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Abstract

Let (A'„)n>o be a Harris ergodic Markov chain and f be a real function on its state space. 
Consider the block sums c(') for |/j, i > 1, between consecutive visits to the atom given by the 
splitting technique of Nummelin. A regularity condition on the invariant probability measure n 
and a drift property are introduced and proven to characterize the finiteness of the third moment 
of £(/). This is applied to obtain versions of an almost sure invariance principle for the partial 
sums of (/(A’„)), which is moreover given in the general case, due to Philipp and Stout for 
the countable state space case and to Csaki and Csorgo when the chain is strongly aperiodic. 
Conditions on the strong mixing coefficients are considered. A drift property equivalent to the 
finiteness of the second moment of g(0 is also given and applied to the functional central limit 
theorem.
(c 2004 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

Throughout the paper we will consider the canonical Markov chain ),(>o taking its 
values in a countably generated measurable space (£’, £) with given transition probabil­
ity kernel P and initial distribution p: the A'„’s, n 0, are the coordinate projections on
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the measurable space (£2,.^) := iExAy ), on which we have the Markovian probabil­
ity measure P;, (with expectation operator we write Px and Ex if /z = fy) associated 
to the stochastic kernel P and the probability measure (p.m,) /i on (£, S'), We assume 
that 1S Harns ergodic (i.e. aperiodic and positive Harris recurrent, Nummelin,
1984) and denote by it the invariant p.m. It is well known (Nummelm, 1984; Meyn 
and Tweedie, 1993) that under these assumptions there exist triples (»/q.^. v) satisfying

for all v e E, AeS': Pm°(x,A) (s <g> v )(x, A) (:= ¿-(v )vfi4)),
mo 1 is an integer,
6- is an -measurable function with 0 < j < 1 such that it(s) := sdit > 0,
v is a p.m. on S’ such that v(j) >0. (1.1)

If we lix any (mow, v) as in (1.1), then the splitting technique of Nummelm (1978) 
gives a sequence (T„);;s;o such that (X„mfl,Y„)n-yo is a Markov chain with a positive 
recurrent atom a (the split chain; see below). This allows to extend to this setting 
the regeneration method used in the countable state space case: the partial sums S’\ = 
52^=0 / ) °f a functional of the chain can be divided into sums between consecutive
visits to a, the sums over the a-blocks, which form a 1-dependent stationary sequence 
(i(i))fii (see Nummelm, 1984; Meyn and Tweedie, 1993; Chen, 1999a; and Lemma 
1.1).

Then, in formulating limit theorems for Sy, one can impose moment conditions on 
('(1), where we consider |/| in place of f (see, for example, Meyn and Tweedie 
1993, Theorem 17.3.6; Philipp and Stout, 1975, Section 10.1). Since this random vari­
able depends on the particular triple (w/o.j.v) chosen, it is natural to wonder whether 
those conditions do not depend on (mo.s, v) and can be expressed in terms of (X„). 
For example, the hypothesis of |/|-regularity (Nummelm, 1984, Definition 5.4) of the 
measure |/|d7r (condition (Rp) in Proposition 2.1 below) in the central limit theorem 
(CLT) in Nummelm (1984, Theorem 7.6) is equivalent to the finiteness of the second 
moment of ('(1) for any (»/qw, v); on the other hand it is also sufficient for the func­
tional CLT (Niemi and Nummelm, 1982, Proposition 3.1 and Theorem 2; Kaplan and 
Sil’vestrov, 1979, Theorem 4; see Proposition 2.1 and Remark 2.2 below). Moreover, 
Meyn and Tweedie (1993, Section 17.5) contains a useful drift property (a Foster-Lya- 
pumov criterion) with an integrability condition on the test function, which implies that 
moment condition; see also Glynn and Meyn (1996). For a treatment of integrability 
and tail properties formulated in terms of the original chain, see Chen (1999b).

In this paper we introduce a regularity condition, (A?) in Proposition 2.3, which is 
shown to be equivalent to the finiteness of the third moment of ('(1) for any (mo.s.v) 
satisfying (1.1) and which leads to an equivalent drift property with integrability, in­
volving tow concatenated test functions; this is condition (/fy) in Proposition 2.3. We 
observe that the finiteness of the third moment of ('(1) appears as an intermediate 
condition in Bolthausen (1982) (it is (3.4) there when it is applied to the split chain; 
see Lemma 1.1 and (1.12) below), which deals with the strongly aperiodic case, that 
is, when (1.1) is satisfied with mo = 1.

We also give versions for the general state space case of an almost sure invariance 
principle due to Philipp and Stout (1975, Theorem 10.1) for the countable state space 
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case and to Csaki and Csorgo (1995, Theorem 2.1) for the strongly aperiodic case (the 
null recurrent case is also considered there). This theorem requires a finite 2 + 0 moment 
of ('(1) and gives an approximation of the order of /' 2 f (for its consequences, see 
Philipp and Stout, 1975, Chapter 1). In Proposition 4.2 this is obtained under hypotheses 
dependent on (mo.s.v), as in Csaki and Csorgo (1995), by using the methods of Philipp 
and Stout (1975).

In Corollary 4.3, which deals with ergodic chains of degree 2, the dependence on 
(trio A A) is dropped. The assumptions in (i), (u) are made on the strong mixing coeffi­
cients (a(?7)) of the chain; this uses some results about them obtained from Bolthausen 
(1982) and Rio (2000) which are collected in Section 3. Corollary 3.2 characterizes 
the convergence of J2,.' , a(u), that is, ergodicity of degree 2, and that of V .' ] na(u), 
by drift conditions. Part (m) of Corollary 4.3 and its consequences (iv) and (v) are 
written in similar terms to those of Nummehn (1984, Theorem 7.6 and Corollary 7.3).

We consider as well the second moment of ('(1). Proposition 2.1 shows that its 
finiteness is equivalent to the drift condition with integrability (Dr) introduced there. 
Then it can be used in the CLT part of Meyn and Tweedie (1993, Theorem 17.5.3) 
(and its functional version, by the results quoted above) in place of the CLT moment 
condition in Meyn and Tweedie (1993, Section 17.5). Likewise, a condition involving 
(Dr) ensures the expression in that theorem of the asymptotic variance as the sum of 
the covariances of the functional of the chain in stationary regime; this is shown in 
Corollary 4.5 to Proposition 4.4, which is proved by using Theorem II-3.1 of Chen 
(1999a) and results in Nummehn (1984), Meyn and Tweedie (1993) and extends 
Proposition 2.2 of de Acosta (1997). This allows to show that for the random walk on 
a half line, the finiteness of the fourth moment of the positive part of the increment 
variable is sufficient for the functional CLT and the mentioned expression for the 
limiting variance; this is Proposition 5.3.2 under condition (a-n) and it appears to be 
interesting in view of Proposition 17.6.1 and a result suggested on p. 445 in Meyn and 
Tweedie (1993).

In Section 5, after some remarks about the use of (Dr) and (£>3) when E is a subset 
of an euclidean space, we deal with three well-known examples and derive almost 
sure invariance principles from Corollary 4.3(iu) and functional CLTs from Kaplan 
and Sil’vestrov (1979), Niemi and Nummelm (1982) and Proposition 2.1.

Now we fix any (m^.s.v) as in (1.1) and describe the construction (the condition 
v(+)> 0 is not needed here) of a version of (A„)„^o and the aforementioned se­
quence (T„L>o 011 a common probability space (Nummehn, 1984, proof of Theorem 
7.6; see also Meyn and Tweedie, 1993, Section 17.3.1; Levental, 1988; Chen, 1999a). 
Let £2 = and = 0n>o ^» where (-E’o.-^o) : = (E x {0, l},<y ® .^({0,1})),
(£„.J%) :=(£'”» x{0,l},<rW0<x>^({0.1})) for u 1.

Denote Xn and Y„, ti > 0, the measurable functions on (il.A) such that (AA-To) 
is the projection onto E(l and ((T(„_i .......), T„ ) =: (T„, T„ ) is the projection
onto E„ if 11 1. For 11 A 0 consider the u-algebras := <t(A\,0 < k < u), : =
u( I*.0 < k < 11),:= , and .jFLj := {0, £2}, Define the map 0: Q — i2 de­
fined by 0( (v0, y0). (•+, yi ),...) = (( y>mo( Vi), yj), (v2, y2),...), ((v0, y0). (•+, yi),...) e £2, 
where pmip.Em° —>£ is the projection pmr)(xi.......xmo) = xmo.
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Recall that if /z is a measure on a measurable space (F,.^ ) and f is a nonnega­
tive .^-measurable function on F we have the kernel (Nummelin, 1984) If(y,B) = 
f(yMy). yeF, Be.?, and the measure = f ¡u(dy)If(y,C) = Jc/d/z,
C e zF; the identity kernel is I := I\E. Given a p.m. p on (Emi,.Sm>) we dehne the 
p.m. ¡1 on (EbJG) by ft = (Ai-io^0) ® ® <5b

Let r be a nonnegative, 6<g>6-measurable function on ExE such that 0 C r C 1 and 
for each v e.E,r(x, •) is a version of the Radon-Nikodym derivative d(j(x)v)/dPm°(v, •). 
Consider Oo-Öi defined on E x S'm° by

Qo(x,H)

rAj '" '1' 7
if 6-(V ) < 1,

<5(Xj ,x,(//). ifj(V)=l,

•d?m0){1 z(a, )}l_ff(ti. ■ ■ ■,).

Oi (x,H)

if 6-(V ) > 0,

(<5(x, ® v)(EE), if s(v) = 0 (xeE, HeC).

Qo and Oi are stochastic kernels between (£, S‘) and (Emi\<S“mo), that is, for 
every xtE, O,(x.-) is a p.m. on (Emr\S'm°) and for every H is an S-
measurable function z = 0,1. Define the stochastic kernel P between the measurable 
spaces (Eo,.Fy) and (Ei.zFi) by

P((x,y),-)= l{O}(f')2o(x,-)v + l{i}(y)6i(^-)V (x,y)eE0.

Given a p.m. /. on (Eq.-Ai) let P. be the unique p.m. on (i2, A) satisfying

P> = y Z(d(.xo.vo)) I /’((.vo, vo).d(A'i,yi))

X j Alpm„(xi), yi). d(.v2, V2))

r /•
x / •••/ A((y?mr,(.A-„_i),,w„_i), d(x„, ,w„)) (1.2)

Jf3 jf„

for every measurable rectangle n*>o A such that I’c =E/( if k > zz, zz 2 (use a the­
orem of Ionescu Tulcea, Neveu, 1965, Proposition V.1.1 and Corollary 2). Note that 
if z/: (2 — [0,oo] is A-measurable, its Py-expectation satisfies J . [z/] = fE. E(c7(Wq, wq )) 
x Aww!?/] where £(Xo,vo) is the expectation with respect to P(XOjl,o) := Py^w
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(vo,yo)G£o. We have the following Markovian property:

l^['7o^l^n] = E(x„()x)W’ Pt-a-s., (1.3)

for each p.m. /. on (Eo,.^o) and every .^-measurable function i/:i2 — [0,oo] (0O is 
the identify map in £2, f)„ is the «th iterate of 0). For any p.m. // on (£, S’) define the 
p.m. [i* on (Eo.tFq) by /;* = (gZi-J <><> <5q + (mA) ® <5b If is a p.m. on (E,S) (/. is 
a p.m. on (Eo.tFq)) and >/:i2—» [0,oo] is .^-measurable then

AniriQ

if u 0 (E on the left if 72 1), (1.4)

this follows from

= 1|>LO ^1 = s(Xnmo) lf 72^0 (P2 on the left if 72 1).

(1.5)

Given any p.m. p on (E.S), another consequence of (1.3) is that, with respect to 
(i2,.jF, IP*), (T„),j;so is a Markov chain with transition probability kernel P and ini­
tial distribution /i (use (1.4) and the fact that ¿¿»[l/HA'i)] = (1 — s(x))Oo(x,H) + 
s(x)O\(x,H) = f P(x.dti)f- • ■ J'P(tmo-i,dtmo)lH(ti.......tmo) if xeE and II c <1”: A
Then we will also write X„ and in place of A'„ and .F),, respectively.

Define the stochastic kernel P* :Eq x .jFo — [0,1] by

P*((x,y),-)= l{0}(k)2(T-)* + l{i}(k)v*, (x,y)eE0, (1.6)

where Q{.\. A) = (Pm"(x,A) — s(x )v(A))/(1 — ¿-(v)), if ¿-(v) < 1, 3X(A) if ¿-(v) = 1 (x e E, 
A G <»'). If A is a p.m. on (Eo.tFq) we have that with respect to (£2,J® P^). (A];m(1, Y„ 
is a Markov chain with initial distribution A and transition probability kernel P* (note 
that P((v, v),Em(1_i x A) = P*((v, v), A) if (x, v)eEo, Ae.%)) it is positive Harns 
recurrent with invariant p.m. (Nummelin, 1978) and the set a := E x {1} is a 
recurrent atom: 7i:*(a)>0, P*((v, 1), •) = v* for all veE, for every p.m. Aon (Eo.tFq) 
we have P2[(A),m(1, F„) e a i.o.] = 1 and then the 7-a.s. finite .^-stopping times 
Pa = Pa(0) := mf{77 > 0: = 1} (= oo if the set is empty), Ta(i) := mf{77 > —
Y„ = 1},/ > l,Sa := mf{77 > 1: Y„ = 1}. If /i is a p.m. on (E.S) and <p : E —»[0, oo] is 
S-measurable, by the definitions of n* and P*,

M<P(Wta0)la^}] = M(Pm° -stYvfcp, ¿>0. (1.7)

The following kernels are considered:

oo mo—1
:=£(Pmo-^®v)n, G^=GF whereF=V=£P" (1.8) 

n=0 m=0

and we will also write G = Gm,xStV, G = Gmr,tS,v
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Assume f is a real &-measurable function on E. The sums over the a-blocks are 
defined by

(TUO+llmo-l Tclli}
$) = <(/./) = f(X„) = £ z„. />i.

n=7’t<(7-l)+l)mo n=Ta(t-\)+l

mo-1

where Z77 = Z77( / ) = , f (A77 777o+777 ). u 1,
m=0

if f is nonnegative, we have for every p.m. /i on (E, Z) (by (1.7) and (1.4))

liGf = É,.
" T„
Ÿj(Xnmo)

_n=0

liGf =
" r«

Ez«
_«=o

(1.10)

Using (1.3) (with g and .f’ i) and the properties of a and (A'„m„, Y„) we can prove 
t[ei{y?=i}(»7 o 0?+1)] = E2[eiW=1}]Ev* w

if ' > 0 is .^-measurable, 1/ > 0 is .^-measurable, q 0, 

for every p.m. A on (Eo.-lFo). From this we can obtain
(1.11)

Lemma 1.1. Let X be a p.m. on (Eq,,^). With respect to (Q.-^-.P^), the sequence 
(4(z))?s.i is (.-dependent, strictly stationary and has the same distribution as the 
$-distribution of (5Zh=q Zn, 5Zn=72(O)+i Zn, ■ ■ ■, 2)+i ■ ■ ■)

Finally, we observe that since E(x,i t[// o 0] = Ev*[//] if // > 0 is .^-measurable and 
xtE (by (1.3) and the definition of F), we have (with a standard notation)

/ T, \ ( s, \ /Tyn-Tyoi \

52 z«)- <112>
\/;=0 / \«=1 / \ «=1 /

2. A regularity condition and the third moment of block sums

Assume (Ai,),,^ is as in Section 1. For every (w/qA, v) as in (1.1) we have the 
preceding construction and we are interested in the third moment of ((/) under P,. 
for any initial distribution /i of (A,, Given A G S' we have the stopping time Sa : = 
inf{w 5= 1: Xn Gd} (defined on 12) and the kernel U^(v,E) := Ex[ WA), )], v g£, 
BeS. Let S+ = {Ae S'. n(A) >0}. First we consider the second moment of ((/).

Proposition 2.1. Let f be a real-valued function in SZ^(7t) (the set of nonnegative 
--integrable functions). Then the following conditions are equivalent'.

(Af) For some (for every) p.m. Â on (Eo.i^o) and for some (for every) triple 
(mo,sa’) satisfying ( 1.1 ),
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(R2) For every A e S'+, n( f(I + UA )f) < oo.
(D2) There exist an S’-measurable function V’.E —>■ [O.oo], a small set Ceti (i.e. 

satisfies (1.1) for some j8 > 0, nfi and V (Nummelm, 1984, Definition 2.3 ) 
and a constant fie [O.oo) such that

PV + f V + file and n(fV) < oo.

We omit the proof, which is similar to that of Proposition 2.3 below.

Remark 2.2. Condition (R2) means that the measure Ttlf is /’-regular (Nummelm, 
1984, Definition 5.4); it is the second moment assumption on | f\ in the CLT in 
Nummelm (1984, Theorem 7.6) and is also sufficient for the functional CLT (Niemi 
and Nummelm, 1982, Theorem 2 and Proposition 3.1; Kaplan and Sil’vestrov, 1979, 
Theorem 4). Its equivalence with (M2) seems to be known. See Nummelm (1984, 
Theorem 7.6) and Niemi and Nummelm (1982, Proposition 3.1) where it is shown 
that (M2) is equivalent to ~(/2) < oo and the /’-regularity of the measure f n(dx)/’(x) 
x P(x, ■); the equivalence of this last property with (R2) can be seen using Lemma 2.6 
and Nummelm (1984, Proposition 5.13).

Condition (R2) (or (D2)) shows that the finiteness of the expectation in (M2) does 
not depend on (mo.s,v) and is the link with (D2) (we mention that this gives a drift 
characterization of Meyn and Tweedie, 1993 (17.31); cf. also Meyn and Tweedie, 
1993, Lemma 17.5.2(h)).

In this section we prove the following version of Proposition 2.1.

Proposition 2.3. Let f be a real-valued function in =2?+(7r). Then the following con­
ditions are equivalent’.

(M) For some (for every) p.m. 2 on (Eo.iffi) and for some (for every) triple 
(mo,s.r) satisfying (1.1),

(2.1)

(G2) For some (for every) triple (m<j,s,v) satisfying (1.1), 

lffGmt>,s,vf') < oo
and

(2.21)

iffGmu,s,vfl) < (2.211)

(R2) For every A G S’+,

nlff + UAfiff + UA\ff)<^. (2.3)

(R\) For every A and B in S'+, n( f(I + UA)(f(I + Up)/’)) < oo.
(D}) There exist S’-measurable functions JfFiE — [O.oo], small sets Ci,C2 in 

S'+ and constants fii,fi2G[0,oo) such that

7Ti+/’< Ji + fiilC1. TdfVtX^,

PF + /di 2 I) + fi2lC2, n(fl2 ) < OO.



214 JD Samur/Stochastic Processes and their Applications 111 (2004) 207-235

For the proof, first we observe that given (mq.s.v) as in (1.1), if A&S’+ and 
g & ), (I + Ua )g < Gm„tStVg+M for some constant M = Ma,4 >0 (see Nummehn,
1984, p. 80, 82).

Lemma 2.4. Let (m^SAd satisfy (1.1). If geLL^n) then there exist B = BlleS'+ 
and M = Mg > 0 such that

for all x&B, y G {0,1}.

Proof. Define on£0. g*(x,y)=g(x), (Da(7* )(a'..v)=E(XjV)[ ’̂=1 g*(Xm„0,Y„)] and note 
that É(Xjv{^f=o3(A;,mo )] ^g(x) + (Uag*)(x,y) for all v eE.y G {0,1}. The value of 
Uag* on a is Èv*[ g*(X„m„, Y„ )] and this constant must be finite because 7r*({(7aij* 
= oo}) = 0 by Proposition 5.11 of Nummefin (1984). Assume that 7r({i < 1}) > 0; 
since g gA'(v) and n({s < l,((7a0*)(.,O) = oo}) = O ((Ttf-s)({(Uag* )(-,0) = oo}) = 
nf(E x {0})n {Uag* = oo} ) = 0), n({g < oo, (Uag* )(-, 0 ) < oo} ) > 0 and there exists 
k > 1 such that B := {g k, (Uag*)(-,0) G /< ) G 7 and the conclusion holds with 
M := max{2A\ k + Év*[g*(Xnmn, Y„ )]}. When 7r({i < l}) = 0 there exists k 1 
such that B := {5= l.g < k} G7: in this case, for vg5,P*((v,0),-) = <5{ = <5(Tji) and 
we have

f-fg* )(v,0) — Ép*((Tjoi, i
" L
Ÿ^g*<xnmo,Yn)

_n=Q

~ Ta
Ÿ^g*<xnmo,Yn)

_n=Q

= È{xy}[l{Tn=o}gfAfYf] ^g(x).

The constant M can be taken as in the other case. □

Lemma 2.5. Let (mo,SA’} satisfy (1.1). If f^frELL^Tt) then there exist C = 
Cflif2e<X and M = Mfl:f2 >0 such that for z = 1,2, Gf < (/ + If } f, + M.

Proof. Let B G S'+ and M' > 0 be obtained from Lemma 2.4 for g : = max117 . 17;|
Define m„SB := mf{/7 > 1 : A},moG5} and m„UB(x,A) := E.T[£,7=t ' )]•
Ag<3. By the strong Markov property of (A}m(1, T„ )„^(h if i= 1,2,

4«

z--- *71=0

■ Ta
'f ' gCkrmin )

_/;=0

(vgE). Then by (1.10), Gf < (I +W(1 UB)Vf +M' and it is sufficient to prove that 
there exist C Go and M” > 0 such that (/ +W(1 UB)Vf < (/ + Lfif + Al" for 
i = 1,2.
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By Proposition 5.12 of Nummelm (1984), there exists k^\ such that Ci : = 
{Gf ^k,Gf2 ^k}&S'+. Arguing as in the proof of Proposition 2.6 of Nummelm 
(1984) we can obtain a subset C of Ci which is small with the same measure v: 
Ph> /alc <x> v for some integer ko 1 and some [a > 0. This implies that (5.10) of 
Nummelm (1984) holds for an integer «o = no(B) 2nto and y = y(B) > 0. Now ar­
gue as in the proof of Lemma 5.3 in Nummelm (1984) with the same //(/), but 
with <5*11 and defined for f and f2, respectively, in place of f defined for /, 
taking into account that C is both f and /i-regular, since C C Ci (Nummelm, 1984, 
Proposition 5.13(1)). □

Lemma 2.6. Let satisfy (1.1). If g€ then there exists M =MtJ >0
such that P'”Gg < M + 2Pmg + 2Pm+xGg for any integer m 0.

Proof. By Lemma 2.5, and the result quoted before Lemma 2.4, it is sufficient to show 
that for nonnegative g and C e X. Pm(I + Uc )g < 2Pmg + 2Pm+fl + Uc )g. Define 
a: E00 — N*U {oo} by ffivo.vi,...) = min{w > 1: x„ G C}. Then for every v &E

Pm(I + Uc)g = I Pm(x,dy)Ey V g(X„)
n=0

)+W <y(Xm>... )+m

Ex 1{X„+1£C} 52 g^Xk>>
k=m

+ Ex l{x„+iyc} g(Xk>
k=m

= J\ + J2, say.

We have f < EX[(/(A’W)+g(Xm+i )] = (Pmg)(x)+(Pm+1 g)(x) and, since <7(vm,vm+i,.. .)= 
<7(Vm+i,. ..) + 1 if vm+i <f C,

J2 < Ex
<7(XOT+l}...)+m+l

g(Xm ) + 52 g(Xk )
k=m+\

= (Pmg)(x)+Pm+fl+Uc)g. □

We also need the following version of Theorem 14.2.3(1) in Meyn and Tweedie 
(1993).

Lemma 2.7. If f, E '.E —• [0, oo] are S'-measurable functions, C G X is small and 
b e [0, oo) with PV+f < f+Mt- then for every B e S'+ there exists c=cc:i>!b G [0, oo) 
(depending neither on f nor on F) such that

(I + UB)f E + c.

Proof of Proposition 2.3. Let Abe a p.m. on (£0.^0) and (mo.A v) a triple as in (1,1), 
First we show that (we use the notation Z„ in Q and in i2)
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sct

n=\

Sa
Z01{F0=0}

m=l

Sa
Zol{Y[)=o}\'/n

n=l

(2.4)

The left-hand side is equal to (Lemma 1.1)

Tn y’’
Ev = Ev

~ Ta Ta

_n=0

+ 3EV. £
_w=0

_m=Q n=m+\

Tn
\' z z 2

n=m+\

" Tn Tn, Tn

+zhZmZn
_k=0 m=k+\ n=m+\

' T,

■ n

These terms are equal to the corresponding ones of the right-hand side in (2.4). We 
prove this for A3 and A4. One has A3 = ^2'S=oa»i w|lli. by conditioning with respect 
to V ^Ym-\ and O'4)’

Zm^-{Tn^m} 5^ Z2\^Ym= =y„_1 =

n=m+\
0}

ffl
<

s

oc
Zi,yzz^i<yo= =ivi=o}

. k=\

m 0,

where cp(x) = E^* [2ol{i;1=o} 52*=i Zjt], by (1.7); Corollary 5.2 of Nummehn (1984) 
then shows that A3 = v(.v) 2v(«) = 7r(j)_1En*[Zol{yri=oj 52^ Zp], Analogously, A4 = 
EOO vwOC 7 -j.1

k=0 Thm=k+\ With

— Ev*[Z., </(Ammo )l{7^^m}] 

where ^(x) = Ey* [Zol{3;,=o} JZjXi z„]; then, for each k 0,

oo
&km = ^v* Kfcl {l'-^k} l{Ffc=0}(^^)OQ£+l)mo )] = ^v* [’A (^-kmo )1 {Ta
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with = Ei*[Zol{io=o}(G'A)(X!o )]• Since, by (1.10) and (91.4),
= ^*[ Em=i #Vmo)l A V ^], we obtain

(G<A)(X)

71(5)Z4 = tt( t/Z) = EK*[ZOl{lo=O}(GlA)(Amo )]

y. 
zol{y„=o} Ao 

m=l

Sa
Zol{lo=O}52^»

w=l

We also have

E,[«(l))2<(2)] > -Lx.
71(5)

y.
Z0 l{lo=l}

n=l

Sa 
zo!{y=o}E 

m=l

Sa

n=l

(2.5a)

E,[<(1)«(2))2] > -A
71(5)

5,

w=l

Sa
Zol{yo=i}E

m=l

Sa 
zoi {17=0} Ez« 

n=l
(2.5b)

E2[<(1K(2K(3)] > -A
71(5)

y. 
z°i{y=i} E^X 

m=l

Sa
Zol {lo=l} Z"

n=l

(2.5c)

In order to verify (2.5a), observe that its left-hand side equals

ZlAlTa + l sgHsgiyi 1}

■/ p \2 n(i)

Ev. E Z,, ) E Z"
\m=C / »=y+l

moreover, A = EXo a»i Wlth

- Ev.
00

=A + 25 say.

Ev*
■ / Tcl \ T,l 1 )

(Ezl E z
_ \m=0 / n=Ta+l

+ 2tv>
‘ / T„ T„ 2
(E E ZmZn

. \m=0n=m+1 )

Wi
E A

k=T„+\
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oo

n=m+l

Zpl {10=1}^ zt

k=l
1 {Ta ^m}

and B = EZo £^m+i h”i.n Wlth

OO

ZmZ„ l{Tc,^n} Z]i 1 {72 + 1 <T„l 1 1}
k=n+\

Ev* \_Zm 1 {12=0} 1 {72 1 {12=0if m+1 < / <Sn-l}Zn 1 {12=1}

OO

/7 ^l{l'/=0ifn+l</+a-l}

fc=n+l

’ V [ {m} ’ $Xmmq [2ol{yo=o}l {5a m]

x E
82

Zol{lo=l}^2^r

These facts imply (2.5a). For the proof of (2.5b) one can argue as for A above 
to obtain Ev*[(^"=0Zm)(52^+1 Z„)2] (l/y))y [Zol{yo=i}(E^i Z„)2] which is
equal to the right-hand side of (2.5b) (for m 1, write Zm E?X>+1 Z„ x y^,,} = 
l{s2 1{iiB=o} E»=m+i Zn 1 {i}=oif m</</?} )■ For (2.5c) use that if 0 m < u,

OO

1 {72 2m,72+l <72( 1 1} <r«( 11+1 4k 4P.C2 1}

k=n+l

oo

l{T0!>m}yOT=l}y7=0ifm<i/<n,yn=l} ^tl{}}=Oifn<j<k}-

k=n+\

From (2.4) and (2.5) we have that (2.1) is equivalent to

V/3) < oc , Mj :=
S«

/'-V/
1

< oo, m2 := y ^¿z2
PI — 1

‘ 5« 8,

y Ejj*

m=l
Zp / J zn 

n=\

< 00.

Noting that y V = (G f )(Xmo) and that y Z,2 |.^V V ^’] =
Eyo’iGP“/2)^) + 2£7X-2£y-qi(GPa/^mW])(V!0) for any p.m. y on
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(Eo.-Z'o), we can show

mo —1 mo—2 mo —1
= + E (2.7a)

m=O /=O m=^+l

mo —1 mo —1

E12 n(fPmi>-kGPmf2)
m=O k=O

mo—2 mo —1 mo —1

+ ?E E E ^fPm,-kGP\fPm-(f}), (2.7b)
/=O m—/+1 /c=0

mo mo — 1

M} = EE Tt(fPhGPm[fPm<>-mGf]Y
h=1 m=0

(2.7c)

Assume that (2.1) holds. Then E})[((( 1))2] < oo and oo > En*[Z0 E«=i Z„] = 
Ylm=i n(fPmGf) (see Nummehn, 1984, pp. 138-139; or argue as above); then Lemma 
2.6 proves (2.2i) and am := Tt( fPmGf) < oo if 0 < m < mo. On the other hand, we 
claim that )’m(t := f GPm[fPm[fPk G f]) < oo if 0 < m < mo —1 and 0 < k < mo — m. 
That < oo if 0 < m < mo — 1 follows from (2.6), (2.7c) (consider the term
corresponding to h = mo and m), the equality

ì7 + p^gì7 = Gì7 + 21£2ó..
7T(V )

g : E —* [0, oo] S-measurable (2.8)

and 7r( fPm[/’]) < oo (by (2.6) and (2.7a)). Hence it is sufficient to prove 
that ym,k+\ < oo for some 0 < m < mo — 1 and 0 < k < mo — m — 1 implies y^ < oo. 
Assume ym_,/c+i < oo, 0 < m < mo — 1, 0 < k < mo — m — 1; by Lemma 2.6 and using 
that ao < oo we only need to show that fGPm[ fPk f]) < oo and we have two 
cases: (i) 0 < m < mo — 2 and 1 < k < mo —m — 1; (n) 0 < m < mo — 1 and k = 0. In 
case (i), n{fPm°GPm[fPk f\) < oo ((2.6) and (2.7b)) and n(fGPm[fPkf])< oo by 
(2.8) applied to g=Pm[fPk f] since 7t(fg) < f}). In case (u), apply (2.8) with g = 
Pm f2 noting that Tt( fPm,,GPm f2'i < oo by (2.6), (2.7b) and that fg) < 7d/3) < oo. 
Having proved our claim, we conclude that (2.1) implies (2.2i) and that f G[f G f]) 
= EXo' 7™.o < that 1S (2.211).

For the proof that (2.2) implies (2.1) consider, besides := 7t( fPmG(fPnGf)}
for 0 < m < mo. 0 < n < mo. Starting from «o < oo and fio.o < oo one can show that 
amn < oo and < oo using (2.8) and then that am < oo and /)„,„< oo if
0 < m < mo- 0 < n < mo, using Lemma 2.6. Thus < oo, i = 1,2,3, in (2.7) and 
we obtain (2.1) from its equivalence to (2.6).

Hence (2.1) and (2.2) are equivalent for every (mow,v) satisfying (1.1). That the 
validity of (2.2) for some (mow.v) as in (1.1) implies (R\) and consequently (Rt), 
follows from the inequality quoted before Lemma 2.4. Conversely, assume <Ri‘i holds 
and that (Mq.j.v) is any triple satisfying (1.1). We will prove that (2.2) is vended.
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First we fix A e A and show that + Ua )f) < Observe that

/* ' V'
/ 7T(dv)Ex EHJ A \n = l /

’ sA
/(Av)2hc(Av)EXo /(X„)

_n=l

+ 3En /(Ao)MTo)EV:,
■ SA

ji=\

+ 6En /(Ao)U(To)EV:, (2.9)
_n=l

For example, the last term comes from cp(x) := Ex[ /(Xm) £^+1 

where
/(a;,) x

am,n = Ex f(Xm)f(Xn^ f(Xk)i{SA>k}

k=n+\

= et

Now <p(x) equals

r sA r sA

_/' = ! .*=1

r sA

_*=i

and then f4n(dx)<p(x) gives the last term in (2.9) by Proposition 5.9 of Nummelm 
(1984). Since

n(f(I + UA)(/(/ + UA )/))=£„
r sA ’ sA

Em«)
_n=0

we obtain

/ 7r(dv)Ex
J A

< 137T(/(/ + ^)(/(/ + ^)/))<OC.
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Using Proposition 5.9 of Nummelm (1984), the Markov property and 7r(/3) < oo,

3. Strong mixing conditions

Denoting by a and fi the strong mixing and absolute regularity coefficients, respec­
tively, between a-algebras in (Î2.JUPU (see, for example, Bradley, 1986 or Rio, 
2000), for (X„ we have a(u) := supi.>oa(a(A’z,j k),a(Xl,j ^k + n)) and /)(«) 
defined similarly. By Bradley (1986, Theorem 4.1), Bolthausen (1982, Lemma 1) and

+ UA)f) =

7T( dv)Ex

æ( dv)Ex < OO.< n(A ) +

Since this holds for every A G X . Lemma 2.5 ensures that f\ := f Gf & that
is, (2.2i) is vended; let C G 6+ and M > 0 be obtained from that lemma for f\ and 
fi := f; then

*( fG[ fGH) < *( f{a + Uc )/i + M}) = 7T( f(I + Uc )/i) + Af7T( f) 

and

Kfa + uc )/i ) < mfa + uc )[.f{a + uc if+at}] >

= tt( fa + uc i[fa + uc >/] >+am fa + uc a >.
which proves (2.2h).

That (Df implies (Rfi follows by two applications of Lemma 2.7. It remains to 
prove that (R\) implies GE). Assume (R\) and take a set Ci G X which is both 
/’-regular and regular (Nummelm, 1984, Definition 5.4) (consider f := max{l£,/’} G 
Xi(c) in Proposition 5.13(h) of Nummelm (1984). Then Ci is small (Meyn and 
Tweedie, 1993, proof of Proposition 11.3.8) and if Jp:E —> [0,oo] is defined by 
Ji t v) := Ex[ f(X„)]. a- G A ( Ta := mf {« > 0: X„ G 11 if A G S'), then IX + f < 
f'l +^ilci (Meyn and Tweedie, 1993, Theorem 14.2.3(h)) where b\ := supxeCi[(7 + 
UCl )/](A-)G [0,oo). Moreover «Ti) < «(/ + UCl)/) < «1) + 13«(7 + UCl) 
(f(I + Ucff)) < oo by (R'f (the second inequality was proved above). Therefore 
we can take again C2&S+ which is /Ti-regular and regular, then small. Defining 
<-(.v) := ET[52fy0(/Ji )(.\„. )|. x&E, we have /'< •/< J'- • />• I, where b2 : =
supTeCJ(/+Uc,)/](A')G[0,oo). Finally, v(fVf> < Tt(fa + Uc, )(/Ii)) < Tt(f(I+UcA 
(fa + UCl)f))<^by (R'f. □
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Davydov (1973, Proposition 1) we have

a(«) = a( a(Ao ), a(A'„ ) )

= |sup|y 7i(dx)|(P”/)(x) — 7i(/)|: 0 < f < 1, ^-measurable j

and

y5(n) = y5(a(Ao),a(Xn)) = y <dx)||P«(x, •) - < (3.1)

where || • || is the total variation norm.
Recall that by Theorem 1 of Athreya and Pantula (1986), a(u) — 0 as n —» oo. 

The following version of Theorem 2 of Bolthausen ( 1980) is obtained from Bolthausen 
(1982) and Rio (2000); see also Remark 3.3. Here np can be replaced by the functions 
of n in the class Ao considered in Rio (2000, Sections 9.5, 9.6).

Proposition 3.1. Let p 0, p eR. Assume (mo. wv) satisfies (1.1). The following con­
ditions are equivalent’.

(i) EZi nprfn) < oo.
(ü) EZi npIKn) < oo.
(ni) ÉK*[S/+1] < oo.
(iv) Ê(x,i < oo for some (for every) xeE.

Proof (Sketch), (m) o (iv) is shown by the equality ê'Jt*[5'(J]=ÆU) E*Xi >

k + 1] + Æ(,y)É(X,i IE! f°r anY real 7'0 <we observe that (5.7) in Nummehn, 
1984 has a version for æ* ). (i) => (iv) follows from Lemmas 5 and 3 in Bolthausen 
(1982) (or Rio, 2000, Proposition 9.7) applied to (Xnmn )„i. By the first equality 
in (3.1), (in) =i- (n) is a consequence of Corollaire 9.1 in Rio (2000) applied to 
(Elmo ) < I I—I

Using (1.12), Lemma 1.1, Proposition 2.1 and Proposition 5.16 mNummelm (1984), 
we see that when p = 0, (iv) is equivalent to the ergodicity of degree 2 (Nummehn, 
1984, Section 6.4) of (X„ )n^o. Hence we obtain (a) of the following result; for (b) 
use Proposition 2.3.

Corollary 3.2. (a) (X„ )nll0 is ergodic of degree 2 if and only if E,E rAn) < oo, if 
and only fi(n) < oo, if and only if (D2) holds for f = 1£.

(b) É,E na.(n) < oo if and only if (D2) holds for f = 1£.

Remark 3.3. That ergodicity of degree 2 implies E,E^z;) < oo (in the expression 
given by (3.1)) was proved before in Proposition 2.1 of de Acosta (1997) and the 
converse in Theorem II-4.1 of Chen (1999a) through the remarkable equivalence to 
the property that the CLT holds for every bounded mean zero functional of the chain.
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Remark 3.4. As a technical aside, we mention the following version (for the general 
case mo > 1) of Lemma 5 in Bolthausen (1982) and Lemma 9.4 in Rio (2000). For 
any triple (mo,s,v) as in (1.1), define

sup sup{|P;*(A DB) - PnfA)P^(B)\-.AV j^,B e^m+n},
m^O

n 1,

where :Pk := a((Tfe)!o, ),(A'Mi, ),...). Then dm0(i(V(n) < 4a(ww0). w > 1, and
a(n) < am(1,s,v([?i/w;o] — 1) for ti 2mo. We prove the first assertion. Fix n l.m > 0, 
A e and B e there exists B' e f such that B= {AX{m+n}mf„ Ym+„),
(X)!+,,+i.i;!+,,+i )....) €/?'}. By (1.4), (1.3) and (1.5),

E.*[h|>L0V>Li] = h* [l^o0n] = E,.; [Pw y./5')]

= e« I.MX nmo )] H” t [/1 (^-nmo )1A mmQ XmmQ

with /0(v) = (l -3-(v))P(Xjo)(R/) and /i(x) = x(x)P(Xji)(R/). xeE. By (1.3), Pn*(5) =
= + Then |Pk*(A ClR) - Pk*(A)Pk*(R)| <Z0 + /i

where fi = f |E. [ffXnmf\ - 7r(/r)|dPK*, i = 1,2.
Xmm^

Using that the P;/*-distribution of (Xn) equals the P^-distnbution of (Xn), we get 
(take p = <5X and n) for i = 1,2,

It = y |E&„„0 \.ffiXnmrfi)\ - dPK = y Tfdx)\(Pnm°ft)(x) - </o)l < 2a(nm0)

by Lemma 1 in Bolthausen (1982).
Finally, we show that the argument in the remark preceding Corollary 3 in Bolthausen 

(1980) gives the following extension of Lemma 4 in Bolthausen (1982).

Corollary 3.5. Let f be a real S-measurable function on E. Assume there exist p > 2 
and p > 2/( p-2) such that f \f\p dx < oc and ffifZi npa.(n) < oo. Then for any triple 
(mo.^.v) satisfying (1.1), ¿¿(((¡/1.1 lU1] < co for every p.m. /. on (Eo.iffi), where 
Pi := P<f + PlfP + P + 1) e (2, y?).

Proof. Writing p' = p/p\, q' for its conjugate exponent, r = p\ — pfip, s = —r, we 
have rq' = 2 + p, sp' + P1p'-l=0 and, lor.ve/2 £(z,i)[(E^=i 2„(|/|))^] < 
with A = E(Xji)[Sa2+i?],

/ s, \PlP" ’ &
— --------- E-tt

<y) 71

■ /mo-1 \ p-

B = E(z,i) < E(z,i) IT. !/«■>! 1
\n = l / _n = l . \ m=Q / _

by (1.4) and (5.7) in Nummelm (1984). □
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4. An almost sure invariance principle

From Theorem 7.6 in Nummelm (1984) and its proof we have

Lemma 4.1. Let f be a real-valued function in d(^(7t) set °f ^-integrable func­
tions with 7t(f) = 0) and let (mo,s,v) be a triple satisfying (1.1). Assume 

Then f^ie constant
o mo mi.

O'2 = d2(J) := ^(i2) + — > (m0 - n)n(fPnf) + — ^n(fPn^m^,vf) 
mo —■ mon=i n=i

= — (Efl.[C(./'. 1 )2] + 2£,,.[<(/. 1 )((/’, 2)]). (4.1)
mo

p being any p.m. p on (E,S), is finite and nonnegative and does not depend on 
(mo,s,v) nor on p.

We give a version of Theorem 10.1 in Philipp and Stout (1975) and Theorem 2.1 
in Csaki and Csorgo (1995), in similar terms to those of Csaki and Csorgo (1995) and 
Theorem 17.3.6 in Meyn and Tweedie (1993).

Proposition 4.2. Let f be a real-valued function in ^¿(æ) and (m0,v, v) be a triple 
satisfying ( 1.1 ).

Assume there exists <5 > 0 such that

and

Ëv

(4.2)

(4.3)

Then for every p.m. p on (E.S) there exist a probability space (bfdtfP') and 
a sequence of r.v.'s (X,i)n^o together with a continuous standard Brownian motion 
{B'(ty. te[0,oo)} defined on it such that

(i) the distribution of (Xt')„^o equals the P^-distribution of (f\X„))tI^0i
(u) | Exxnf2!)! =O(t1/2~e) as t oo, P'-almost surely, for some t€(0,y) 

(the constant implied by O being random),

where a2 is the constant defined in (4.1).

Proof. Fix a p.m. 2 on (Eo,.^o). We will show that the conclusion holds in fact for 
(f(X„)) and IP^ in place of (f(X„)) and PiP We follow Philipp and Stout (1975,
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Section 10.2). In place of (10.2.1) in Philipp and Stout (1975) define, for A > 1, as 
in Nummelin (1984, proof of Theorem 7.6), i(N) = max{z A 0: (Ta( i) + 1 )»zo AV} 
if (Ta(0) + 1 )»/o A A and 0 otherwise. For N 1 define .A = Z^=o f^n )• $n = 
^T^-V^N = s„ = fw. -hen Sn = +

5a? + S^. We have |Sy| = O( 1) as A —- oo Pya.s. because PaEA < oo] = 1. On 
the other hand |5y| < <(|/|,z(A) + 1) for all sufficiently large N Pya.s. By (4.3), 
Eltil \.f 1.1 )2+2] < oo which implies, by the Borel-Cantelli lemma (or as in Philipp 
and Stout, 1975, Section 10.2), that |S^| = O(N(i-s/(2+sy>/2'), as A - oo, Pya.s. 
(i(N) + 1 < N/nio if (Ta + 1 )»/o A N). Then

|S)v -S^l =O(iV(1^/(2+W2) as A oo, Pya.s. (4.4)

By using Theorem 4.1 in Philipp and Stout (1975), we obtain a probability space 
(i2,y, P) and a sequence of r.v.’s (((/)),^i together with a continuous standard Brow­
nian motion [0,oo)} defined on it such that (M»1 has the same distribution
as the Py distribution of (((/)),^i and

y <(0-55(0
0<i<i

= ()(/' 2 2) P-a.s. (4.5)

for some € e (0, |), where 52 := ¿¿[A 1 )2] + 2iyK( 1 K(2)]. By proof of Theorem 7.6 
in Nummelm (1984), (zr(j)/»zo)52 = <r.

We need versions of these r.v.’s, even of i(N), defined on a common probability 
space. Consider the Polish spaces (with their natural topologies) X = R°°{0,1}°°, dd/ = 
R°°, S = C[0,oo) and the p.rn.’s (r = (((/(A*) h^o. (F„ ). («0 )i;si) and y =
yp((<(z)yi,5) on the product spaces X x X and X x y, respectively. Let Q! = X x 
d>J x y, X' be the product u-algebra and denote by ((A^fi^odT/L^o). (CfiOl^i and 
B" the projections onto X, d!) and y, respectively. Then (Berkes and Philipp, 1979, 
Lemma Al; de Acosta, 1982, Corollary A.2) there exists a p.m. P' on (Q',X') such 
that ytttApA^o.lT," Wo). (('(0)^1 ) = )5 and '£((¿}'( z)), ^ i. ^") = y. Now define on 
Q' the r.v.’s 7^(1), z > 0, i'(N), A > 1, in terms of (T<) as Ta(i), z(A) are defined 
with respect to (T„). From (4.4) and (4.5) we get

£ a;'-û5"(z'([î])) = ()(/' 2 '') P'-a.s.,as / —* oo.

for some c' G (0, | ) (note that i'(N) < N/mo and i'(N) —♦ oo P'-a.s. ).
This implies the conclusion with 5'(/z) := 2y).y > 0, if we show that

|5"(z'([i]))-5" ( —/) | = O(i1/2~e'') as i oo, P'-a.s., (4.6)
\ »'0 /

for some e" G (0, | ) ([ • ] = integer part). First, observe that 

»70
= O(A! A'«2+<5 > ) as the integer N oo, P'-a.s. (4.7)
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In fact, i(JV) — (n(s)/mo)N = o(N2/{2+S}) as N — oo, P/-a.s.; this can be obtained 
from Ta(i) — i/n(s) = o(i2/t2+S}) as i — oo, P/-a.s., which follows from the strong law 
of large numbers of Marcinkiewicz-Zygmund applied to the 1-dependent sequence 
P, = Ta( j)- Ta(] - 1), / > 1, since E2[pJ+,V2] = Ev*[(l + Ta)1+lV2] < oo by (4.2) and 
E2P1 = Ev*[l + Ta] = l/<y) (use (1.7)).

Moreover, let /> e (0, <5/(2 + <5)) and y > 0, to be determined later, and pn := 
Arguing as in proof of Lemma 3.5.3 in Philipp and Stout (1975) (using (4.7)) we can 
show that if M„ = maxpri>t>Pri+i |5"(/'([i]))— B"((n(s)/mo)i|, c = 7t(s)/mo, and R(a,b) = 
max.a^S't^b\B"(s) — 5"(Z)|(0 < a < b) then M„ < R(cp„-\,cp„+2) for all sufficiently 
large n, P -a.s. If we take /)’ <—1+^2, P'(R(cp„_i,cp„+2) < P'(A(0,1)
> Kny) < 2P'( \B"( 1 )| > ^Kny) where K is a constant depending on /> and y The 
Borel-Cantelli lemma then gives that M„ = O( ji},1 ^“) as n —> oo, P'-a.s., which
proves (4.6) choosing 0 < y < /> < <5/(2 + <5) and /I < — 1 + \/2. □

Let f be a real-valued function in ^¿(n). We will say that f satisfies the almost 
sure invariance principle (ASIP), if the conclusion of Proposition 4.2 is vended. If 
the random elements 0 < i < 1} of the Skorohod space £>[0,1]
converge in distribution as n oo to {B(a2t): 0 < t < 1} where {B(t): 0 < t < 1} is 
a standard Brownian motion and a2 is defined by (4.1), we will say that f satisfies 
the functional CLT (FCLT).

Now we deal with ergodic chains of degree 2 (recall Corollary 3.2).

Corollary 4.3. A function fedP^d) satisfies the ASIP if either one of the following 
sets of conditions is verified:

(1) There exist p >2 and p > 2/(p - 2) such that n( |/’|7J ) < oo and npa.(n) 
< oo.

(h) f is bounded and «2a(») < oo for some <5 > 0.
(in) (A/y^o is ergodic of degree 2 and n( |/|(/+Ci )( |/|(/+Ci )|/| )) < oo for every 

Aet.
(iv) (A/y^o is ergodic of degree 2 and f is bounded and special (Nummehn, 1984, 

Definition 5.4).
(v) (a;,)„ >o is ergodic of degree 2 and f is bounded and vanishes on the complement 

of some regular set (Nummelm, 1984, Definition 5.4).

Proof. For the proof of (i) use Proposition 3.1 with (1,12) and Corollary 3.5 with 
Lemma 1.1. (u) is a consequence of (i) (or use Proposition 3.1).

(in) follows from the fact that ergodicity of degree 2 is equivalent to É(Tji)[S^] < oo 
for some (for every) xeE (by the results quoted before Corollary 3.2) and Proposition
2.1. (iv) and (v) follow from (m). □

By Proposition 2.2 in de Acosta (1997), under the conditions in (iv), (v) above the 
constant a2 in (4.1) verifies (4.8) below. Now we extend that result. In what follows, 
f :E — R is an ^-measurable function and f := f — n(f) when n(f) < oo.
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Proposition 4.4. Assume is ergodic of degree 2. Let g be a real-valued func­
tion in ^(77) such that

(1) nf is g-regular, 
(il) 77 is g-regular, and 
(in) nf is regular.

Then, if |/| < g, the constant a2 defined in (4.1 ) satisfies
oc

a2 = £¿7(Ao )2] + 2 £ £¿7(Ao )f(Xk )]
*=i

n—oo H
(4.8)

the series being absolutely convergent.

Proof. First we define a version of P”h for any real ¿(-measurable function h such 
that \h\ < Vg and any n 0. Since 77(17) < oo there exists \'X with AX) = 0 such 
that for each xeNc and each n 0, (Pn(Vg))(x) = Pn(x,-)(Vg) < 00. Then M : = 
{y: Pn(y,N)>0 for some n 0} G S satisfies n(M) = 0 (Nummelin, 1984, 
Proposition 2.4(iii)). Given h as above and n 0 we define hi,,}(y ) = P”(y, ■ )(// ) if 
y f N, 0 if y eN. Then, for each n 0, h{n} is S-measurable, 7t(h{n}) = 77(fi) and 
P”(x, •)(//) = Pm(x, ■ )hi,} for every v f M(D N) if n = m + i, m.i 0 (by dominated 
convergence applied to approximating simple functions, noting that Pm(x,N) = 0 if 
v & M ).

Fix f as in the statement. Note that

IM7(^o)7(X)]| = I T7(dx)7(x)(/(n)(x) - 77(/)
JMCMc

< WfPnf\\^y) = I 77(dx)|/(x) - n(f)\\f(n)(x) - 77(/)|. 
jmc

Then by using Theorem II-3.1 in Chen (1999a) and an argument in proof of The­
orem 17.5.3 in Meyn and Tweedie (1993), the result will follow if we show that 

ll7-P,,7l|jvi(Jt) < 00. It is sufficient to prove that
00 r
V / 7I(dx)l/(x)l l/(B)(x) - ^(Z)! < 00

A Jn=0

(4.9)

and

V I 77(dv)|/'"’(v) - 77(/)| < 00.
“ Jn=0

When xeMc, ||P''(v, •) — 77||t; < ||Pfe,!t'(v, •) — 77||ya <00 (|| • Ho is defined in Nummelin 
(1984, Section 6.2) if n=knto+i, n,m > 0, 0 < i < /v,— I (given any real ^-measurable 
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function h such that \h\ < g, consider on the other hand, |P''(v, •) — zr|( Fg) < 
P”(x, ■)(Fg) + zr( Fg) < oo).

We use concepts, notations and results developed in Nummelm (1984, Chapters 4 
and 6). Consider the sequences // = (//„ )„^o and, forxeE, a(x) = (a„(x))„^o defined 
by //0 = 1, u„ = y(Pn> f-'x if w > 1, ci„(x) = [(Pm° - x <x> v )«x](x) = Py. (Ta = n), n 0; 
for any ^-measurable function h such that \h\ < Fg, consider a(h) = (a„(h))n^o with 
<7„(//) = [v(Pm° — J®v)"](/?), n 0. By (4.23 ) in Nummehn (1984) v(Pm°1 (/?) = (// ★ 
<7(//))„_i, n 1. Note that 52^0<7,;(f3) = nfs^nfFg) < oo (by positive recurrence) 
and then that v(Pm°)”(Fg) = (u ★ u( Fg) )„ < oo for each n 0.

Using the first-entrance-last-exit decomposition (Nummelm, 1984, (4.24)) it can be 
shown that if n = knio + z, «, m >().()</< tt!() — p for x M we have

|/W(x) - </)|

< [(pmo _ v)\ffo)](x) + (|a(x) ★ m - m| ★ cr( Kg))*_i

+ / <dz) {[(T5“0-x® v)\Ug)] (z)+ (|u(z)*m-m| ★<7(ffo))(fc_i} .

(|c| := (|c„| )„^o for any sequence c).
For the convergence of the first series in (4.9) it is sufficient to have the convergence 

of the series whose Alli term is the zr-integral of the nght-hand member of (4.10) 
multiplied by g(x). This requires the finiteness of the following four quantities: xli = 
nFjGg),

Ar =

,. / -» \ / oc \
/ 7T(dx)foX) (£ |zz(x ) n ff\k j i rzy(I g) I 

' \k=O / \*=0 /\ k=O

< (y«d.t ,ra)
where Far(u) = 1 + 52,^ |z/„ — z/„_i| < oo by Theorem 6.4(i) in Nummelm (1984) 
(the hypotheses there are satisfied; for example, the increment sequence of zz, bo := 0, 
b„ := v(Pm° — x <g> v)',_1x, fi 1, verifies < oo—see Nummelm (1984, p. 74)—and
Man = Ey*[Ta]), A} = n(g)zr(Gg) and

A^= I n(dx)g(x) I zr(dz)

< ^j7fig)2Far(M) (/%(dx)Ey*[Ta]^ .

We are led to similar quantities when the second series in (4.9) is considered.
Both sets of bounds show that (4.9) is verified if the following five quantities are
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finite: 7t(g), Tdg&igh n(Ggf f TfidvUfvlE^ITa] and J 7r(dx)E2*[^a]' These conditions 
as a whole are equivalent to the hypotheses of the proposition (use Nummelm, 1984, 
Proposition 5.13(iv)> and ( 1.10) with p = ôx, f = 1£ ). □

The next result shows that in part of Theorem 17.5.3 in Meyn and Tweedie ( 1993 ), 
we can replace æ( F2 ) < oo by n(gE) < oo. For its proof use the preceding proposition 
and Lemma 2.7.

Corollary 4.5. Let g be a real-valued function in that satisfies (D2) and such
that g X 1. Then (X„ )nllo is ergodic of degree 2 and the conclusion of Proposition 
4.4 holds.

5. Examples

5.1. Some remarks for the case E Ç Rlf

Assume that (X„ is a Markov chain on (£, S') with transition probability kernel P, 
where E is a Borel subset of R‘f and S' is its Borel u-algebra. Let || • l| be the Euclidean 
norm. Given p 0, p e R, we define gp:E — [0, oo) by gp(x) = 1 + ||v||p, x eE. For 
p 1 consider the property

there exist a constant b e [0, oo), a small set C e a
and an S-measurable function F = E — [0, oo) verifying
ci||v||7 < F(v) < C2||a'||p, for some positive constants ci,C2,
such that PV + (7^-1 < F + Mc- (T]X

For p > 0, pe R, let (7^) be the condition obtained from this by replacing gp_\ 
by gP.

For the rest of this subsection we assume that (X„ )„>0 is Harris ergodic with invariant 
probability measure Æ. The following results will be used in the examples (the part 
involving (7p) when £ = [0, oo ) in Sections 5.2 and 5.3; (Xp) when£ = R‘f in Section 
5.4). We omit the proofs concerning (7^).

Lemma 5.1.1. (a) If ( 7 p) is verified with ¿>e[l,oo) then f£ Hx'll7'1 Mdv) < oo. If 
(7^) is verified with ¿>6(0,oo) then f£ ||v||77i:(dv) < oo.

(b) If (1~p) is verified for p= 1 and 2 (or if ( T"'p) is verified for some p > 0) 
then (X„)„^o is ergodic of degree 1.

Proof, (a) Use Theorem 14.3.7 in Meyn and Tweedie (1993). (b) By (77) and (a), 
||v||Æ(dv) < oo; then (7'7 ) and Theorem 11.3.12(1) in Meyn and Tweedie (1993) 

show that Æ is 1-regular. Use Proposition 5.16(i) in Nummelm (1984). □

In what follows, f \E - ■ R is a Borel measurable function and f := f — n(f) when 
7T(/) < OO.
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Proposition 5.1.2. Let pe [l.oo) (y?e(0,oo)), Assume that (Cf ) (respectively, (Tf)) 
is verified for r=p and Ip. Then gp_\ (respectively, gp) satisfies (Re). 7/’ | /'| < cigp_-i 
(respectively, |/| < agp) for some fle(O.oo), we have that tt( | /’| ) < oo, (Re) holds 
for | f\ and, therefore, f satisfies the FCLT and the constant a2 in (4.1) verifies
(4.8).

Proof. gp_\ satisfies the first inequality in (De) with the function V given by (Dp); 
(Tfp) and Lemma 5.1.1(a) show that Tt(gp-i F) < co. Then gp_i satisfies (Re) by 
Proposition 2.1. Assume |/| < agp-i for some constant a. If p=l, f is bounded and 
if p > 1, n( | /’I'+A'p-1 > < oo by (Tfp) and Lemma 5.1.1(a); moreover |/| < a'gp_i 
for some cf which now implies that |/| verifies (Re) and then that f satisfies the 
FCLT (see Remark 2.2). Use Corollary 4.5. □

Corollary 5.1.3. (a) Assume 7=1. If (If ) is verified for r = 2 and 4 (or if (Tf) is 
verified for r = 1 and 2 ) and f(x ) = v we have that n( | f\ ) < oo, (Re ) holds for |/| 
and, therefore, f satisfies the FCLT and the constant a2 in (4.1) verifies (4.8).

(b) The same conclusions are valid if(If) is verified for r = 1 and 2 (or if (Tf) 
is verified for some r > 0 ) and f is bounded.

Proposition 5.1.4. Let 7? e [l.oo) (pe(Q,co)). Assume that (If) is verified for r = 
p,p+ 1,2/1 and 3 p (respectively, ( 1 f ) is verified for r = p, Ip and 3p). Then gp_\ 
(respectively, gp) satisfies (Rj). Suppose that |f\ ag1}_\ (respectively, |f\ ¡fcigp) 
for some <7G(0,00). II < have that n( | f | ) < 00 and | f\ satisfies (Rj); if moreover 
(If) and (Tf) are verified (nothing else about (Tf)), then (X„ )nll0 is ergodic of 
degree 2, f satisfies the ASIP and the constant a2 in (4.1) verifies (4.8).

Proof. By (T~p) and (Tfp), gp_\ verifies the first two inequalities in (£>3) with b\ 
the constant, Ci the small set and F the function, with associated constants c\,ce, 
given by (If). Let b',C',V' and b" ,C" ,V" analogously obtained from (Tfi+\) and 
(Tfp), respectively. Then gp_\ also verifies the third inequality with be := ce(b' + 
b"),Ce := C U C", which is small by Corollary 2,l(iii) in Nummelin (1984) and 
F := C2<F'+ V"). From ( Tfp) we obtain that n(gp_\If ) < 00. Hence gp_i verifies 
(À3) by Proposition 2.3.

Then, as in the proof of Proposition 5.1.2, the assertions about /’(ifi | 1 )
<00 if p>l) and f follow (by (Tfp)) using Lemma 5.1.1 and Corollary 
4.3(iii). □

Corollary 5.1.5. If (If) is verified for r = 1,2,3 ((Tf) is verified for some r >0) 
then _(X„)n^o is ergodic of degree 2 and if f is bounded, we have that (IF) holds for 
|/|,/ satisfies that ASIP and the constant a2 in (4.1) verifies (4.8).

Corollary 5.1.6. Assume 7 = 1. If (Tf) is verified for r = 2,3,4,6 ((Tf) is verified for 
r = 1,2,3 ) and f(x ) = x we have that n( | f\ ) < 00 and \ f\ satisfies (R} ). If moreover 
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(F)) is verified (nothing else about (TjA), then (X„)tl^o is ergodic of degree 2, f 
satisfies the ASIP and the constant a2 in (4.1) verifies (4.8).

5.2. Example, 3-skeleton of the forward process

Let Zo, Fi, Fi, ■ ■ ■ be independent real r.v.’s taking its values m E = [O.oo), S be­
ing the class of its Borel subsets, Fq := 2?(Zo), with F, Fi,... identically distributed 
and F := 2?(F). i 1. Define Z„ = Zq + 52"=i F, for n > 1. We assume that F 
is spread-out (Nummelin, 1984, Example 2.1(c)), not concentrated at 0, and that 
EFi < oo. Fix <5 > 0 such that F([0,<5)) < 1. Then, if X„ = F+(u<5)) := inf {Zu — 
n3: Zr n3,k 0}, n 0, (X„ is a Harris ergodic Markov chain on (E,Sj (Meyn 
and Tweedie, 1993; Nummelin, 1984) with x(d/)=c 1 /((/. oc))d/. c := EF and [0,<5) 
is a small set in S+.

Lemma 5.2.1. Assume E[(F F] < oo with p 1, p eR. Then (X„)n^o satisfies (1 f).

Proof. For this chain, its transition operator Fj>, say, applied to any nonnegative 
S-measurable function //, gives that (F.i//)(x) equals

where U is the renewal measure U(A} = 'ffffi) rr*(A), A e S'. Let c := (infxe[^jOO,(xp — 
(x - <5)i?)/(l 6(0, oo) and b := cF([0,<5))E[(FF] + 1 + <5^’ 6 (0,oo) (as
is well known, U([0,<5)) < oo). If F(x) := cxp then (Pfir)(x) + gp_i(x) < F(x) if 
x <5, and (PsF)(x) F cF([0,<5))E[(F F] if 0 <x <3. □

Proposition 5.2.2.

(a) If any one of the following conditions is verified then (Xn)„^o is ergodic of de­
gree 1, 7r(| f\) < oo, f satisfies the FCLT and the constant a2 in (4.1) verifies
(4.8):

(a-i) E[(F )2F < oo with p& [l.oo) and |/| < agp_i for some cie [0,oo).
(a-n) E[( I) )4] < oo and /(x) = x.

(b) If any one of the following conditions is verified then (X„ ),j;s0 is ergodic of 
degree 2, n( | f |) < oo, f satisfies the ASIP and the constant a2 in (4.1) verifies
(4.8):

(b-i) E[(F )3i] < oo with pe [l.oo) and |/| < agp_i for some cie [O.oo).
(b-n) E[(F )3] < oo and f is bounded.

(b-ui) E[(F )6] < oo and /(x) = x.
(b-iv) E[(F)2] < oo, I) and I) are two disjoint bounded subsets of E such that 

n(D+) = n(D-) and f is defined for teE by fit) = +1 if teD+,-l if 
irk) and 0 otherwise.

(c) F’E[(F)3] < oo and ti(\f\p) < oo with ¿>6(4,oo) then (X„)„^v is ergodic of 
degree 2 and f satisfies the ASIP.
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Proof. (a-i)—(b-iii) allow to apply the results of Section 5.1 and (b-iv) that of Corol­
lary 4,2(v) (by Nummelin, 1984, Example 5.3(e)). For (c), use Corollary 4.3(i) and 
Corollary 3.2(b). □

5.3. Example. Random walk on a half line (reflected random walk}

Let Zo.Ei.Fi.- ■ ■ be independent real r.v.’s, Zo taking its values in E = [0,oo), S 
being the class of its Borel subsets, To := =Z(Zq), with Fi.I».--- identically distributed 
and F := ^(F,), i 1. Define Z„ =Zo + 52"=1 F, for n > 1. We assume that E|Fi| < oo 
and f> := EFi < 0. Then, if Wq := Zq, W„ := (IF„_i + Y„)+, n 1, (where x+ := x 
if x 0, 0 if x < 0, x eR), (JV„ is a Harris ergodic Markov chain on (£, S'); the 
unit point mass at 0 is an irreducibility measure and [0, c] is a small set in o for any 
ce[0,oo) (Meyn and Tweedie, 1993; Nummelin, 1984).

Lemma 5.3.1. Assume E[(F1+)i,]=J[0oo)xi,T(dx)<oo with p^l, peR. Then (Wn)n^o 
satisfies (Ep).

Proof. For this chain, its transition operator P, say, applied to any nonnegative 
Z-measurable function h, gives

(Ph )(x) = T(( — oo, — x ))/z(0) + I //(x + y )F(dy).
z [—x,oo)

If Jfi(x) := x-'i x 0, we have
(PF0)(x) = xi’T([-x,oo))+j>^" (x + Cy^’d/j yj>T(dy), x^0

(note that/[_xoo)(/0’(x + (y)^ 1dQ|y|F(dy) = Jt_XjX] • • • + J(xoo) • • • < 2P ' xp ’E^It 

2P~1E[( 17’] < oo). Writing I(x) for the last integral, we claim that lim^oo (1 ,v/; 1 )
x/(x) = />. In order to prove this, fix any sequence (x„) in [l.oo) which tends to infin­
ity. Then h„(y) := +(y/x„)p-1d()y y, for every y G R and |A„(y)| <
l<-oo,0)|.v|+l[0,oo)( 1+y )p. y €R,n>l. The dominated convergence theorem gives our 
claim. Hence there exists xq > 0 such that (Ply )(x) < xp + for every x > xq;
taking c G (0, oo) such that —\/c = \fip and defining F(x) = cxi?, x > 0, we have some 
xi > xo for which (PF)(x) < F(x) — gp_\(x) for every x > Xi. Observe that 0 < x < Xi 
implies (PF)(x) = c Jt_XjOo)(x + y)CT(dy) = c (./|tx • • • + J(XjOo) 1 < c(2^xf + 

2i’E[(yi+)i’]). Now it suffices to take b = c2p(xf + E[(F1+)i’]) + ^_i(xi) G (0,oo). □

As in the preceding example we obtain

Proposition 5.3.2.

(a) If any one of the following conditions is verified then (IF„)„^o is ergodic 
of degree 2, n( | f | ) < oo, f satisfies the FCLT and the constant a2 in (4.1) 
verifies (4.8):
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(a-i) E[(T1+)2jP] < oo with ¿>e[l,oo) and |/| < cigp_i for some <76[0,oo). (a-n) 
E[( i)+ >41 < 00 af,d >= *■

(b) If any one of the following conditions is verified then (llfifi^o is ergodic of 
degree 2, | f\) < oo, f satisfies the ASIP and the constant a2 in (4.1) verifies
(4.8):

(b-i) E^T^)-^] < oo with ¿>e[l,oo) and |/| ^cigp_i for some <76[0,oo).
(b-ii) E[(Fj+ )3] < oo and f is bounded, (b-iii) E[(Tj+ )6] < oo and f(x) = x.

(c) If E[( Fj+ )3] < oo and 7r( | f\p) < oo with ¿>6(4,oo) then (A),),,^ is ergodic of 
degree 2 and f satisfies the ASIP.

5.4. Example. Linear state space models

Let Ao, 11), Ws,... be independent random vectors, A), taking its values m E = R‘f, S 
being the class of its Borel subsets, IlyAE,... taking its values in R^ and identically 
distributed with F := G?( IF,), i 1. Let F be a d xd matrix and G be a d x p matrix. 
We assume that F is nonsingular with respect to Lebesgue measure, the eigenvalues 
of F he in the open unit disk in C and the (controllability) matrix 'G • • • |FG|G] 
has rank d. Then, if A), := FA),_i + GW„ji 1,(A), ),j;so is ;|ii aperiodic irreducible 
Markov chain on (F,6'), and every compact subset of E is small (Glynn and Meyn, 
1996; Meyn and Tweedie, 1993).

Lemma 5.4.1. Assume E[||fFi||7?] = f£ HvIl^Hdv) < oo with p > 0, ¿eR. Then 
(A),),,^ satisfies (Fp with a compact set C.

Proof. As in Meyn and Tweedie (1993, proof of Proposition 12.5.1) consider the 
positive definite matrix M := I + (FT )'F' (F is the transpose of F) and the 
norm |v|i/ := fx^Mx which satisfies |Fv|a/ < a|vand ||v|| < |w|av < />||v||, v 6F, for 
certain positive constants a < 1 and />. Define /..( \ ) := * &E. First we show that

PCffi^Iff+L for some constants 2 and F,

0<2<l, 0 < F < oo. (5.1)

We have P(Jfif)(x) = E[I^(Fv + Glifi )] < li| | l..(/v) + If GIF )}7]. If 0 < p < 1, 
P(lyffix) < ap(Ifx))p + E[|C?fFi 1121 and (5.1) holds with fi = odfi L= E[|GIFi |^]. Sup­
pose ¿>>1. Put cp = iiiaxfl.2" 2j In this case P(Ifif)(x) < a.p(Ifx))p + 
pcpap-fVfx)y-xE[\GWfiM] + pcpE[\GWt\PI] = ap(Vfxfi)p + <p(x), say, with cp(x)/ 
(Ifx))p —> 0, as ||v|| —* oo. Take <5 > 0, <5 < 1 — a.p and then t > 0 such that cp(x) 
< <5(Fo(v))i) whenever ||v|| > t. Now (5.1) is verified with 2 ■.= ap + ô and F : = 
sup{<p(v): ||v|| < t}. Hence (5.1) is proved.

Take now r > 0 large enough such that X+L/r < 1 and the compact set (then small) 
C := {( Io F y ?’} + . If we choose y > 0 with 2 + y + (F + y fir < 1, then ( 1 ~'p ) is
verified with F := ( 1 /y ) ( Ifi )p, b := L + y. □

Proposition 5.4.2. Assume E[|| II) H7’] < oo for some p>(fip&R. Then (A), )nSso is 
Harris ergodic of degree 2.
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Proof. We know that (X„) is irreducible and aperiodic. By Lemma 5.4.1 there exist 
a compact set C and a function F on E such that (PF)(x) — F(x) < —gp(x) < 0 for 
every x / C; Theorems 9.4.1, 9.2.2 and Proposition 6.3.5 in Meyn and Tweedie (1993 ) 
show that (X„) is Harris recurrent. Positiveness follows from (T~'p) and Theorem 11.0.1 
in Meyn and Tweedie (1993). Now apply Lemma 5.1.1(b). □

The FCLT under (a-ni) in the following result was proved in Glynn and Meyn 
(1996). From Section 5.1 we obtain

Proposition 5.4.3.

(a) If any one of the following conditions is verified then tt(|/|) < oo, / satisfies 
the FCLT and the constant a2 in (4.1) verifies (4.8):

(a-i) E[|| FFi ||2j,J] < oo with pe(Q,oo) and |/| < cigp for some <7 6(0,oo).
(a-n) E[||IFiH7’] < oo for some ¿>6(0, oo), and f is bounded.

(a-m) E[||lFi||2] < oo and |/| < <7(1 + ||x|| ) for some <7 6(0, oo).
(b) If any one of the following conditions is verified then tt(|/|) < oo, / satisfies 

the ASIP and the constant a2 in (4.1) verifies (4.8):
(b-i) E[|| IFi ||3i)] < oo with j?6(0,oo) and |/| < agp for some <7 6(0,oo).

(b-n) E[||lFi|/] < oo for some j?6(0, oo), and f is bounded.
(b-ui) E[||lFi||3] < oo ¿z«<7 |/| < <7(1 + ||x||)/cu some <76(0, oo).

(c) If E[ || Uy ||/;] < oo for some ji6(0,oo) and æ( | f\q ) < oo with </6(4,oo) then 
f satisfies the ASIP.
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