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Abstract. The definitions of para-Grassmann variables and (/-oscillator algebras are re
called. Some new properties are given. We then introduce appropriate coherent states as 
well as their dual states. This allows us to obtain a formula for the trace of a operator 
expressed as a function of the creation and annihilation operators.

Key words: para-Grassmann variables; (/-oscillator algebra; coherent states

2000 Mathematics Subject Classification: 81R30; 81R50; 17B37

1 Introduction

The study of different, generalisations of Grassmann variables and their applications has at
tracted a great deal of interest in the last decades (see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14] and references therein).

Our approach is motivated by the fact, that generalised Grassmann variables provide a. natural 
framework for the description of particles obeying generalised statistics. We thus focus on the 
(/-oscillator algebra, (introduced in [15, 16]) which is particularly appealing for our purpose for 
two distinct, reasons. First., the nilpotency property of the creation and annihilation operator is 
in direct, connection with the maximal occupation number of the studied particles. Second, for 
the case of multi-particle states, the wave function acquires a. nontrivial phase when two particles 
are interchanged (one may recall that this phase is trivial in the case of bosons and is —1 in the 
case of fermions). One can note also that in [17] the authors have discussed many-body states 
and the algebra, of creation and annihilation operators for particles obeying exclusion statistics.
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This paper is structured as follows. We first review the definition and basic properties 
of the para-Grassmann variables. We then re-examine the q-oscillator algebra and introduce 
appropriate coherent states. New properties of the coherent states are given. Finally we find 
a representation for the trace of any operator, as an integration over para-Grassmann variables. 
We show that the trace can be represented as a para-Grassmann integral of the matrix element 
of the respective operator on the coherent state. This result is the natural generalisation of the 
usual formula for the trace of an operator in the case of bosons or fermions (see for example [18]). 
In the last section, some perspectives are briefly outlined. Let us mention here that this work 
presents some partial results of a future publication [19].

2 One-particle states

2.1 Para-Grassmann variables

Consider the non-commutative variables 0 and 0:
— — 2'”?.

0p+1 = 0, 0p+1 =0, 00 = q200, where q2 = eWT (1)

with p some non-zero integer number. Note that in [3] these variables are referred to as classical 
(p + 1)-variables. Moreover, the name “para-Grassmann” was used also for different other 
definitions, see for example [1], where some different variables, in connection with para-statistics, 
were defined. Finally let us mention that in [9, 10], q-deformed classical variables and different 
techniques were introduced.

We will use here the conventions of [3] for the definitions of a differential and integral calculus 
appropriate for these variables. Thus [3, 20] 

where

q2X - 1
(2)

for any given c-number or operator X and

[nJ! = [!]■■■ [n]

for any given number n. Of special importance is the q-deformed exponential

qe

2.2 q-oscillator algebra

Consider the q-boson oscillator [15, 16]

aaï — qa*a  = q~N, aa*  — q~la*a  = qN, (3)

where q —1 is a. complex number. Note that we deal here with some generalisation of bosons 
and not of fermions.

Following the conventions of [3] we define
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for any c-number or operator X. If q is a unit phase,

m = [at,

where by * we understand complex conjugation. We have

afa = [V],

In particular, if q = CP+1 we can write

AT P+1 • ( , • 77 \N =------  arcsin a,1 a, sin------  I .
7T \ P+V

Occupation number representation: Introducing a. vacuum vector |0) (s.t. a|0) = 0) we define

n)

Using again the commutation relations (3) we get

7V|n) = «1«),

Furthermore

a|n) = a/HT “ 1), atN = Vh + l]ln +

[V, a] = -a, [V, T] = T (4)

27ri
and if <7 = ep+x it can be proved that the creation and annihilation operators are (p + 1)- 
nilpotent, ap+1 = 0 = (a'*') p+1 (see [2]). Moreover, using (4) we have that for any c-number A

(see [3]).
If instead, we assume the nilpotency condition of creation and annihilation operators

ap+1 = 0 = (T)p+1- (5)

without imposing any condition on q (here we require that the exponent p + 1 is the minimal 
exponent of nilpotency, so ar T 0 and (T)’" T 0 if r < P), we get

a(aty = (1 + q2 + ■ ■ ■ + (<72)^1)<7~JV(at)*~ 1 + ql(a^)la.

If g2 T 1 this becomes

I - (n2Va(at)i = 2---- G_L9-w(aty-i + 9i(atya.
1 —

Taking now i = p + 1 one has

a(at)P+x = 1 ~ ' g-^(at)P + gP+1(at)p+1a.

Now, using (5) we derive that (</2)p+1 = 1.
From the discussion above we conclude that for the g-boson oscillator algebra (3) the condi

tions: q2 is a primitive p + 1 root of unity and a and a,t are (p + l)-nilpotent, are equivalent.
Finally, let us mention here that the operators a and a,t are hermitian conjugates and they 

generate a unitary representation [21],
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Consider now the change of variables 

b = <72 a, b = a'qz.

In these new variables the relations (3) reads 

bb-q2bb = l, bb - bb = q2N, 

and thus

(6)

bb=[N], 

where [TV] was defined in (2).
We can also express the occupation number states in terms of b and b as follows

b\n) = >/[??>'- 1>, b\n) = + 1]|™ + !)•

Furthermore

[N,b] = -b, [N,b]=b.

Unlike the operators a and a/ the operators b and b are not hermitian conjugates (1/ / b) so 
in order to define the dual vectors we introduce the operators b^ and b/ the hermitian conjugate 
of b and b respectively. One has (see also [8])

= bq~N, = q~Nb.

Thus, up to a phase, b coincides with and b with b/ We then have

{n\ = (0| (n\b = (n + 11 y/[™ + 1], (n\b = (n - I| a/H-

Before going further let us mention that different g-deformed algebraic structures with similar 
properties exist in the literature, like the para-Grassmann algebra (see [4, 5, 7]) or the quon- 
algebra (see [23, 24] and references therein).

Commutation relations between para-Grassmannians and creation/annihilation operators. 
We complete the set of commutation relations given in equations (I) and (6) with

0b = q2b0, 0b = q~2b0, 0b = q2b0, 0b = q~2b0 (7)

(notice that instead of the set (7), in some papers [13] regular commutation relations are as
sumed).

Thus, the structure we study further on consists of the nilpotent operators b and b obeying 
the g-boson algebra (6), and the para-Grassmann variables 0 and 0 obeying the commutation 

7T2
relations given in equations (I) and (7). We also set the value of q to q = ep+U Notice that, 
because of the commutation relations (7), the vectors |n) do not commute with 0. Indeed, if we 
impose 0|O) = |0)6*  it follows that 0\ri) = q~2n\n)0.

Coherent states. To find a coherent state \0) we write generically

p

|6*)  = ^cra|n).
n=0
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Imposing now

b\0)

we get

which can be written as

^ = C|o).

The action of b over the state 0 is given by

b\0) = q~2Y qn(-n+1)^~0n~1\n).
vlw

Finally one has the scalar product.

-n(n-l)
<«|0) = Gffr«"- (8)

In analogy with the definition of \0) we define a. dual state (0| through the relation

(O\b={0\0.

We have
p

<«i = E
n=0

qn(n-Vi
0n{n\

or, expressed in terms of b,

(0\ = (0\eeb.

Finally, we can compute the scalar product.:

= (9)

Let. us stress that the scalar product. (9) is not the complex conjugate of the scalar product. (8). 
First., the para-Grassmannians 0 and 0 cannot, be complex conjugated to each other (this is 
incompatible with the commutation relations (1)) and second, [??.] is not. a. real number.

Let. us mention here that different, definitions of coherent, states have been proposed for 
different, algebraic structures in some of the references cited. Thus, the definition we give is 
different, by some phase (see equations (8) and (9)) of the one proposed in [3] (also for the 
g-boson oscillator algebra). Another example is given by the definition of [12, 13]; here also the 
analytical difference is given by some phase, but. in [12, 13] the coherent, states are defined for 
a. different, algebraic structure.

The matrix elements of the identity operator can be written as

((9|Id|6»> = (0\0)
2—' I'd'n=0 L J
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We can compute explicitly the matrix element (0|O|0) for any operator O expressed as a function 
of b and b. If in the case of bosons and fermions this matrix element has a compact form, 
independent of the form of O (see for example [18]), this does not hold anymore for para- 
Grassmannians.

Let us now look for a resolution of the identity

id = J MdOfi(d,d)\e){ë\, (io)

p
where ¿t(0, 0) V pn0n0n is a weight factor to be determined (¿tn being some complex number

71 = 0
coefficient). Equation (10) is equivalent to

/r QTiQm
d0d0p(0,0)fn\0}(0\mf = I d0d.0p(0,0)—= , (If)

J

where we have used expressions (8) and (9) for the scalar products (n\0) and (0|m). Notice that 
the g-factors involved in these scalar products cancel each other, also since ¿t(0, 0) only involves powers of 00, it commutes with (n|.

Integrating (11) we get (see [3]) 

so we finally obtain

p fl Yra
p(0, 0) = ^2 ^—^-qn^-1}0n0n 

n fol *
n=0

Hence, we have the following resolution of the identity

Id = / d0d0e~°e\0}{0\

thus allowing us to check the definition of a coherent state (see for example [25]).
Trace of an operator. Let us consider an operator O expressed as a function of b and b. We 

want, to express its trace in the form

TrO I d0d0p(0,0){0\O\0) (12)

with p(0,0) some function to be determined. We propose the following ansat.z (that we will 
justify later)

P(0,c = 52 p^n-
n=0

Equation (12) can be written as

TrO d0d0p(0,0){0\n){n\O\m){m\0)

p /■52 I d,0d,0p(0,0){0\n){m\0)
m,n=0

(13)
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so we have

d0d0f)(0. Op,O\ii)(rti\O) = dnm.

Since only terms with n = m are nonzero, the function p(0, 0) can only have terms with the 
same powers of 0 and 0, in agreement with our ansat.z (13). A straightforward computation 
gives

n - J»+l>+2)
[n]! q

so we get

TrO= f d0d0'^^rq{n+^n+2}enen(e\O\e). (14)

(In the framework of the para-Grassmann algebra mentioned above, some related calculations 
have been performed in [7].)

The importance of formula (14) comes from the fact, that it. is a. direct, generalisation of the 
trace formula, for boson and fermion coherent, states (see for example [18]). Following the same 
line of reasoning it. is more useful to use this formula, rather than the trace expressed in terms of 
occupation states for the computation of some specific quantities (like for example the partition 
function or the occupation number). Furthermore, this would represent, a. direct, generalisation 
of the calculations performed in the case of bosons or fermions.

3 Perspectives

In this paper we have studied para-Grassmann variables and the (/-oscillator boson algebra.. Ap
propriate coherent, states were defined and some new properties studied. Finally we obtained 
a. trace formula, for any operator (3 expressed as a. function of the creation and annihilation opera
tors. This formula, is expressed as an integral over para-Grassmann variables of the coherent-state 
matrix elements of the operator O.

The next, step in the direction of work we propose here is to generalise these results to multi
particle states. Once one has the equivalent, of the trace formula. (14) for multi-particle states, 
one can calculate several physical quantities, like the partition function and occupation number. 
The results can then be compared with the behaviour of particles obeying generalised statistics. 
We will report, on these issues in a. future paper [19].
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