [10] by I. Daubechies, and in several 
papers, in particular the survey by C. Heil and D. Walnut [15], the monograph [14] 
by D. Han and D. Larson, the exposition [4] of P. Casazza and the survey [5] by O. 
Christensen. The papers [16] by J. R. Holub and [1] by A. Aldroubi contain some 
results related to ours. Also, in [2], R. Balan introduces a decomposition in T and 
defines a metric on each “component” of the partition. In this paper, we proceed in 
a different way by defining a natural topology in the set T of all frames H = {A} in 
H. We characterize the connected components of T and show that each component
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is a homogeneous space of the group GL}!2') of all invertible operators on t2. These 
facts come from the existence of a natural action of GL(£2') over J7. We get all 
these results in an indirect way. In fact, we first study the topology of the set £ of 
all (bounded linear) epimorphisms I2 —> Tl and define an action GL}!2') x £ —> £ to 
characterize the connected components of £. Then, we define a Banach space 6’7/ 
of sequences in Tl (“Bessel sequences”) and a natural isomorphism from L((!2,TC) 
onto Bg-i that maps £ onto T. By means of this isomorphism all facts about £ are 
translated to T.

The paper is divided into two parts: in the first part we endow £ with the 
topology induced by the operator norm in lAi2. H). £ is an open subset of I.U2. Tl) 
and there is a natural action of GL(t2) over £, by multiplication on the right. The 
orbits of this action are the connected components of £. More precisely, for each 
n G N U {+00} the set £n = {T G £ : dimkerT = n} is a connected component 
of £ and, as an orbit of the action, it is a homogeneous space of GL(t2). As 
such, it has several pleasant geometric properties. In particular, continuous (resp. 
smooth) curves in £n lift to continuous (resp. smooth) curves in GL(t2). Thus, 
any curve 7 in £n has the form q(t) = T ■ T(t) for some curve T in GL(t2). In the 
second part of the paper, we observe that the bijection between T and £ is the 
restriction of a natural bijection between L(t2,Tl) and the space B-yy of all Bessel 
sequences in 7A It turns out that there is a natural Banach space structure on B-yy 
such that the bijection is an isomorphism of Banach spaces. Thus, the connected 
components of J7, which correspond bijectively with the connected components of 
£, are easily determined, and the fibration properties of these components allow us 
to characterize their curves by mean of curves in GL(t2). Finally, using the facts 
that epimorphisms correspond bijectively with monomorphisms with closed range 
and that these operators correspond with the set R. of Riesz sequences, we get a 
similar geometrical description of R.

2. Geometry of epimorphisms

Throughout, Tl denotes a Hilbert space, L(TT) is the algebra of all linear bounded 
operators on Tl, L(Tl)+ is the subset of L(TT) of all (selfadjoint) positive operators, 
GL(Ti) is the group of all invertible operators in L(Tl) and GL(Ti)+ = GL(Tl) Fl 
L(Tl)+ (positive invertible operators). For every C G L(TC) its range is denoted by 
R(C) and its nullspace by ker C.

Consider two Hilbert spaces Tl and AS and the space L(W, AS) of all linear bounded 
operators from Tl to AS. We denote by £ the set of all epimorphisms in L(W,AS):

£ = {T G L(W,AC) :E(T) = AC}.

An interesting subset of £ is the space £° of co-isometries:

£° = {T G L(H,1C) : TT* = Ik}.

The following result is elementary and will be used frequently:

Proposition 2.1. LetT G L(W, AS). Then the following properties are equivalent:

(1) T G £;
(2) T* is injective and R(T*) is closed (i.e., T* is bounded from below);
(3) there exists S G L(AS, Tl) such that TS = Ik;
(4) TT* G GL(JQ;
(5) TAT* G GL(JQ+ for some (or any) A G GL(H)+;
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(6) the transformation X TX is an epimorphism from L{fH) onto

Remark 2.2. Recall the left polar decomposition of T G L(H,X): there exist A G 
L(H)+ and a partial isometry V G L(W, AS) such that T = VA. A is uniquely 
determined by the equation A = \T\ = (FT)1/2, and V is unique provided that 
ker V = kerT.

We also have the right polar decomposition of T G L(TL,Kf): there exist B G 
L(AS)+ and a partial isometry W G L(H, X) such that T = BW. B is uniquely 
determined by the equation B = \T*\ = (TT*)1/2, and W is unique provided that 
ker W = kerT.

With these facts and notation, we can add two different equivalent conditions to 
the list of Proposition 2.1:

7. B G GL(X);
8. W G £° (i.e., W is a co-isometry), and R(T) is closed.

In the rest of this section, we only consider the topology induced on L(H, X) 
and its subsets by the operator norm.

Corollary 2.3. £ is open in LyH-,X\ and £° is closed in £.

Proof. Consider the continuous map a : L(H,X') L(X) given by o(T) = TT*, 
TeL(H,X). Then £ = and □

Recall that, given a topological space X and A C X. then A is said to be a 
strong deformation retract of X if there is a continuous map p : X x [0,1] —> X 
such that

(1) for all x G X, p(x,0) = x and p(x, 1) G A;
(2) for all a G A and t G [0,1], p(a,t) = a.

The map p is called a strong deformation retraction. In this case, X and A have 
the same homotopy groups (see, for example, [17]). The following observation will 
be used later.

Proposition 2.4. £° is a strong deformation retract of £.

Proof. Consider the map p : £ ^ £° given by p(T) = (TT*)_1/2T. Clearly p is a 
continuous retraction. The map p : £ x [0,1] —> £ given by

p(T, t) = Pi(T) = (TT*)_i/2T, (T, t) G £ x [0,1],

defines a strong deformation retraction between If and p. □

If T G £°, then it is easy to see that TT* = p and T*T = P(\eiT')X = Pr(t*p 
As a consequence, we get that the map 0 : £ —> L(TL) given by 0(T) = F(kerT)x 
is continuous. Recall that the Moore-Penrose pseudoinverse of a closed range op­
erator T G L(7T, X) is the unique operator T^ G L(X, TC) that satisfies IPT = T, 
TTP = pt, (TTt)* = ppt and (ptp)* = TiT. The reader is referred to [12] or 
[18] for properties and applications of this notion. One of the properties of T^ that 
we need is the identity T^T = P^t)-1-- Ftom this fact and the continuity of 0, we 
get:

Proposition 2.5. IfT G £, the Moore-Penrose pseudoinverse of T is

Tt = T*(TT*)-i and p(kerT)± =T*(^TT*)-iT.
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Proof. Let X = TfiTT*)-1. Then TX = I, XTX = X and TXT = T. On 
the other hand, TX = I and XT = tr*(^TT*')-iT are both selfadjoint. Therefore, 
X = Tt and P(kerT)± =T^T = T*(TT*)-iT. □

Corollary 2.6. The maps p: £ — L(X, TP) and 3 : £ L(TL~) defined by p,(T") = 'X 
and, 0(T) = -P(kerT)-L, respectively, are real analytic.

The action of GLfikC) on £. Consider the following left action of GL(TC) on £:

GL(H) x£^ £, (V, T) TV-1.

The orbit of T G £ by this action is the set T ■ GL(7f).

Theorem 2.7. Let T G £. Then the orbit T-GLfH) is open, and it is the connected 
component of T in £.

Proof. Since GL(H) is open and connected in L(H) and X TX is continuous 
and linear from LfiH) onto LfiH, Xj. it follows that T ■ GLfiH) is open (by the open 
mapping theorem) and connected in L(?f, AS). □

For each n G N U {00}, define the sets

:= {S G £° : dim ker S' = n},y — {T G £ : dim ker T = n} and

so that
£ = £n and = (J £°n.

n£NU{oo} nENLJ{oo}

We prove that the connected components of £ (resp. are, precisely, £n (resp. 
a-

Proposition 2.8. Let n G N U {oo}. Then:

(1) Given T\,T<2 G £n, there exists V G GLfiHf such that T^ = T\V. In other- 
words, ifTE £n, then £n = T • GLfiH).

(2) Given T\,T2 G £f, there exists u G Z7(W) such that T2 = TiU. In other-
words, ifT G £°n, then £°n = T • = {TU* : U G Z7(W)}.

Proof. (1) The operator Vi = T^'X : ker 7) kerT-j1 is invertible. It can be “com­
pleted” to an invertible operator V = V-y + \f G GLfHf choosing any isomorphism 
V2 : kerT2 kerTi. It is clear that T]V = T1V1 = T2.

(2) It follows the same lines, but V-y and V2 are unitaries.
□

Remark 2.9. As the referee pointed out to us, the connected components of the set 
of semi-Ftedholm operators in L(H, X) are determined by the index (see Cordes and 
Labrousse [9]). From this fact it can be easily deduced that the connected compo­
nents of the set of all epimorphisms are determined by the nullity (i.e., dimension 
of the nullspace). The advantage of the present approach is that the connected 
components are characterized as the orbits of a natural action of GL(T~C) over £. 
Observe that, in order to get the complete result of Cordes and Labrousse by a 
similar method, one should define an action of a convenient group over the set of 
all semi-Fredholm operators in L(H, X). This approach is possible. We plan to do 
it elsewhere.
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Proposition 2.10. Let T G £. Then the mapping

tt : GL(TL) , tt(V) = TV-1

admits analytic local cross sections.

Proof. We must prove that for every T G £ there exists a neighborhood B of T in 
£ and an analytic map cr : B GL(TC) such that tt(<t(T/)) = T' for all T' G B. 
Choose S G L(7C,W) such that TS = 1^. Taking £ = H-S'H-1, if W G L(H,/C) and 
\\T - W|| < e, then \\Ifr - WS'|| < \\T - W|| ||,S|| < 1. Hence WS e GL(JC) and 
W G £. Also, SW + (Jw - ST) e GLifH), because ||SW + (LH - ST) - IH\\ < 
IIAH ||W - T\\ < 1. For W e L(Tt, 1C) such that \\T - W|| < e, define

a(W) = (sW + (LH - ST)) \

Then the map cr is analytic, and it is a local cross section of tt, because 7t(<t(VK)) = 
TalW)-1 =T(SW + (Th- ST)) =W. □

Corollary 2.11. Let T G £ and n = dimkerT. Then £n = T • GL(TL) is homeo­
morphic to the homogeneous space GL(fH)/TT, where Tt is the isotropy group atT 
of the action ofGLfH) on£, i.e.,

(2.1) TT = {VeGL(H) : TV = T}.

Proposition 2.12. Let T G £, and denote by P = T^T = P^t-l. Then the 
isotropy group Tt ofT, defined in (2.1), can be characterized in the matrix repre­
sentation of L(fH) given by P, by

<22>

Proof. The matrix form of T is T =

If V = ( “ ) G GL{H), then

T\a, Tjb
T2a T2b

This shows that if a = 1 and b = 0, then V G Tt- On the other hand, if TV = T, 
then by equation (2.3),

T1*T1+T2*T2 ° A / a^TfT-i- +TfT2)a * \
0 V * b*(TfTi + TfT2)b J’

showing that a = 1 and b = 0. Finally, the fact that y G GL(kerT) is equivalent to 
the fact that V G GL(TL). □

Remark 2.13. Fix n G NU {oo}. £n has a natural structure of an analytic subman­
ifold of L(Tt,)C) as an open subset. By equation (2.2), Tt is a regular Lie-Banach 
subgroup of GL(TL), and by Proposition 2.10, the map tt : GL(TL) £n is open. 
Therefore, the above-mentioned is the unique structure of a differentiable manifold 
of £n that makes the map a submersion. This means that the homeomorphism 
of Corollary 2.11 becomes a diffeomorphism.
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Remark 2.14. A particularly interesting local cross section for t? is

(2.4) at(iy) = (TW + (11 = + \

defined for W G LfH,K) such that \\T — VF|| < |7’t|| '. The advantage of this 
section over the one defined in the proof of Proposition 2.10 is that the map

(T,W) cr^TT)

is real analytic in both variables.

Theorem 2.15. Consider the map a : £ ^ GL{K)+ given by a(T) = TT* (T E £). 
Then for every T G £ it follows that

a(T ■ GL(H)~) = GL(K)+.

Proof First we prove that {TAT* : A e GL(TL)+} = GL(fC)+: if B e GL(fC)+, 
then A = T^B(T^f* +PkerT G GL{H)+ (because R(T^) = (kerT)x) and it satisfies 
TAT* = B. The reverse inclusion follows from Proposition 2.1.

Now, a(T • GL(Hf) = {TVV*T* : V e GL(TL)} = {TAT* : A e GL(TL)+}. □

Corollary 2.16. The mapping a : £ ^ GL(KT)+ is a splitting bundle with fibres 
a~1(A) = Ai ‘̂2£°. Moreover, for every n G NU {0, oo}, a\sn : £n GL(JC) is a 
splitting bundle with global cross section <r(A) = ,4 l/27;,. for a fixed Tn G £°. □

We are interested in the fibres of the bundle an : £n —> GL(K)+, given by 
«n = a\en, i-e., o.n{T) = TT*, T G £n. Fix S G GL{K)+ and T G £n such that 
TT* = S, i.e., T G o„1(S). Clearly, for every U e U(H), also TU* G a,;1 (S'). 
Moreover:

Proposition 2.17. Let S G GL(1C)+ and T G £n such that TT* = S. Then

(2.5) «^(S) = T ■ U(H) = {TU* : U G U(H)}.

Proof. By Corollary 2.16, af1 (S') = S1/2«?“. By Proposition 2.8, given V), \f G £„, 
there exists U G 77(77) such that ViE7* = Vq_, showing formula (2.5). □

Remark 2.18. Since the fibration an : £n —> GL(K)+ splits by means of the global 
cross section defined in Corollary 2.16, it follows that, for every fixed T G £n, £n is 
diffeomorphic to GL(K)+ x T -UfTL). The geometry of the space GL(K)+ is very 
well studied; see [8], [6]. The study of the geometry of the fibre T -UfTL) (which is 
also an orbit) will be done elsewhere.

Splitting curves. Fix T G £n. Recall that the space £n is open in LfH, KT) and 
that £n = T ■ GLfH) is the orbit of T by the action of GL(TL). We shall describe 
now the geometry of £n. The proofs of the statements of this section appear in [8]. 
Denote by

Sn = {(T, S) G L(H, K) x L(K, H):Te £n, TS = I}.

This space has a rich geometrical structure by the action of GLfH) given by

W ■ (T, S) = (TW-^WS), W eGL(H).

In fact, for any fixed pair (T, S) G Sn, the map t : GL(77) Sn, t(VF) = W ■ (T, S) 
defines a homogeneous reductive space with a connection given by the distribution 
of horizontal spaces. Note that the map t : Sn —> £n, r(T, S) = T defines a fibre 
bundle with affine fibres.
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Given a smooth curve 7 : [0,1] Sn such that 7(0) = (T, S'), 7(7) = (a(t), &(t)), 
the unique solution of the differential equation

( f1 = ab — ab(l — ab) V,
I r(o) = 1

satisfies that T(t) G GL(H), T(t) • (T,S) = 'yft). Consider now a smooth curve 
6 : [0,1] £n, and define

7(t) = m<W) = (¿(twmwrr1 )•

Observe that 7(f) G Sn V t and 7(0) = (¿(0), ¿(0)1). Then ¿(7) = ¿(0)r(7)_1.

Remark 2.19. In [2], R. Balan implicitly studies the following action of GLlfH) over 
£:

GL(TC) VT.
This action is free: VfT = V2T only if Vi = V^. The orbit of T G £ under this 
action is much smaller than the orbit under the action we considered. In fact, Balan 
proves that T\ G £ belongs to the orbit of T if and only if R(T*Ti) = R(T*T). 
However, under the action GL(£2) x £ — £, (W,T) 1— 7’11' 1, Ti G £ belongs to 
the orbit of T if and only if T*Ti is congruent to T*T, in the sense that there exists 
W G GL(£2) such that p/*(y*Ti)iy = T*T. Of course, this condition does not 
imply that R(T*I\) = R(T*T). The converse, however, is true. The relevant fact 
about Balan’s orbits is that there is a natural metric defined on each orbit, and he 
uses this metric to find, given a frame H, its closest tight frame. We shall study 
metrics in our orbits elsewhere.

Remark 2.20. Let C7?+(77) denote the set of all positive (semidefinite) closed range 
operators A on 77 such that dimker A = n.

From some results obtained in [7], where the congruence orbits of any positive 
operator are studied, it follows that the map

/?„:£„ CR+(H\ [UD = T*T

has continuous local cross sections for n G N U {0}. The result fails if n = 00. 
Analogous results hold for the maps pn : <77?+(77) CR^ifH), pn(A') = and 
0n : <77?+(77) L(H), 0n(A) = P(kerA)-L- The fact about (3n allows the study of
£n as the total space of a fibre bundle over CR+lfH). It should be mentioned that 
the geometry of <77?+(77) is well known [7], so that the fibration properties of (3n 
may be of great help in order to completely understand the geometry of £n.

3. Frames

Consider a sequence H = (£n)neN in a Hilbert space 77; H is called a Bessel 
sequence if there exists a positive number B such that

ex?

(3.1) <WH2 ’
n=l

Proposition 3.1. For a sequence H = (£„) in a Hilbert space “H, the following are 
equivalent:

(1) H is a Bessel sequence;
(2) there is a bounded linear operator W : 77 — such that
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(3) there is a bounded linear operator T : £2 —> 1C such that Ten = fn, where 
en denotes the n-th vector of the canonical orthonormal basis of I2.

The proof is straightforward. Observe that, if H is a Bessel sequence, then 
||VK^||2 — for all f G B. In this case, T = W*. As a corollary, the set By
of Bessel sequences in B is a C-vector space. Moreover, if we define

||H||b = m£{B^2 :E|(£,O2 <B||e||2,eeW}

= sup{(£|(£,O2)1/2:£eW, ||e|| <1}

= sup{|| EXi «ninll : («") e ¿2, II(a„)||2 = 1},

then (Bw, || • ||b) is a Banach space isometrically isomorphic to Ll^Bf. the iso­
morphism maps a Bessel sequence H = (£„) into the operator Th G lA(2. Iff defined 
by

ex?
Tb((<4n)nEN) 1 ,

n=l

the inverse isomorphism maps T G A (A2, Bf) into Sy = (Ten). Analogously, we have 
a (conjugate-linear) isomorphism between By and L(B,£2) given by By 3 Em Wn, 
where WH(0 = ((Un)U, £ & K i.e, Ws = Ts*.

A Bessel sequence n = (£„) is called a frame in B if there exist positive constants 
A, B such that

(3.2) Alien2 <Ei^)i2 <wn2, eew.

Observe that this condition together with equation (3.1) is equivalent to

A(e,0 < (THTH*e,0 <M,a K

or, what is the same,

AIh < TSTS * < Bly.

Of course, this means that Th is an epimorphism from A onto B or, equivalently, 
that Ws = Tg* G L(B,£2) is bounded from below. Thus the isomorphism 0 : 
L(£2,B) —> By, 0(T) = (Ten) maps the set of epimorphisms in L(£2, B) onto the 
set TA of all frames in B. Observe that the positive invertible ThTh * G LfH) is 
usually called the frame operator of H. Th is called the synthesis operator of H, 
and Wh = Th * is called the analysis operator of H ([19], [4]).

A frame H = (£„) is called tight if there exists A > 0 such that

Ekwi2 = Alien2, eew.

This means that ThTh * = AI^, so that the set AFy of tight frames in B corresponds 
(under the isomorphism 0) with the set RT, of positive scalar multiples of co­
isometries from B into £2.

A frame H = (£„) is called exact if no proper subsequence of H is a frame. It is 
known ([20], [13]) that this is equivalent to (£„) being a Riesz basis or, what is the 
same, to Th (or Wh) being invertible.

There is a natural action of GL(£2') over TA- In fact, given H G AFy and V G 
GL(f'2), define V ■ H = ((Th o V’ 1 y ,J. In terms of the matrix A = (anm), where 
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anm = ly 1en, em), V ■ n is defined as the (formal) product /L, i.e., V ■ n = (??„) 
where

ex?

m= 1

This action corresponds bijectively with that of GL(£2') over £, so that the orbits are 
the connected components of Aj/. The next result collects similar facts on F = F}i 
to those proved for £. The proof follows from the fact that 0 is an isomorphism.

Theorem 3.2. Let Tf be a (separable) Hilbert space.
(1) F is an open subset of Bn, so that the connected components are arcwise 

connected.
(2) Any connected component of Fn has the form

Fn = {He F : dimkerTg = n}

for n G N U {oo}. In particular, the set of Riesz basis elements of Tf is 
arcwise connected.

(3) If H = (£n) G Fn, then any other E = (rin) G Fn has the form E = V • E 
for some V G GL(C2).

(4) For any H G Fn the map GLfi!2'') Fn, defined by V V ■ is a 
homogeneous space with isotropy group G& = {V G GLfi!2'') : V ■ H = H}; 
analogously, U{12') Ff, defined by U i— U ■ H, is a homogeneous space 
with isotropy group = {U G ¿Y(f2) : U ■ E = H}.

(5) Any continuous (resp. differentiable) curve 7 in Fn such that 7(0) = H has 
the form t T(t) • H for some continuous (resp. differentiable) curve T 
in GLfi!2''). Analogously, any curve 7 in F° with 7(0) = H has the form 
7(f) = T(t) • H where T is a curve in UfH').

(6) Ff is a deformation retract of Fn for all n.

Remark 3.3. Let H be a frame in ft. If H G Fn, Balan et a,I [3] say that H has excess 
n. Then by item 2 of the last theorem, two frames can be joined by a smooth curve 
in F if and only if they have the same excess. Recall that a frame with finite excess 
is what Holub [16] calls a near-Riesz basis.

A Bessel sequence H is called a Riesz sequence if Tg is bounded from below or, 
equivalently, if W3 is an epimorphism. In other words, if there exist A, B > 0 such 
that

Vc G I2, A|| c||2 < || Cninll« < BllCll2-
n£N

We shall denote by R = Ry the space of Riesz sequences in If. As before we denote 
by Rn = {E <eR: dimkerlTg = n}, n G NU {00}. In the terminology of Balan et 
al [3], the number n = dimkerlTg is called the deficit of the sequence H.

Using the (conjugate linear) isomorphism between Bn and L(H, (2 f which maps 
R onto £(fif,e2l we can make a similar analysis for Riesz sequences as we made 
for frames. In this case the action of the group GL(Ti) on R is given by V ■ H = 
((U 1)*^n)n£N fOT = (in)n£N £ R-

As in the case of frames, one can get a classification of Riesz sequences by trans­
lating the classification of epimorphisms done in section 2. Thus, Rn is an open 
subset of Bn, whose connected components are the sets Rn, n G NU{oo}, which are 
also the orbits of the action of GL(Tf) on R. These orbits are homogeneous spaces 
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of GL(TC). The isotropy group of a fixed H G 7?„ is given by those V G GL(TC) 
such that V* acts as the identity on the closure of the subspace generated by H.

Note that the subset of 7? associated to the co-isometries coincides
with the set of orthonormal systems in H. Then, for every fixed n G N U {oo}, the 
set of orthonormal systems with deficit n is a deformation retract of the orbit 7in.

Remark 3.4. Another way to get the previous analysis for TZg-l consists in translating 
the geometry of £(TL,(2') to the subset of L(f2,W) of those operators that are 
bounded from below, using the diffeomorphism W i—> W*. Then the Riesz sequences 
can be classified by identifying them with their synthesis operators (instead of using 
the analysis operators as we did before).

Remark 3.5. The separability hypothesis is not an essential one. In fact, all results 
can be proven in the general sense, using minor changes. On the other hand, the 
results of the paper can easily be generalized to the setting of frames in Hilbert 
C*-modules.
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