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Abstract

Let (X, )0 be a Harris ergodic Markov chain and f be a real function on its state space.
Consider the block sums (1) for | f|, i = 1, between consecutive visits to the atom given by the
splitting technique of Nummelin. A regularity condition on the invariant probability measure n
and a drift property are introduced and proven to characterize the finiteness of the third moment
of {(1). This is applied to obtain versions of an almost sure invariance principle for the partial
sums of ( 7(X,)), which is moreover given in the general case, due to Philipp and Stout for
the countable state space case and to Csaki and Csorgo when the chain is strongly aperiodic.
Conditions on the strong mixing coefficients are considered. A drift property equivalent to the
finiteness of the second moment of (i) is also given and applied to the functional central limit
theorem.
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1. Introduction and preliminaries

Throughout the paper we will consider the canonical Markov chain (Y}, ), taking its
values in a countably generated measurable space (E, &) with given transition probabil-
ity kernel P and initial distribution ;: the .\\),’s, n = 0, are the coordinate projections on
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the measurable space (2..% ) :={E™>_.6>), on which we have the Markovian probabil-
ity measure PP, (with expectation operator E,: we write P, and E, if 1= 0d,) associated
to the stochastic kernel P and the probability measure (p.m.) i on (E,&). We assume
that (X}, ), -0 18 Harris ergodic (1.e. aperiodic and positive Harris recurrent, Nummelin,
1984) and denote by 7 the invariant p.m. It i1s well known (Nummelin, 1984; Meyn
and Tweedie, 1993) that under these assumptions there exist triples (my, s, v) satisfying

forall xeFE, A& : P™(x.A) = (s ©vHx,4) (:= s(xW(A4)),
mo = 1 1s an integer, i
s 18 an &-measurable function with 0 <5 < 1 such that 7(s) := / sdm > 0,

v 1s a p.m. on & such that v(s) > 0. ' (1.1)

If we tix any (mg.s.v) as in (1.1), then the splitting technique of Nummelin (1978)
gives a sequence (Y, );<o such that (X, 7Y, )ns0 18 a Markov chain with a positive
recurrent atom o (the split chain; see below) This allows to extend to this setting
the regeneration method used in the countable state space case: the partial sums Sy =
ij:o Jf{A,) of a functional of the chain can be divided into sums between consecutive
visits to o, the sums over the o-blocks, which form a 1-dependent stationary sequence
({(i});>1 (see Nummelin, 1984; Meyn and Tweedie, 1993; Chen, 1999a; and Lemma
1.1)

Then, in formulating limit theorems for Sy, one can 1mpose moment conditions on
{’(1), where we consider |f]| in place of f (see, for example, Meyn and Tweedie
1993, Theorem 17.3.6; Philipp and Stout, 1975, Section 10.1). Since this random vari-
able depends on the particular triple (myg.5,v) chosen, 1t 1s natural to wonder whether
those conditions do not depend on (myg,s,v) and can be expressed in terms of (X;,).
For example, the hypothesis of | f|-regularity (Nummelin, 1984, Defimtion 5.4) of the
measure |/ |dn (condition (R,) in Proposition 2.1 below) in the central limit theorem
(CLT) in Nummelin (1984, Theorem 7.6) 1s equivalent to the fimiteness of the second
moment of {/(1) for any (mg.s.v); on the other hand 1t 1s also sufficient for the func-
tional CLT (Niemi and Nummelin, 1982, Proposition 3.1 and Theorem 2; Kaplan and
Sil'vestrov, 1979, Theorem 4; see Proposition 2.1 and Remark 2.2 below). Moreover,
Meyn and Tweedie (1993, Section 17.5) contains a useful drift property (a Foster—Lya-
pumov criterion) with an integrability condition on the test function, which implies that
moment condition; see also Glynn and Meyn (1996). For a treatment of integrability
and tail properties formulated in terms of the original chain, see Chen (1999b).

In this paper we introduce a regularity condition, (Rz) in Proposition 2.3, which is
shown to be equivalent to the finiteness of the third moment of ’(1) for any (mq.s.v)
satisfying (1.1) and which leads to an equivalent drift property with integrability, in-
volving tow concatenated test functions; this 1s condition (D3) in Proposition 2.3, We
observe that the finiteness of the third moment of (1) appears as an intermediate
condition in Bolthausen (1982) (it 1s (3.4) there when 1t 1s applied to the split chain;
see Lemma 1.1 and (1.12) below), which deals with the strongly aperiodic case, that
1s, when (1.1) 1s satisfied with mo = 1.

We also give versions for the general state space case of an almost sure invariance
principle due to Philipp and Stout (1975, Theorem 10.1) for the countable state space
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case and to Csaki and Csorgo (1995, Theorem 2.1) for the strongly aperiodic case (the
null recurrent case 18 also considered there ). This theorem requires a finite 240 moment
of {'(1) and gives an approximation of the order of 7'/~ (for its consequences, sce
Philipp and Stout, 1975, Chapter 1). In Proposition 4.2 this 1s obtained under hypotheses
dependent on (myg, s, v), as in Csaki and Csorgo (1995), by using the methods of Philipp
and Stout (1975).

In Corollary 4.3, which deals with ergodic chains of degree 2, the dependence on
(mg.s.v) 18 dropped. The assumptions in (1), (11} are made on the strong mixing coeffi-
cients (o(n)}) of the chain; this uses some results about them obtained from Bolthausen
(1982) and Rio (2000) Which are collected in Section 3. Corollary 3.2 characterizes
the convergence of 3", on), that is, ergodicity of degree 2, and that ol S, | na(n),
by drift conditions. Part (111) of Corollary 4.3 and its consequences (1v) and (v) are
written in similar terms to those of Nummelin (1984, Theorem 7.6 and Corollary 7.3).

We consider as well the second moment of {/(1). Proposition 2.1 shows that its
finiteness is equivalent to the drft condition with integrability (D») introduced there.
Then 1t can be used in the CLT part of Meyn and Tweedie (1993, Theorem 17.5.3)
(and 1ts functional version, by the results quoted above) in place of the CLT moment
condition in Meyn and Tweedie (1993, Section 17.5). Likewise, a condition involving
(D> ) ensures the expression in that theorem of the asymptotic variance as the sum of
the covariances of the functional of the chain in stationary regime; this 1s shown in
Corollary 4.5 to Proposition 4.4, which 1s proved by using Theorem II-3.1 of Chen
(1999a) and results in Nummelin (1984), Meyn and Tweedie (1993) and extends
Proposition 2.2 of de Acosta (1997). This allows to show that for the random walk on
a half line, the fimteness of the fourth moment of the positive part of the increment
variable 1s sufficient for the functional CLT and the mentioned expression for the
limiting variance; this 1s Proposition 5.3.2 under condition (a-11) and 1t appears to be
interesting in view of Proposition 17.6.1 and a result suggested on p. 445 in Meyn and
Tweedie (1993).

In Section 5, after some remarks about the use of (D>) and (D3) when E 1s a subset
of an euclidean space, we deal with three well-known examples and derive almost
sure invariance principles from Corollary 4.3(111) and functional CLTs from Kaplan
and Sil’vestrov (1979), Niemi and Nummelin (1982) and Proposition 2.1.

Now we fix any (mqg.s.v) as in (1.1) and describe the construction (the condition
v(s) >0 1s not needed here) of a version of (X,),>¢ and the aforementioned se-
quence (Y, ),>0 on a common probability space (Nummelin, 1984, proof of Theorem
7.6, see also Meyn and Tweedie, 1993, Section 17.3.1; Levental, 1988; Chen, 1999a).
Let Q=1T],. L and # = @,., F» where (Eo,é%) =(E x {0,1}.6 ® 2({0.1}))
(E,. %) = E”’0 X {0,1} Eme 0 2({0,1})) for n = 1,

Denote X, and Y,. n = 0, the measurable functions on (£2. % ) such that (X,. Yo)
1s the projection onto E(, and (X it « - - - i ),Y )=:1(X,.Y,) is the projection

onto E, if n = 1. Forn > 0 consider the g-algebras # ) = o(V.0 <k <n), #! =
(Y 0<k<n).F, =F W NF) and FT| .= {0, Q} Deﬁne the map 0: Q2 — Q de-
fined by 0((xg. vo). (X1, ¥1 L) = ({ P ),}1 ) (2. V2 )ee ) (X0, Vo) (X111 ). ) € Q,
where p,, 1 E™ — I 1s the projection pp,(X1..... Yo ) = Xy
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Recall that if ;¢ 1s a measure on a measurable space (F,.% ) and f is a nonnega-
tive .#-measurable function on / we have the kernel (Nummelin, 1984) I/(y.B)=
f)s(y). yeF. BeF. and the measure (ul )C) = [u(dy)(y.C)= [. fdu
C e F; the identity kernel 1s [ := I;,. Given a p.m. g on (E™, &™) we define the
pm. fon (Ey, #1) by pp=(h—sop,, ) ® 0+ (i p, ) ® 1.

Let » be a nonnegative, & ® &-measurable function on £ x E such that 0 < < 1 and
for each x € E,r(x, ) 1s a version of the Radon—Nikodym derivative d(s(x)v /dP”’O( )
Consider Qy, Q; defined on £ x ™ by

Oo(x,H)

1 - -
_ / Pix. g )/ R / Pl 1,dlm0){1 — (X, )}1H(Z1 ..... Thts )
1 —s(x). ;

) <1

if s(x
5()5, ,x)(H). if s(x)y= 1,

O1(x, )

| ; ;
[P{.\'.Lln ) / / Pty dty (x by, Mg (oo hy ).
Sx) , ;

if s(x) >0,
(O, s @VNH), if s(x)=0(xekE, Heé™)

Op and (Qp are stochastlc kernels between (E.&) and (E™.&™), that 1s, for
every x €E. Q){x.-) 1s a p.m. on (E™ &™) and for every H € "™, (J/(-.1{) 1s an &-
measurable functlon 1 =0,1. Define the stochastic kernel P between the measurable
spaces (Ey. #y) and (E1, %) by

P((x,y), )= Liop(3)Qo(x, )" + 1{13(0)01(x, )Y (x,y) € Eq.

Given a p.m. 4 on (Eo. %) let P, be the unique p.m. on (£, # ) satisfying

23 (l]; ) = A Ald(xg. \'UH‘ ; P((.\'u. vo)od(xy, v

.....

P
X / et P31 v hd(xa, va )
J 1y

f f .
X o b PUDm 1) Ve 1) A vi)) (1.2)
JF, JF,

for every measurable rectangle [], ., /% such that Ip =FE; if k >n.n =2 (use a the-
orem of Ionescu Tulcea, Neveu, 1965, Proposition V.1.1 and Corollary 2). Note that
if 1162 —[0,00] 1s F-measurable, its F;-expectation satisfies F.[5] = fz«; (d( xU Vo))

X By 0[7] where [, 1s the expectation with respect to Py,

5““0 )
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(x0.v0) € Ey. We have the following Markovian property:

EilnoblF]=Ey, yylnl, Pi-as, n>0 (1.3)

for each p.m. 4 on (Ey. %) and every #-measurable function ;€ — [0.00] (8, 1s
the 1dentify map in £, 8, 1s the nth iterate of #). For any p.m. g on (£, &) define the
pm. w* on (Eg. Fo) by pf =l ) 0 o+ (uls) ® o1, If p1s a pm. on (E.&) (4 18
a p.m. on (Ey.Fg)) and 11 Q2 — [0,00] 1s 4 -measurable then

Bl o by | Fou, VIF, 1=Esx [n]

Lnmq
if n=0 (E; on the left if n > 1), (1.4)
this follows from
By, =117, v #L 1=5(X,m) 1f n=0 (P, on the left if n > 1),

(1.5)

Given any p.m. y on (E.&), another consequence of (1.3) 1s that, with respect to
(2,7 P, (X))o 1s a Markov chain with transition probability kernel P and ini-

tial distribution g (use (1.4) and the fact that [Eg*[lH(A-’l N =1 —s(x)0o(x.H) +
SO H) = [Poedn) [+ - [ Pltmg—1.dtw )t .. tw,) f xEE and He &™),
Then we will also write X, and # ) in place of .U, and .#}, respectively.

Define the stochastic kernel P*: Ey x #y — [0.1] by

Pr((x,y), ) = Loy (OX, )" + Ly (yp', - (v, ) € B, (1.6)

where Q(x.A)=(P™(x.4) —s(x)W(AN/(1 —s(x)), if s(x) <1, oAy 1 s(x)=1 (xEE,
Aed). If 21s ap.m. on (g, Fo) we have that with respect to (2.7 . P). (X Yo dp=o
1s a Markov chamn with mitial distribution 4 and transition probability kernel P* (note
that P((x, v).E,, 1 x Ay=P*((x.v). 4) 1if (x,v)EEy, A€ Fy): 1t 1s positive Harris
recurrent with invariant p.m. ©* (Nummelin, 1978) and the set o := F x {1} is a
recurrent atom: (o) > 0, P*({x.1),-)=v* for all x € £, for every p.m. A on (Ey, Fy)
we have P;[(Xy.Y,)€x 10] = 1 and then the i-as. finite %) -stopping times
T,=T,0):=mf{n 2 0: ¥, =1} (=00 1f the set is empty), T,(i) ;= nf{n > T (i— 1)
V,=1}iz2 1.8, =mf{n =2 1:¥,=1} If uis apm. on (E.&) and ¢ :E — [0,00] 18
é-measurable, by the definitions of y* and P*,

Eur [0 ) {15131 = (P™ — s @ v)Y'@, k=0 (1.7)

The following kernels are considered:

o Wlo*l
Grgsn =D _(P™=s @V, Gp sy =GV where V=T, =Y P" (18)
n=0 m=0

and we will also write G = Gy s v. G= Gy 5.0
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Assume f is a real &-measurable function on £. The sums over the o-blocks are
defined by

(Tl 71+1 ymo—1 To(1)
=Urfiv= Y fX)= Y Ze izl
n=T{i—1)}+1)mo n=T,(1—1)+1
(1.9)
mo—1
where Z, =7,(f)= S fXomgrm) n=1,
m=0

if £ 1s nonnegatlve we have for every pm. i on (£.&) (by (1.7) and (1.4))
g @
Zf(Xnmo ) DRZ,
_n=0 Ln=0
Using (1.3) (with .?q and # 1) and the properties of o and (.\,,,.Y,) we can prove
i1 r,13(n © Og41)] = B[ 1 r,—13 B[]

uGf =k, uGf =E, (1.10)

if £=20i1s ﬁq—measurable. 5§ =0 is #-measurable, g = 0, (1.11)

for every p.m. 4 on (Ey, %) From this we can obtain

Lemma 1.1. Let ) be a p.m. on (Eo, o). With respect to (Q.% .Py), the sequence
({(1) )1 18 1-dependent, smczly szanonary and has the same distribution as the

B~distribution of (X0 o Zn, Son s Th0ys1 Znr - D141 %0 -

Finally, we observe that since Eg.1,[n 0 8] = E,+[5] 1f # = 0 15 #-measurable and
x €E (by (1.3) and the definition of #), we have (with a standard notation)

/"R \ / /T ANV—=T510) \
s (2 ) =2, |V‘/)—ff oy oz (1.12)
\n =0 / n=1 / : n=1 /I

2. A regularity condition and the third moment of block sums

Assume (X;),0 1S as in Section 1. For every (mqg,s,v) as in (1.1) we have the
preceding construction and we are interested in the third moment of {(;) under P,

for any initial distribution u of (X, )~ Given 4 € & we have the stopplng time Sy 1=
inf{n > 1: X, €4} (defined on Q) and the kernel Usux.By:=E [E;_ X)) x€E,

Be&. Let 6T ={4€ 6. n(4) > 0}, First we consider the second moment of {(7)

Proposition 2.1. Let f be a real-valued function in #1(x) (the set of nonnegative
m-integrable functions). Then the following conditions are equwalem
(M>) For some (for every) p.m. A on (Ey.Fo) and for some (for everv) triple
(my.s.v) satisfving (1.1),
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(Ry) For every Ac&", m(fI+Uy)f) < oo,

(D2 There exist an &-measurable function V. E — [0.00], a small set C €& (ie.
(], fil ") satisfies (1.1) for some ff > 0. m{, and v/ (Nummelin, 1984, Definition 2.3)
and a constant b €[0.00) such that

PV+f<V+bleg and n(fV)< oo
We omit the proof, which is similar to that of Proposition 2.3 below.

Remark 2.2. Condition (R») means that the measure n/, 1s f-regular (Nummelin,
1984, Definition 5.4); it is the second moment assumption on | /| in the CLT in
Nummelin (1984, Theorem 7.6) and 1s also sufficient for the functional CLT (Niemi
and Nummelin, 1982, Theorem 2 and Proposition 3.1; Kaplan and Sil’vestrov, 1979,
Theorem 4). Its equivalence with (M>) seems to be known. See Nummelin (1984,
Theorem 7.6) and Niemu and Nummelin (1982, Proposition 3.1) where it 1s shown
that (M») is equivalent to 7( /%) < o0 and the f-regularity of the measure S atdx) f(x)
X P(x,-); the equivalence of this last property with (R,) can be seen using Lemma 2.6
and Nummelin (1984, Proposition 5.13).

Condition (Ry) (or (D)) shows that the finiteness of the expectation in (M>) does
not depend on (my,s,v) and 1s the link with (D;) (we mention that this gives a drift
characterization of Meyn and Tweedie, 1993 (17.31); cf. also Meyn and Tweedie,
1993, Lemma 17.5.2(i1)).

In this section we prove the following version of Proposition 2.1,

Proposition 2.3. Let [ be a real-valued function in ¥ (n). Then the following con-
ditions are equivalent:

(M3) For some (for every) p.m. A on (Ey.Fo) and for some (for everv) triple
(my.s.v) satisfving (1.1),

E,- (Z/) < 0. (2.1)

\n=0
(Gy) For some (for every) triple (my.s.v) satisfying (1.1),
T f G [ ) < OC (2.21)
and
T Gyl [ G50 ) < 2% (2.211)
(R3) For every A€ &,
(ST + U ST+ Ug)f)) < oo (2.3)

(R5) For every A and B in &, n( f(I + Uy fI+Up)f)) < o0,
(D3) There exist &-measurable functions Vi, V2 E — [0,00], small sets C1,Cy in
&1 and constants by.by € [0.00) such that

PR+ /<Ti+ble. mfV) <o,

Plhh+ fI1 €V +ble,, wlfl)<oo.
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For the proof, first we observe that given (mg,s,v) as in (1.1), if Ae &’ and
ge PUm). d+ Uy )¢ < Guosvg +M Tor some constant M =M, , > 0 (see Nummelin,
1984, p. 80, 82).

Lemma 2.4. Let (mo,s.v) satisfy (1.1). If g€ £L(r) then there exist B=B,€&"
and M =M, > 0 such that
-

> 0 Xum)

_n=0

E ) <M forallxeB, ye{0.1}.

Proof. Define on £y, g*(x, y)=g(x), (U,g™ ){x. )/):[E(,C’V,[ZZO‘:1 " (X 1) and note
that [Ex,v,[zyf‘zo 9 X 1 < glx) + (Upg® W, y) for all x€E,ye€{0,1}. The value of
U,g* on o 18 Epe[ E,’ 0 0 (Xymo. ¥)] and this constant must be finite because 7*({Uyg*
=o0}) =0 by Proposition 5.11 of Nummelin (1984), Assume that w({s < 1})> 0;
since g€ £ () and n({s < 1.(Ug*)(-.0)=00})=0 (nl1_ ) {(Upg* )-.0)=00}) =
T*((E x {0 N{U,g* =00})=0), n({g < 0o, (Uyg™)}-,0) < 00}) > 0 and there exists
k=1 such that B := {g <k (Uyg*}-.0) <k} €& and the conclusion holds with
M = max {2k, k + [EV*[E,’: 0 0 Xomer Y1} When ni({s < 1}) =0 there exists k = |
such that B:= {s=1,9 <k} e : in this case, for x € B,P*({x,0),-)=0] =41, and
we have

" Ty " Ty
(Lfocg* )(X-O):[EP*HX,O), ) Zg*(XnmmYn) :[E(x,l) Zg*()(nmmyn)
_n=0 _n=0 .

=Eu1)[17,—019" (X0, Y5)] < glx).

The constant A can be taken as in the other case. O

Lemma 2.5. Let (my.s.v) satisfy (1.1). If fl,f,o_egfi(n) then there exist C =
Crn€d and M =My 4, >0 such that for i=1,2, G < U +Uc)fi+M.

Proof. Let B€ & and M’ > 0 be obtained from Lemma 2.4 for g := max}17/,. 1715},
Define ,,,Sp = mf{n =1 : X,,,, €B} and ,, Up(x.4) := E[>." N )], XEE,

n=1

A€ . By the strong Markov property of (X, Viduso, 1f i =12,

= B,

Ese |Y (P Xm) | < (U 4o Us)V ()
¥ | =0

- T,

> 9
_n=0

+ Ega

v
[E(XmOSEmO ,YmOSE J

(x €E). Then by (1.10), Gf, < U +,, Ug)Vf + M’ and it is sufficient to prove that
there exist Ce€é' and M > 0 such that (I +,, Up)WVf, < U + Uc)f, + M” for
i=12,
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By Proposition 5.12 of Nummelin (1984), there exists £ > 1 such that ¢} =
{GHi <kGf, <k}e&" Arguing as in the proof of Proposition 2.6 of Nummelin
(1984) we can obtain a subset C of C; which 1s small with the same measure v:
PR = Bl oo v for some integer ko = 1 and some f > 0. This implies that (5.10) of
Nummelin (1984) holds for an integer ny = ng(B) = 2my and y = y(B) > 0. Now ar-
gue as in the proof of Lemma 5.3 in Nummelin (1984) with the same #(:)..%, t but
with 5?“ and 27 defined for f1 and f3, respectively, in place of ¢, defined for f,
taking into account that C 1s both f; and f,-regular, since C C C; (Nummelin, 1984,
Proposition 5.13(1)). O

Lemma 2.6. Let (my.s.v) satisfy (1.1). If g€ L(r) then there exists M =M, >0
such that P"Gg < M + 2P"g + 2P" ' Gg for any integer m = 0.

Proof. By Lemma 2.5, and the result quoted before Lemma 2.4, it 1s sufficient to show
that for nonnegative g and C € &*. P™(I + Uc)g < 2P™g + 2P™ (I + Uc)g. Define
% — N*U{oo} by a(xg.x1,...) =min{n = 1. x, € C}. Then for every x € E

. '--'ll'-u.'l;'. ]
P+ Ucg= [ PsdnE, | Y gt
h n=0 |
B N, )+m (X, ) Am
=E [lggaeey D, 0@ +E [lgagey Y. 9(X)
k=m k=m
=J1+..  say.

We have J; < E[g(Xy )+ g(Xpe1 )]=(P"g)x)+(P" g )x) and, since (X Xpat....)=
o(Xpmi1..- )+ 1 if Xm—+1 € C,
a(Xp+1,. Hm+1

X+ Y gl
; k=m+1 =

=(P"g)x)+P" NI+ Ucyy. 0O

We also need the following version of Theorem 14.2.3(1) in Meyn and Tweedie
(1993).

Lemma 2.7. If f.V:E — [0.00] are &-measurable functions, C €& is small and
be[0.00) with PV+ f < V+bl¢ then for every BE & there exists c=cc p g € [0.00)
(depending neither on [ nor on V') such that

I+Ug)f <V +c
Proof of Proposition 2.3. Let A be a p.m. on (£¢, #¢) and (mo,s,v) a triple as in (1.1).
First we show that (we use the notation Z, in £ and in £2)

-
b |

i oy
ZP yi=0y Y Za

n=1

g " 1 : -
E)Y ] = =—E{Z3] 4 —— ;e
MU = — (7] +

1
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3 .
‘l‘;@ﬁr /tl For |}L/
g S . S
+—(—)[E Z()l{Yo 0 D Es Zol{YO:O}ZZn (24)
m=1 n=1

The left-hand side is equal to (Lemma 1.1)

_m=0n=m+1

|y Y 7

=0 n=m+1

T‘ T‘ T L

k 0 m= k+1n m+1

+ 6.

=A; + 342 + 343 + 64y say.

These terms are equal to the corresponding ones of the right-hand side in (2.4). We
prove this for A5 and 44 One has 4; =Y a, with. by conditioming with respect

Lam=0
to #),. VFL | and (1.4),

mmy

iy, = [EI . Zml{Ta>m} Z Zrzl{Ym: =Y,—1=0}
n=m+1 .
— |i| . [E:_' — Z“Z Z/gl{YOZ :kalzo} ,.;} ‘

= [E.,.[fp{‘\‘,..,,,_.,, it =my] = il P — gy, m=0,

where ¢(x) = Es+ [Zo1 (5,0 34—y Z1. by (1.7); Corollary 5.2 of Nummelin (1984)
then shows that 43 = 7(s) 2@ ) = 7(s) " Ene[Zo] (rpm0y 34", Z71. Analogously, 4, =
thio Z;c:k+1 '!].J\n_l Wlth

ZkZ Z /nl{T >n}

n=m+1

i'ij“?..-...... WX it e mm—i-p ], K41 sm,

bin = [Ev” = [Ev* [Ziv( mmo 1{Td>m}]

= E[Zi L7, >
where W(x)= [‘ng* [(Zo11v,—0} Z;f“zl Z,]; then, for each £ = 0

X bion = B [Ze1 {12513 Lm0 (G Xt 1m0 )] = By [V i) 7,20 ]

m=k-+1
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with ' (x) = [Eé*[ZOl{)O o (G )Xy )] Since, by (1.10) and (91.4), (Gy)(X,
=E.«[ Zm:l w(XmmO)|9‘7f§0 F11, we obtaln

m(s)4s = 7)) = Ex[Zo1 {1,201 (G N Xy )]

So(
Zol (x,=0} > Zn
n=1

Sa
= [Ep Zol{yozo}z [Eéﬁémmo

m=1

We also have

So(
Ei[(L(1))*C(2)] = B | Ziliyiny Y 2
ACAN D) > —— e | Z {1071}%/
2 S@( SO(
‘:_?S).[En* Zol{yozo}zlﬂz;__“ /.fn[i}“ |}ZZ,: ‘ (253)
. m=1 n=1
1 =
Ei[C(1)U2)P] = —Er [ Zalgy, Z;
ALE2NT 2 = Ee | Zolg, "n; :
2 SO( o
o (Pl ) Be |Dlaead Z | 250)
m=1 i =
So(
EALL(1)2)(3)] = —[Ew Zol gy, 1}2[&;*0 Zol (-1} D _ Zn (2.5¢)
. n=1 :

In order to verify (2.5a), observe that its left-hand side equals

/T, W Tu(D) L\ D
() 3 al=t|(X2) 3
\m=0 / n=T,+1 | \m=0 n=T,+1
ST Ty N\ Ty ’
v (X3 22) 3 4
. \m=0n=m+1 7 k=T,+1 .
=A4A+42B say.

moreover, 4=y d, with

i ~
y = Eypo | Z5 L7y 5m) Z an{TdJrlénéTd(l)}}

n=nr+1
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>[EV* ,_/_';Jl{]_ ;';l.'}' =} l: '-{-’r.'l{]' Ol w1 JI‘
n=m+1
- §
= E..t [El;;mmo Zol{}():l}zzk 1{Ta>m}
k=1

and B="3"" > | hu, with

Lam=!

>0

B B

Ll (1,20} ‘_5_‘, Zilir k<)
k=n+1

= B [Znl 1,20y Lmemn L{r,—0if mt1 <7 <n—132n 1 {1,213

-~

L Zilgy —oit a1 <j<h—1}
k=n+1

E, H{r m}TéX

e 01 (5=0} {20 m)

T
201{10:1}ZZr ‘

These facts mmply (2.5a). For the proof of (2.5b) one can argue as for 4 above
to obtain E[(X0  Z (X 2, = (1/7(5)Exe[Z01 7= (% 7,521 which is
equal to the right-hand side of (2.5b) (for m = 1, write Z, >, ° .1 Zy X g5, 50} =
Vs, smd Zn L (1,203 Donemst ZnL{v=0ifm<;<n}). FOr (2.5¢) use that 1if 0 <m < n,

X [Eg*

X(n mymg

Zden L (T, 5 m Tor1 < T 1)} E Zil(rm<ke<nion
k=n+1

2 ZyZy (1,2 Y=1,Y,=0if m<j <n,Y,=1} E Ziliy—oitn<y<k}
k=n+1

From (2.4) and (2.5) we have that (2.1) is equvalent to

— .
n(fP)<oo, Mp=€a |ZD Zu| <0, Myi=FEp |Z) 77| <00,
el - (2.6)
E S@( SO(
My = |2)) By (20D Z,|| <.
m=1 n=1

Noting that E,[ S0 Z,|% % vV Z 1= (G /) Xy,) and that E,[3", 22|75 v 7,
S 1(GPW)(X%) + 22?&.2221/11<pr[me ff])()%) for any p.m, y on
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(Eo.#¢), we can show

Wlo*l _ Wlo72 Wlofl i
1-|!| = Z 7l f 2 pm ;{’; ) + Pl Z Z 7l f P [,‘P”"" 'H{.JI,{]!_ (273)
m=0 £=0 m=~/+1
n’lo*l Wlofl
V=" ) a(fP™rFGP" %)
m=0 k=0
mo—2 mo—1 mo—1
+2) > D mSPTEGP P D, (2.7b)

/=0 m=/+1 k=0

mo n’lof]

My=> " a(fP"GP"[fP" "G f]). (2.7¢)

h=1 m=0

Assume that (2.1) holds. Then E,[({(1))*]<oo and oo > E[Z,3" Z,] =
Yol W fP"Gf) (see Nummelin, 1984, pp. 138-139; or argue as above); then Lemma
2.6 proves (2.21) and oy, = 7 fP"Gf) < oo if 0 < m < mp. On the other hand, we
claim that v, 1= 72( fGP™[ fP"[fP*Gf]) < c0if 0 < m < mg—1 and 0 < k < mo—m.
That 4y my—m <00 1f 0 <m <mg — 1 follows from (2.6), (2.7¢c) (consider the term
corresponding to 2 =myg and m), the equality

g+P"Gg=Gg+ 1((%& g:FE — [0,00] &-measurable (2.8)
s

and n( fPM[fP™ "G f]) < oo (by (2.6) and (2.7a)). Hence 1t is sufficient to prove
that 11 < oo for some 0 <m <mp—1 and 0 <k <mp—m — 1 1mplies ypz < 00,
Assume Y, 501 <00, 0<m<my—1, 0<k <my—m—1; by Lemma 2.6 and using
that ogp < oo we only need to show that n( fGP"[fP*f]) < oo and we have two
cases: (N 0<m<my—2and 1 <k <my—m—1;, (1) 0<m<my—1and £=0. In
case (1), m( fP™GP™[ fP* f]) < oo ((2.6) and (2.7b)) and n( fGP™[ fP* f]) < o0 by
(2.8) applied to g=P™[ fP* f] since n( fg) < = f°). In case (i), apply (2.8) with g=
P™ £2 noting that n( fP™GP™ f?) < oo by (2.6), (2.7b) and that 7( fg) < n(f*) < 0.
Having proved our claim, we conclude that (2.1) implies (2.21) and that n( fG[fG f])
= 3" ymo < o, that is (2.2i1), ) )

For the proof that (2.2) implies (2.1) consider, besides oy, iz .= T fP"G(fP"Gf))
for 0 <m < mp, 0 < n < myp. Starting from %) < 0o and fioy < oo one can show that
Oy <00 and  fhy, m, < oo using (2.8) and then that oy <oo and fp, <oo if
0<m<mg 0<n<my using Lemma 2.6, Thus M, < oo, i =1.2.3, in (2.7) and
we obtain (2.1) from its equivalence to (2.6).

Hence (2.1) and (2.2) are equivalent for every (my.s,v) satisfying (1.1). That the
vahdity of (2.2) for some (mg,s,v) as in (1.1) implies (R) and consequently (R3),
follows from the inequality quoted before Lemma 2.4, Conversely, assume (Rz) holds
and that (mg.s,v) 1s any triple satisfying (1.1), We will prove that (2.2) 1s verified.
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First we fix A€ &' and show that ={ /(I + Uy)f) < »¢. Observe that

frove |3 0)

-
=E-[£(X0)] 4+ 3E: | f(X0) Le(X0)Ex, | D F(X) ‘
_n=1
.. ‘
+3E; | f(Xo) 4 (Xo)Ex, | n.\’.,a-‘H
_n=1
-, -5,
+6E; | f(Xo) 4 (X)Ex, | D 1) LelN)Ex, | D £(X) H (2.9)
mi=1 _n=1
For example, the last term comes from ¢(x) = E [S:; i f(Xy )Zn L1 J (X)) x

Yorie TN =200 Yoy @ Where

SN XD D F(X) s, 21

Ayn = [Ex
k=n+1
=Ee [ OGN (gm0 Las GG ) Eg, (X))

Now ¢(x) equals

. Sa Sa
D By | £1Xn) s, mmy LacONn ), {Zm’, ML (X )Ey, {Z f()
m=1 _r=1

and then fA n(dx)e(x) gives the last term in (2.9) by Proposition 5.9 of Nummelin
(1984). Since

=,

R " & Sy
> F NG L (%), ‘Z £ g (X)Ey {Z 1)
=1 k=1

=1

U+ UNST+UN )=

Zf(X)

.n=0

1(Xo)Ex, {Z“ U )Ey,

i)

we obtain

i I Sy
/n(dx)[Ex (Zf(&)) < 13U+ U+ Un) /) < o
4 n=1
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Using Proposition 5.9 of Nummelin (1984), the Markov property and 7( /) < oo

SAI

7 :1f+(4),/')=/47t(dX)[Ex Zf(X )Zf(Xk)

— -
< / 7(dx)E, (Z f(X, ))
A n=({)

s -
< mAd) + / n(dx)E, (Zf(%)) < 00,
o n=0

Since this holds for every 4 € &7. Lemma 2.5 ensures that /1 := fG /€ %! (x), that
1s, (2.21) 1s verified; let C€ & and M > 0 be obtamned from that lemma for f; and
f2:= f; then

W fGLfG/D < af{I+Uc)fi+ M) =nf+Uc)f1)+Mna(f)

and
(I 4+ Uc) f1) S fI+UDNNAT+Uec)f +M}])
=n(fUU+UcNfUT+Uch Y+ Mr(f(I+Uc)f),

which proves (2.211).

That (Ds) mmplies (R%) follows by two applications of Lemma 2.7, It remains to
prove that (R}) implies (Dz). Assume (R}) and take a set C; € &' which is both
f-regular and regular (Nummelin, 1984, Definition 5.4) (consider f := max{lz. /} €
#!(m) in Proposition 5.13(11) of Nummelin (1984). Then C; is small (Meyn and
Tweedie, 1993, proof of Proposition 11.3.8) and 1if }1:E — [0,00] 18 defined by
Jiv) :=E [,__m WX x€e€E(Ty:=mf{n =0 X,ed} if A€&), then PVi + [ <
7+ 1311c1 (Meyn and Tweedle 1993, Theorem 14‘2.3(11)) where by := sup, ¢, [(1 +
Uc ) flix)ye[0,00). Moreover n( f11) < a(f({ + Ug) ) /) < a(Cr) + 13n(fU + Ug,)
(fUI+ Ug)f))y<oo by (Ry) (the second inequality was proved above). Therefore
we can take again C; €61 which 1s f}j-regular and regular, then small. Defining
Ihx) = [EX[Z::;O(fVl WX . xekE, we have Pl + 117 <1, + b ‘-_. where b, =
sup, e, [(I+Ug) f1x) €[0.00). Finally, n( f15) < n( f(U+Uc, W f11)) < n( f U+ Ug,)
(fU+Ug)f)) <oo by (R). O

3. Strong mixing conditions

Denoting by « and f the strong mixing and absolute regularity coefficients, respec-
tively, between o-algebras in (£2,.%.P;) (see, for example, Bradley, 1986 or Rio
2000), for (X, )y=n we have on) = sup, u0(X,.j < k).0(X,.j = k+n)) and f(n
defined similarly, By Bradley (1986, Theorem 4.1), Bolthausen (1982, Lemma 1) and
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Davydov (1973, Proposition 1) we have

oan)=ofa(Xo), X))
=Lsup {/n(dx)|(P”f)(x) (0 f <, @@-measurable}
and
ﬁ(n)=ﬁ(0(Xo),0(Xn))=/ﬂ(dX)IIP”(x,~)— 7. (3.1)

where || - || 1s the total variation norm,

Recall that by Theorem 1 of Athreya and Pantula (1986), a(n) — 0 as n — oo.
The following version of Theorem 2 of Bolthausen (1980) is obtained from Bolthausen
(1982) and Rio (2000); see also Remark 3.3, Here n? can be replaced by the functions
of n in the class Ay considered in Rio (2000, Sections 9.5, 9.6).

Proposition 3.1. Let p = 0, pe R, Assume (my. s.v) satisfies (1.1). The following con-
ditions are equivalent:

(1) Yo7 nPa(n) < oo
(i) > nPp(n) < oc.
(i) En[SF] < oo,
(1v) B 1,[SE77] < 0o for some (for every) x €E.

Proof (Skeich). (111) < (1v) 1s shown by the equality E +[S/]=n(s)>_,= k"B, [, =
k + 11 + n(s)E1,[S]] for any real » =0 (we observe that (5.7) in Nummelin,
1984 has a version for ©¥). (1) = (1v) follows from Lemmas 5 and 3 in Bolthausen
(1982) (or Rio, 2000, Proposition 9.7) applied to (X, )n=1. By the first equality
in (3.1), (1) = (i1) is a consequence of Corollaire 9.1 in Rio (2000) applied to
(Xnmo b= 10 O

Using (1.12), Lemma 1.1, Proposition 2.1 and Proposition 5.16 in Nummelin (1984 ),
we see that when p =0, (1v) 1s equivalent to the ergodicity of degree 2 (Nummelin,
1984, Section 6.4) of (X,),>¢. Hence we obtain (a) of the following result; for (b)
use Proposition 2.3,

Corollary 3.2. (a) (\X;),>0 is ergodic of degree 2 if and only if .. an) < oo, if
and only if Y., B(n) < oo, if and only if (D2) holds for f = 1g.
(b) 3277, nou(n) < oo if and only 1f (D3) holds for /= 1z.

Remark 3.3. That ergodicity of degree 2 implies ZZ; p(n) < oo (in the expression
given by (3.1)) was proved before in Proposition 2.1 of de Acosta (1997) and the
converse in Theorem 11-4.1 of Chen (1999a) through the remarkable equivalence to
the property that the CLT holds for every bounded mean zero functional of the chain,
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Remark 3.4. As a technical aside, we mention the following version (for the general
case mo = 1) of Lemma 5 in Bolthausen (1982) and Lemma 9.4 in Rio (2000). For
any triple (mg.s.v) as in (1.1), define

iim.:..\J W) =

i

sup sup{|Pr+(4 N B) — Pou(A)Po(B): A€ F ), VFI | BeFm),

mz=0

nzl1,

where F5 = (X Yi) (X it Yiur)o ). Then oy s (n) <4da(nmg). n =1, and

UMY S Gy 5,0 [n/mo] —1) f0r n = 2my. We prove the first assertion. Fix n = 1 m =0,
Ade. f::rr v , , and Be€ Z"*"; there exists B’ € # such that B={((X ytnmn Yorin ).
(Xn1+iz+1 }ernJrl ). EB } By 1'4)’ (13) and( ' )’

Er[15 55, V F a1 =Esr [y 00]=E; [Py 1 (8]

= [Eﬁ;mmo [0 o )]+ E 5, L1 (X o )]

with f(x)= (1 —s(x))P0,(B") and f1(x)=s(x)P1,(B"). x€E, By (1.3), P,«(B)=
Ex [r.ﬂ o (B = fo) + 7 f1) Then |u3>n*(A NB) — Po()P(B) <Ip+ Iy

where ;= [ |Ess [ filXmo)] = R(f)|dPrr, i = 1,2,

Using that the [Ijl,*—dlstrlbutlon of (X,) equals the P,-distribution of (X,), we get
(take u =20, and n) for i =12,

= (B, L) = DI AB; = [ ROIE™ £06) = 7o) < 20mo)

by Lemma 1 in Bolthausen (1982),
Finally, we show that the argument in the remark preceding Corollary 3 in Bolthausen
(1980) gives the following extension of Lemma 4 in Bolthausen (1982).

Corollary 3.5. Let f be a real &-measurable function on E. Assume there exist p > 2
and p >2/(p=2) such that [ |f|Pdn < o> and Y.,° nfain) < oco. Then for any triple
(mo.s.v) satisfying (1.1), Ey[(L(|F].1))#1] < oo for every p.m. 4 on (Eo.Fo), where
p=p2+p)p+p+1)e@ p)

Proof. ertmg P = p/p1, ¢ for its conjugate exponent, r— D1 — pi/p.s=—r, we
have r¢' =2+ p, Sp + p1p —1=0 and, lor x € E. [E(xl)[(zn L2 )Pl < AV Bl
with 4 = [E(x,l)[Soc ],

_ / S \PIP T mo—1
B=Ty1y |S ( ) < Egy \ Z ( W
\n=1 /’ _n=1 77:( )

by (1.4) and (5.7) in Nummelin (1984). O
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4. An almost sure invariance principle
From Theorem 7.6 in Nummelin (1984) and its proof we have

Lemma 4.1. Let [ be a real-valued function in Fi(m) (the set of m-integrable func-
tions with n(f) = 0) and let (mo.s.v) be a triple satisfying (1.1). Assume
B [() Zu(1 £ 1)) < . Then the constant

- My

o =a(f) —ﬂ(f2)+—z_(mo—n)ﬂ(fp”f)+—Lﬂ(fP” G f)

e N f %D \ ]
= | & (ZZ(f)\ +2E, (ZZ(;)H > Z(f))
\5=0 \n=0 7/ \n=Tu(0)+1 /

:ﬁua (A DT + 2B, [CCF. 1XCA.20]), 4.1

W being any pm. u on (E.&), is finite and nonnegative and does not depend on
(mg.s.v) nor on .

We give a version of Theorem 10.1 in Philipp and Stout (1975) and Theorem 2.1
in Csaki and Csorgo (1995), in similar terms to those of Csaki and Csorgo (1995) and
Theorem 17.3.6 in Meyn and Tweedie (1993).

Proposition 4.2. Let [ be a real-valued function in Li(x) and (mg,s.v) be a triple
satisfying (1.1).
Assume there exists 6 > 0 such that

Eo[T1192] < o0 (42)

and

244§
E, (Z/;,H/h) < oo, (4.3)

Then for every p.m. u on (E.&) there exist a probability space (&.F'.P'y and
a sequence of 1.v."s (X]),=o together with a continuous standard Brownian motion
{B'(1): t€[0,00)} defined on it such that

(1) the distribution of (X]),=o equals the P,-distribution of ( f(X;))n=o0.
) I gep N =B =0 as t — oo, P'-almost surely, for some € €(0, %)
(the constant implied by O being random),

where ¢° is the constant defined in (4.1),

Proof. Fix a pm. 4 on (Ey,%y). We will show that the conclusion holds in fact for
(/(X,)) and P, i place of (f(X,)) and P,. We follow Philipp and Stout (1975,
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Section 10.2). In place of (10.2.1) in Philipp and Stout (1975) define, for N > 1, as
in Nummelin (1984, proof of Theorem 7.6), i(N)=max{i = 0: (T,(i) + 1)my < N}
if (T,(0)+ 1)mg < N. and 0 otherwise. For N = 1 define Sy = ZZLO G, Sy =

Z((T +1)m0 I)AN f{ \JI‘ g\ = T‘ . \.I"'." f} S” = “:,‘ CECEN Y1 anmn f()(l’l) ihen SN = S:\ +
Sy + 8. We have |SN| as N — 00 Pj-as. because Py[T, <oo] = 1. On
the other hand |S§| < {(|f | ) for all sufficiently large N Pj-a.s. By (4.3),

[‘E/I[C(|f|,1)2+5] < oo which 1mphes, by the Borel-Cantelli lemma (or as in P_hlhpp
and Stout, 1975, Section 10.2), that |Sy| = O(NUI=9C+/2) as N — oo, P;-as.
(i(NY+ 1 < N/mg 1f (T, + 1Yymg < N). Then

ISy — Sy| = ONI=9/EHN2y  ag N 00, Pj-as. (4.4)

By uﬁmg Theorem 4.1 in Phlhpp and Stout (1975), we obtain a probability space
(2,7 .P) and_a sequence of 1.v.’s ({(7));»1 together with a continuous standard Brow-
nian motion {A(1): t £[0,00)} defined on 1t such that ({(i);>1 has the same distribution

as the P;-distribution of ({(i));>; and

=07 ast— oo, Pas (4.5)

> L) - 6Bi)

0<i<t

for some € € (0, ;), where 7 = [Ez[C ]+ 2E,[{(1)(2)]. By proof of Theorem 7.6
in Nummelin (1984), (n(s)/mg)5*> = o~

We need versions of these r.v.’s, even of (N ), defined on a common probability
space. Consider the Polish spaces (with their natural topologies) ' =R>{0,1}>, % =
R>, & = C[0,00) and the p.m.’s = Z (({(F(Xe) 0. (YVydy=0) ({(i))>1) and y =
$P((C-( })i=1.B) on the product spaces 2 x % and % x %, respectively. Let Q' =2 x
W x &, F' be the product g-algebra and denote by ((X/)50.(Y,)y50) ({'(7));»1 and
B” the projections onto Z'. % and &, respectively, Then (Berkes and Philipp, 1979,
Lemma Al; de Acosta 1982, Corollary A.2) there exists a pm, P’ on (£',%”) such
that Z(( X’)k>0 W msoh (D)) =0 and £ (i) )»1,B8”)=7. Now define on
Q' the rv.’s T)(i), z>0. (N), N 21, in terms of (Y)) as T,(i). #{N) arc defined
with respect to (Y,). From (4.4) and (4.5) we get

=0 ) ast—o0. Pl-as.,

Z X' — GB"('([1]))

for some €’ € (0, %) (note that /(N) < N/my and i"(N) — oo P’-as.).

This implies the conclusion with B/(x) := aB8”(¢ 2u). = 0, if we show that
ls) A

"{ 7
|B"(i'([t])) — B" | ”7—! | |=0("*7¢") ast—o0, Pl-as., (4.6)
\ Mo/

for some €” € ( % ([ - 1= mteger part). First, observe that
n(s) ‘ O(N' %2431y a5 the iteger N — oo,  P’-as. (4.7)
mg
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In fact, i(N) — (7(s)/mo)N = o(N¥?>T0y as N — oo, Pj-a.s.; this can be obtained
from T,(i) — i/m(s)=o0(i***9y as i — oo, P;-a.s., which follows from the strong law
of large numbers of Marcinkiewicz—Zygmund applied to the 1-dependent sequence
py=Tu(j) = Tulj = 1) j = 1, since Ex[py "1 = E[(1 + T,)'*"?] < 00 by (4.2) and
Eipr = Ex[1 + T,] = 1/7(s) (use (1.7)).

Moreover, let i €(0,5/(2+6)) and y > 0, to be determined later, and p, ;= n** '/,
Arguing as in proof of Lemma 3.5.3 in Philipp and Stout (1975) (using (4.7)) we can
show that if M,=max ,, >,> ., |B"(I'([11)) = B"((n(s)/mg)t|. c=n(s)/mg, and R(a.b)=
maxX,<s<p|B7(s) — B"(HH| (0 < a < b) then My < R(Cpy—1.¢ pyy2) for all sufficiently
large n, P -as. If we take B <—=14V2, PAR(CPy_1.CPpin) 2 ;.rr', ARy < PYR(O. 1)
= Kn?y <2P'(|B"(1)] = %Kny) where K 1s a constant depending on f and y. The
Borel-Cantelli lemma then gives that M, = O(pi' *""*) as n — oo, P’-a.s., which
proves (4.6) choosing 0 <y < f <8/(2+ ) and f < —1++v2. O

Let f be a real-valued function in Z}(%). We will say that f satisfies the almost
sure invariance principle (ASIP), if the conclusion of Proposition 4.2 is verified. If
the random elements {(1/y/m) Y, ., Ai: 0 <z <1} of the Skorohod space D[0. 1]
converge in distribution as n — oo to {B(c?t): 0 < ¢t < 1} where {B(f): 0 <t <1} 1is
a standard Brownian motion and ¢° is defined by (4.1), we will say that f satisfies
the functional CLT (FCLT),

Now we deal with ergodic chains of degree 2 (recall Corollary 3.2).

Corollary 4.3. A function [ € LN n) satisfies the ASIP if either one of the following
sets of conditions is verified.

(1} There exist p>2 and p>2/(p—2) such that n{|f|?) < oo and ¥~ , nfoun)
< 00,

(it) fis bounded and 3", nlo(n) < oo for some 6 > 0.

(i1) (X, )0 s ergodic of degree 2 and w(| 1T+ UsW| [T+ U f])) < oo for every
AcéT,

(V) (Xy)u=o is ergodic of degree 2 and [ is bounded and special (Nummelin, 1984,
Defimition 5.4),

(V)Y (X))nso is ergodic of degree 2 and f is bounded and vanishes on the complement
of some regular set (Nummelin, 1984, Defimtion 5.4),

Proof. For the proof of (1) use Proposition 3.1 with (1.12) and Corollary 3.5 with
Lemma 1.1, (i1) 1s a consequence of (1) (or use Proposition 3.1).

(111) follows from the fact that ergodicity of degree 2 is equivalent to E, 1,[S2] < oo
for some (for every) x € E (by the results quoted before Corollary 3.2) and Proposition
2.1, (v} and (v) follow from (1u1). [O

By Proposition 2.2 in de Acosta (1997), under the conditions in (1v), (v) above the
constant ¢ in (4.1) verifies (4.8) below. Now we extend that result. In what follows,
f:E — R 1s an &-measurable function and / := f — n(f) when 7( /) < o0,
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Proposition 4.4, Assume (X, )~ is ergodic of degree 2. Let g be a real-valued func-
tion in LL(m) such that

(1) ml, is g-regular,
(1) 7 is g-regular, and
(1) ml, is regular,

Then, if | f| < g. the constant ¢° defined in (4.1) satisfies

&> =Eo[(Xo)] +2 Z Ex[ £ (Xo) F(X5)]

k=1

- AINE 4.8
s 7 (Z“ >> (4.8)

the series being absolutely convergent.

Proof. First we define a version of P"/h for any real &-measurable function /4 such
that |h| < Vg and any n = 0. Since 7(g) < oo there exists N € & with n(N)=0 such
that for each x € N® and each n = 0, (P"(Vg))x) = P"(x, )}(V;) <oo. Then M :=
{y: PYy,N)y>0 for some n=0}eé satisfies n(M) = 0 (Nummelin, 1984,
Proposition 2.4(111)). Given & as above and n = 0 we define A7 (y) = P*(y,-Wh) if
v & N, 0 if yeN, Then, for each n =0, h"” is &-measurable, m(h'"'y = n(h) and
P(x,-Wh)y =P™x, )" for every x € M(O N) if n=m +i. m,i =0 (by dominated
convergence applied to approximating simple functions, noting that P"(x.N)= 0 if
xegM)
Fix f as in the statement. Note that

|ExLf(X0) ()| = Jéﬂ a(dx) £ ()M x) —ﬂ(f)‘

<SP Ml = 44 A0 f) = NI = 7))

Then by using Theorem II-3.1 in Chen (1999a) and an argument in proof of The-
orem 17.53 in Meyn and Tweedie (1993), the result will follow if we show that
Sl /P || erny < oo, It 18 sufficient to prove that

S:J/' A0 f ] [fP0) — a(f)] < 00 (4.9)
n=0
and

Y‘/ ()| f7 %) — 7 £)] < oo

n= 0

When x € M¢, ||[P'(x,-) — 7|, < ||[P"(x.-) — 7|y, < oo (|| - ||, is defined in Nummelin
(1984, Section 6.2) if n=kmy+i, n.m = 0, 0 <7 < my—| (given any real &-measurable
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functlon h such that |h| < g, consider 4'""; on the other hand,

PHx.-WVg)y+ a(Vg) < o0).

We use concepts, notations and results developed in Nummelin (1984, Chapters 4
and 6). Consider the sequences U= {(u,)y>o and, for x € E, a(x)— (an(x))n>0 defined
by ug=1, u, =v(P™y " ls if n > 1, a,(x)=[(P™ —s5xv)s](x ATy =n)n=0;
for any &-measurable function 7 such that |h] < Vg, cons1der a(h) =(0,(h))y>o With

=[WP™ —s@vy*](h), n =0 By (423)in Nummelin (1984) w(P™ = h)=(u%
a(h)),, 1.7 = 1. Note that Z 0 Ol Vg)=7(s)™ In(Vg) < oo (by positive recurrence)
and then that W(P™ yY(Vg)=(u * a(Vg)), < oo for each n = 0,

Using the first-entrance-last-exit decomposition (Nummelin, 1984, (4.24)) it can be

shown that if n=kmo +i, n.m=0.0<i<my— 1, for x €M we have

(x.-) = @|(Vg) <

[F P (x) = a(f)]
S[P™ — 5 s VI + (ax) % i —ul % 6(Vg) )1

+ J/\ (dz) {[(P™ — s @ v) (Vg)] (2) + (Ja(z) k1t —u| k a(Vg))e—1} -
(4.10)

(|| := (|ea] )n=0 for any sequence ¢).

For the convergence of the first series in (4.9) it is sufficient to have the convergence
of the series whose kth term is the n-integral of the right-hand member of (4.10)
multiplied by g(x). This requires the finiteness of the following four quantities: 4; =

(gGg),

i 1
Agzj/n(dx)g(x)(ZH ) Y1 — (Loﬂg}

\
\i /

k
ma '
< ﬁu{rf”[”{”" (/ n(dX}ﬁ(HfE.*[T ])
) .

s \N /< \

/
[e=4

/

where Var(u) =1+ Z;il |, — 1, 1] < oo by Theorem 6.4(1) in Nummelin (1984)
(the hypotheses there are satisfied; for example, the increment sequence of u, by 1= 0,
by = W(P™ — s vy s, n = 1, verifies M; < co—see Nummelin (1984, p. 74)—and
My, = [E(?;‘[Toc] ), A3 = m(g)7( Gg ) and

\ /o
= /n(dx)g(x)/ m(dz= )(y|a(2)*u—u|k) {\vak(Vg))

< "(’") n(g)* Var(u) (/ de)[EéX*[Ta]) '

We are led to similar quantities when the second series in (4.9) 1s considered.
Both sets of bounds show that (4.9) 1s verified if the following five quantities are
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finite: 7(g), n(g(}g), (Gyg), fn(dx )g(x)Es+[T,] and fn(dx)[Eg*[];x]. These conditions
as a whole are equivalent to the hypotheses of the proposition (use Nummelin, 1984,
Proposition 5.13(iv)) and (1.10) with u=9,, f =1g). O

The next result shows that in part of Theorem 17.5.3 in Meyn and Tweedie (1993),
we can replace m(V?) < oo by n(gl) < oo. For its proof use the preceding proposition
and Lemma 2.7.

Corollary 4.5. Let g be a real-valued function in ' (x) that satisfies (D-) and such
that g = 1. Then (X,),=¢ is ergodic of degree 2 and the conclusion of Proposition
4.4 holds.

5. Examples
5.1. Some remarks for the case E C R?

Assume that (X, ), . 1s a Markov chain on (£, &) with transition probability kernel P,
where £ 1s a Borel subset of R? and & 1s its Borel g-algebra. Let ||- || be the Euclidean
norm. Given p = 0. p€R, we define g,: E — [0.00) by g,(x) =1+ |]x]|?, x€E. For
p = 1 consider the property

there exist a constant b €[0,00), a small set C €6

and an &-measurable function V' =FE — [0,00) verifying

allx]|? < Vix) < c||x||?. x € E. for some positive constants ¢1, ¢z,

such that PV 4g, 1 <V 4 blc. (¥p)

For p>0. peR, let (77) be the condition obtained from this by replacing g,
by g,.

For the rest of this subsection we assume that (X}, ), ~¢ 1s Harris ergodic with invariant
probability measure ©. The following results will be used in the examples (the part
mvolving (¥ ,) when £=[0.00) in Sections 5.2 and 5.3; (1/]'9) when E=RY in Section
5.4). We omut the proofs concerning (7 7).

Lemma 5.1.1. (a) If (¥°,) is verified with pe[l.00) then [, |x||? 'n(dx) < oo. If
(+7) is verified with p&(0,00) then [, |lx[|?n(dx) < oc.

(b) If (+7p) is verified for p=1 and 2 (or if (V7)) is verified for some p > 0)
then (X)), =0 is ergodic of degree 2.
Proof. (a) Use Theorem 14.3.7 in Meyn and Tweedie (1993). (b) By (77) and (a),
J Ix]|m(dx) < oo; then (#7) and Theorem 11.3.12(1) in Meyn and Tweedie (1993)

show that 7 1s 1-regular., Use Proposition 5.16(i) in Nummelin (1984). O

In what follows, /:E — R is a Borel measurable function and / := f —7( /) when
o f) < o0,
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Proposition 5.1.2. Let pe[l,00) (p€(0,00)). Assume that (¥, ) (respectively, (7))
is verified for r=p and 2p. Then g, (respeczwely, gp) sansﬁes (Ro). If 1] < agp
(respectively, |f| < ag,) for some a€(0.00), we have that n(|f|) < oo.(Ry) holds
for |f | and, therefore, [ satisfies the FCLT and the constant ¢* in (4.1) verifies
(4.8).

Proof. g, | satisfies the first inequality in (D) with the function V' given by (77,);
(77p) and Lemma 5.1.1(a) show that m(g, (V) < oco. Then g, ;| satisfies (R») by
Proposition 2.1. Assume |f| < ag, 1 for some constant a. If p=1. f is bounded and
if p> La(]f|""P"P~1 < 0o by (#3,) and Lemma 5.1.1(a); moreover | f| < d'g,—
for some a’ which now implies that |/| verifies (R,) and then that f satisfies the
FCLT (see Remark 2.2). Use Corollary 4.5, O

Corollary 5.1.3. (a) Assume d=1. If (¥7,) is verified for r =2 and 4 (or if (V] is
verified for r =1 and 2) and f(x)=x we have that n(|f]) < co. (R2) holds for |f|
and, therefore, [ satisfies the FCLT and the constant ¢ in (4.1) verifies (4.8),

) The same conclusions are valid if (17, is verified for r =1 and 2 (or if (¥7])
is verified for some r > 0) and f is bounded,

Proposition 5.1.4. Let pe[l,00) (pe(O 00)). Assume that (¥7,) is verified for r =
p.p+1. 2p and 3 p (vespectively, (v7]) is verified for r=p. 2p and 3 p). Then g,
(respectively, g,) satisfies (R3). SuppOSe that |f| < agp—1 (respectively, | f| < agp)
for some a€(0,00), We have that n(|f]) < oo and |f| satisfies (Rxz); if moreover
(771) and (v7) are verified (nothing else about (¥7))), then (X,),o is ergodic of
degree 2, [ satisfies the ASIP and the constant 02 m (4.1 ) verifies (4.8).

Proof. By (77,) and (¥%,). gp—1 venfies the first two inequalities in (D3) with by
the constant, C; the small set and ¥} the function, with associated constants c¢j,ca,
given by (¥7,). Let &'.C". )’ and b”.C”. V" analogously obtained from (¥} and
(¥75p), respectively., Then g,y also verifies the third imequality with bs 1= c2(d" +
by, C; = C’"U C”, which is small by Corollary 2.1(iii) in Nummelin (1984) and
Jii= (V" 4+ V"), From (¥7,) we obtain that n(g,_173) < oo. Hence g,_; verifies
(R3) by Proposition 2.3.

Then, as in the proof of Proposition 5.1.2, the assertions about f(z(| /| =171
<oo if p>1) and f follow (by (¥73,)) using Lemma 5.1.1 and Corollary
43(m). O

Corollary 5.1.5. If (+7) is verified for r =1.2,3 ((¥7]) is verified for some r > ()
then (X)), =0 18 ergodic of degree 2 and if f is bounded, we have that (Rs) holds for
|f|. f satisfies that ASIP and the constant 6> in (4.1) verifies (4.8).

Corollary 5.1.6. Assume d=1. If (¥} is verified for r=2,3.4,6 ((¥]) is verified for
r=1,2.3) and f(x)=x we have zhaz (| f]) < oo and | | satisfies R3). If moreover



J D Samur /| Stochastic Processes and their Applicanons 111 (2004) 207235 231

(771) is verified (nothing else about (v)), then (X, )0 is ergodic of degree 2, f
satisfies the ASIP and the constant 02 m (4.1) verifies (4.8),

5.2, Example. é-skeleton of the forward process

Let Zy, Y1, Y5,... be independent real r.v.’s taking its values in £ = [0,00), & be-
ing the class of its Borel subsets, 1y := L(Zy), with Y1, Ya,... 1dentically distributed
and I' := £(Y,). i =1 Define Z, =7y + Z, 1Y, for n > 1. We assume that I’
1s spread-out (Nummehn 1984, Example 2.1(c}), not concentrated at 0, and that
EY; < oo, Fix 6 > 0 such that I'([0.0)) < 1. Then, if X, = V"(nd)) = inf{Z; —
nd: Zy =ndk =0}, n =0, (X, )= 1s a Harris ergodic Markov chain on (E, &) (Meyn
and Tweedie, 1993; Nummelin, 1984) with n(ds)=c¢ 'I'((1.oc))dt. ¢ .= EY; and [0.6)
18 a small set in &,

Lemma 5.2.1. Assume E[(Y1)P] < oo with p = 1. peR. Then (X, ), »0 satisfies (¥ ;).

Proof. For this chain, its transition operator Ps, say, applied to any nonnegative
&-measurable function A, gives that (Psh)x) equals

[ / 1[0’5,”0){ / h(s+ ¢ — (6 —x))F(ds)} Udt) if 0<x < 4.

{ J[0,0) J[§—x—t,00)
Mx —d) if x =4,
where U 18 the renewal measure U(4)=3_" I"*(4), A€ &, Let ¢ := (inf (5 00) (x7 —
(x = )P (1 +x"1)) 1 e(0,00) and b := cU([0,6HE[(Y1)P]+ 14+ 6771 €(0,00) (as

1s well known, U([0.6)) <oo). If V(x) := cx? then (P51 )}x)+ gp—1(x) < Vix) 1f
x =0, and (PsV ) x) < cU(JO.ONE[(1)P]1f 0<x <o O

Proposition 5.2.2.

(a) If any one of the following conditions is verified then (.Y, ),,>0 is ergodic of de-
gree 2, (| f|) < oo. f satisfies the FCLT and the constant ¢* in (4.1) verifies
(4.8):

(a-1) E[(Y7) 2P] < 00 with pe[l 00) and |f| < ag,—1 for some a€[0,00)
(a-11) E[(}1)*] < o0 and f(x)=x.

(b) If any one of the f0110wmg conditions is verified then (X,) ,l>0 is ergodic of
degree 2.7(| f]) < oo. f satisfies the ASIP and the constant ¢* in (4.1) verifies
(4.8):

(b-1) E[(Y; )3P] < oo with pe[l,00) and |f| < ag,— for some a€[0,00)
(b-11) E[(Y;)] < o0 and f is bounded.
(b-111) [E[(Yl) 1< oo and f(x)=ux
(b-1v) E[(Y1)Y] < oo, D, and D_ are two disjoint bounded subsets of E such that

oDy ) =mD_) and [ is defined for teL by f(ty=+1 if teD . —1 if
reD  and O otherwise.

(c) If E[(Y1 )] < o0 and (| f]?) < o0 with p€(4,00) then (X,), o is ergodic of
degree 2 and f satisfies the ASIP.
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Proof. (a-i)—(b-iii) allow to apply the results of Section 5.1 and (b-1v) that of Corol-
lary 4.2(v) (by Nummelin, 1984, Example 5.3(¢)). For (¢), use Corollary 4.3(1) and
Corollary 3.2(b). O

5.3, Example. Random walk on a half line (reflected random walk)

Let Zy, Y7, 7Y5,... be independent real r.v.’s, Z; taking its values in £ = [0,00), &
being the class of its Borel subsets, 'y := £(Zy), with 17, Ys.... identically distributed
and I := £(Y,).i = 1. Define Z,=Zy+> ", ¥, for n > 1. We assume that E|Y;] < oo
and f := EY; < 0. Then, if Wy := Zo. W, .= (W,—1 + Y,)y.n =1, (where x; = x
fx=001fx <0 xeR). (W,),=u 18 a Harris ergodic Markov chain on (£, &); the
unit point mass at 0 1s an irreducibility measure and [0.c] 1s a small set in & for any
c€[0,00) (Meyn and Tweedie, 1993; Nummelin, 1984 ),

Lemma 5.3.1. Assume E[( Y1+)P]:ﬁ0w)spf(ds)<w with p=1, pe R, Then (W, ),>0
satisfies (V7).

Proof. For this chain, its transition operator P, say, applied to any nonnegative
&-measurable function £, gives

(Ph)(x) = ['((—00, —x))h(0) + / h(x + ) (dy).
J[—x,00)

If 7o(x):=x*.x = 0, we have
(PVo)(x) =x#I([ —x,OO))er/[ {(/i (x+ P! déj y}F(dy), x=0

(note that f[fx_oo)(fO] ()2 MO = [y F Sooy - <27 2P TEIY [+
2P LE[(Y,1)P] < 00). Writing I(x) for the last integral, we claim that lim, . (1/x# ")
x I{x)=/. In order to prove this, fix any sequence (x,) in [1,00) which tends to infin-
ity., Then /,(3) i= v, syl [, (1 +{p/x,) P d )y — p, for every y € R and |, ()| <
Li—oo,0)| Y|+ 110,00 {1 +¥)P, ¥y € R, n = 1. The domunated convergence theorem gives our
claim, Hence there exists xo > 0 such that (Plg)x) < x?+ %ﬁ puf ! for every x = xo;
taking ¢ € (0,00) such that —1/c= %,Bp and defimng V(x)=cx?, x = 0, we have some
X1 = x¢ for which (PV )}(x) < V(x)égp,l(x) for every x = x1. Observe that 0 <x <x;

implics (PV)(X) = € fl_y o) + DIPTY) = € (Ji_, g+ fippey ) @2 +
2PE[(Y,")P]). Now 1t suffices to take b=c27(x{ + E[(Y;" )’ 1)+ g,-1(x1) €(0,00). O

As in the preceding example we obtain
Proposition 5.3.2.
(a) If any one of the following conditions is verified then (W,),~o is ergodic

of degree 2, n(|f|) < oc. [ satisfies the FCLT and the constant ¢ in (4.1)
verifies (4.8):



J D Samur/ Stochastic Processes and thewr Applicanions 111 (2004) 207-235 233

(a-1) E[(Y; 2P] < oo with pe[l,00) and |f| <ag,1 for some a€[0,00). (a-ii)
E[( Y+ ¥ < 0o and f(x)=x.
(b) Ifcmy one of the following conditions is verified then (W, ), is ergodic of
degree 2, 7] f]) < oo, f satisfies the ASIP and the constant ¢* in (4.1) verifies
(4.8):
(b-1) E[(Y; 3P] < oo with pe[l,00) and |f| ag,— 1f0r some aE[O o0)
(b-11) E[( Y+ ]< oo and fis bounded. (b-iii) E[(Y,")®] < oo and f(x
(c) If[E[ (Y;")’] < oo and w(| f|7) < oo with pe( 4 00) then ( ,l)n>0 is erg0dzc of
degree 2 and [ satisfies the ASIP.

5.4. Example. Linear state space models

Let Xo, W1.Ws. ... be independent random vectors, X, taking its values in £ =R?, &
being the class of its Borel subsets, W1, 75, ... taking its values in R? and identically
distributed with I' .= Z(W;), i = 1. Let F' be a d xd matrix and G be a d x p matrix.
We assume that [ 1s nonsingular with respect to Lebesgue measure the eigenvalues
of F lie in the open unit disk in C and the (controllability) matrix [/ 'G|- - |FG|G]
has rank d. Then, if X, ;== FX, | + GW,.n = 1.(X;),>0 18 an aperlodlc irreducible
Markov chain on (£,4), and every compact subset of £ 1s small (Glynn and Meyn,
1996; Meyn and Tweedie, 1993).

Lemma 5.4.1. Assume E[||W] 7] = [ |x]|?I'(dx) <oo with p>0. peR. Then
(X dn=o satisfies (77,) with a compact set C.

Proof. As in Meyn and Tweedie (1993, proof of Proposition 12.5.1) consider the
positive definite matrix M =171+ 3,° , (FTYF' (F' 1s the transpose of F) and the

norm |x|a := VT Mx which satisfies |Fx|M alx|ir and [|x]| < |x[a < p||x||. x € E, for
certain positive constants « < 1 and . Define Vo(x) := |x|yy. x € E. First we show that

P(VPy < AV + L for some constants 4 and L,

0<i<l, 0L£L<oo (5.1)

We have P(V)x)=E[V(Fx —|— G < E{E) + TG PL IF 0 < p < 1,
PPy x) < o®( PO( p+[E[|GW1 ] and (5.1) holds with A=w?, L=E[|GW|{,]. Sup-
pose p>1. Put ¢, = 1nax{|.2-” 24 In this case PV ENx) < oP(Fpx? +

P, M) ELGI ] + pe EIGI ] = o (Fo(x)? + p(x). say, with ¢(x)/
Fo(x))? — 0, as ||x]| — oo, Take 6 > 0.6 <1 — «? and then ¢ > 0 such that ¢(x)
< 0(Fp(x))? whenever ||x|| > ¢. Now (5.1) 1s verified with 4 .= «? + ¢ and L :=
sup{@(x): ||x|| <t} Hence (5.1) is proved,
Take now » > 0 large enough such that A+ 7/ < 1 and the compact set (then small)
C . ={0p)? <r}est. If we choose v > 0 with A+ 9y + (L +y)/r <1, then (77,) 1s
verified with V.= (1/p)(Vp)2. b:=L+y. O

Proposition 5.4.2. Assume E[||W1]|?] < oo for some p>0.peR. Then (X,),=o is
Harris ergodic of degree 2.
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Proof. We know that (X, ) 1s irreducible and aperiodic. By Lemma 5.4.1 there exist
a compact set C and a function } on £ such that (PV )}x) — V(x) < —g,(x) <0 for
every x & C; Theorems 9.4.1, 9.2.2 and Proposition 6.3.5 in Meyn and Tweedie (1993)
show that (X,) 1s Harris recurrent, Positiveness follows from (“//“]’9) and Theorem 11.0.1
in Meyn and Tweedie (1993). Now apply Lemma 5.1.1(b). O

The FCLT under (a-ii1) in the following result was proved in Glynn and Meyn
(1996). From Section 5.1 we obtain

Proposition 5.4.3.

(a) If any one of the following conditions is verified then m(|f|) < oo, f satisfies
the FCLT and the constant ¢° in (4.1) verifies (4.8):

(a-1) E[||W1]]*?] < o0 with p€(0,00) and | f] < ag, for some a € (0,00).
(a-11) E[|| 1|71 < o0 for some pe(0,00), and [ is bounded,
(a-1mi) E[||1]]°] < o0 and | f| < a(1 + ||x||) for some a € (0.00).
(b) If any one of the following conditions is verified then m(|f|) < oo, [ satisfies
the ASIP and the constant ¢* in (4.1) verifies (4.8):
(b-1) E[||]*P] < oo with pe(0,00) and |f| < ag, for some a € (0,00).
(b-11) E[||W]|7] < oo for some pe(0.00), and f is bounded.
(b-ui1) E[||W1|*] < o0 and |f| < a(l + ||x||) for some a € (0.00).
(c) If E[||W1]|¥] < oo for some pe(0,00) and 7(|f]7) < o0 with g€ (4,00) then
7 satisfies the ASIP.
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