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A POSTERIORI ERROR ESTIMATOR
FOR A MIXED FINITE ELEMENT METHOD

FOR REISSNER-MINDLIN PLATE

ELSA LIBERMAN

ABSTRACT. We present an a posteriori error estimator for a mixed finite ele
ment method for the Reissner-Mindlin plate model. The finite element method 
we deal with, was analyzed by Duran and Liberman in 1992 and can also be 
seen as a particular example of the general family analyzed by Brezzi, Fortin, 
and Stenberg in 1991. The estimator is based on the evaluation of the residual 
of the finite element solution. We show that the estimator yields local lower 
and global upper bounds of the error in the numerical solution in a natural 
norm for the problem, which includes the H1 norms of the terms correspond
ing to the deflection and the rotation and a dual norm for the shearing force. 
The estimates are valid uniformly with respect to the plate thickness.

1. Introduction

In the implementation of numerical methods for approximation of partial dif
ferential equations, the definition of a posteriori error estimators is the basic tool 
for adaptive mesh-refinement techniques, necessary when we are in the presence of 
local singularities of the solution.

In this paper we present an a posteriori error estimator for the finite element 
approximation of the Reissner-Mindlin plate model, which describes the displace
ment of a plate with moderate thickness subject to a transverse load. The definition 
of the estimator is based on the evaluation of the residual of the finite element so
lution.

Several a posteriori error estimators have been defined for different linear and 
nonlinear elliptic problems by using the residual equations (see for example [3, 4, 
5, 14, 19, 20])

For a fixed plate thickness the Reissner Mindlin plate model is a linear elliptic 
problem. But for small thickness the ellipticity constant deteriorates and makes the 
treatment of the problem difficult. In particular, in the definition of an estimator the 
main difficulty is the attainment of equivalence with an error norm independently 
of the plate thickness. To the author’s knowledge, an estimator with this property 
has not yet been defined.

For the numerical solution of the Reissner-Mindlin equations, there are several 
mixed finite element methods which present good approximations of the solutions 
[2, 6, 7, 9, 10, 11, 15, 17] and are free from locking [8, 11, 12, 15, 17].
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1384 ELSA LIBERMAN

We present an a posteriori error estimator for a method analyzed in [15] which 
can also be seen as a particular example of the general family analyzed in [12].

We define the error estimator for the H1 norm of the deflection and the rotation, 
and for a sum of norms for the shear force, which includes the Ho (rot)' norm, and 
show that it yields local lower and global upper bounds of the error in the numerical 
solution, valid uniformly with respect to the plate thickness. It must be remarked 
that even though these norms are natural for the problem (in particular the inf - sup 
condition holds for the Ho(roi)' norm [11] and, when t —> 0, Ho(roi)' becomes the 
appropriate space for the shear), convergence for the shear force in this dual norm 
has not been proved, as far as we know. The results hold for any polygonal domain 
and, therefore, our estimator can be used for adaptive refinement when corner 
singularities arise.

The rest of the paper is organized as follows. In Section 2 we introduce the 
Reissner-Mindlin model and we analyze its approximation with the finite element 
method. We also give an additional a priori estimate related with the L2 norm 
of the error in the rotor of the shear force. For the sake of clarity we divide the 
definition and analysis of the estimator in two sections. In Section 3 we define a 
weak norm for the error in the rotation and in the shear force and obtain estimates 
for this norm. Finally in Section 4, we define the estimator for the whole error and 
show the corresponding relations between the estimator and the natural error norm 
using the results of the previous section.

2. The Reissner-Mindlin equations
AND MIXED FINITE ELEMENT APPROXIMATION

We use boldface type to denote vector quantities.
Let Q x [—t/2,t/2] be the region occupied by the undeformed elastic plate of 

thickness 0 < t < 1, where Q C R2 is a simply connected polygon.
Let us denote by w and (3 the transverse displacement of the midsection of the 

plate and the rotation of fibers normal to it, respectively. Then, assuming for 
simplicity that the plate is clamped along the boundary of Q, the Reissner-Mindlin 
problem is:

Find w G Hj(Q) and ¡3 G Hj(Q) such that

(2-1)
t3a(/3, 77) + At(Vw - /3, V< - 77) = (g, Q V77 & Hj(Q), G Wj(Q),

where ( , ) denotes the scalar product in either L2(Q) or L2(Q), and a(J3,Tj) is a 
coercive and continuous bilinear form defined by

a(A»)= OE(/3); EM,

where 5(77) is the symmetric part of the gradient of 77, D is defined by

PT = [(1 -z/)T + utr(T)I],

E is the Young modulus, u is the Poisson ratio, A = Ek/2(1 + u), where k is the 
shear correction factor, and g represents the transverse load.

To analyze the problem for small values of t, g is scaled in the form g = t3f so 
that the solution tends to a nonzero limit as t tends to zero [11]. Taking, for the 
sake of simplicity, A = 1 and introducing

(2.2) 7 =r2(\/w - (3),
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equation (2.1) can be written equivalently as

(2-3)
a(/3, 7)) + (7, V< - 77) = (/, 0 V77 & Hj(Q), & W»,

i2(7, X) - (Vw - /3, x) = 0 VxgL2(Q),

which in the limit t —> 0 takes the form of a saddle point problem.
Let

Ho(rot, Q) = {x e L2(Q) : rot(x) £ L2(Q) and x-T = 0 on dLl},

where <9Q denotes the boundary of Q and t is the unit tangent to the boundary, 
with the norm

llxllH0(™t,Q) := llxllo + llroixllo-

The following proposition, which is proved in [11], gives a decomposition for any 
X & Ho (rot, Q), showing also that 7 e Ho (rot, Q).

Proposition 2.1. Let B be defined on Hj(Q) x Hj(Q) by

The mapping B is surjective onto the space Ho(rot, Q), and for every xcHo(rot, Q) 
there exists (rp C) G Hq(Q) x JfJ(Q) such that

x = ^C-,n

and

HVCIlo + IK < C{||x||o + llrotxllo}

with C independent of X- □

As we stated in the Introduction, we will also consider the space

r = H0(rot, Q)' = {x e H_1(H)/dwx & // 1(S2)}

with the norm

llxllr = llxllli + PKllli,

which is equivalent to the dual norm.

Remark 2.1. From this and Proposition 2.1, it immediately follows that the follow
ing inf-sup condition holds:

(2.4)
sup

(77,C)€Hi(Q) xFj(Q)
(K) (0,0)

(v< - v, x) 
kill + IKIli

> C’llxllr vxer.

We describe now the finite element method for the Reissner-Mindlin model that 
we will consider.
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Let {7)l}0<Zl<1 be a regular family of triangulations of Q, where h stands for 
the maximum diameter of the elements in the triangulation Th- In order to define 
the mixed finite element approximation, we have to give finite element spaces for 
the rotations, the transverse displacement, and the shear strain. Also we have to 
define an operator, usually some kind of interpolation, in order to relax the discrete 
equation corresponding to (2.2).

We use the standard notation Pm for the space of polynomials of degree less 
than or equal to m and set Pm = Pm x Pm.

Given an element T, let {A}1<i<3 be its barycentric coordinates and r» be the 
tangential vector to the edge dp where A» = 0. We define,

</>i = A2A3T1, </>2 = A3A1T 2 and (f>3 = A1A2T 3,

then the finite element spaces for the method, H/, C HJ(Q) for the rotations, 
Wh C Hj(Q) for the transverse displacement, and T/, C L2(Q) for the shear strain, 
are defined as follows:

H/ = {ijh G H¿(Q):%|t E Pi © spanai, <£2, <£3 L VT G Th},

Wh = {Ch G Wj(Q) : Ch\T eP^T G Th},

and rft is a rotation of the lowest order Raviart-Thomas space [11],

P/i = {% H0(rot, Q) : T]h\T G Po ® (x2, -xpPo, V T G Th}.

In particular, the inclusion

(2.5) PWh C T/,

holds.
The interpolation operator for this method II : Ho(roi, Q)ClH1 —> T/, is defined 

by IlTylr = r//- where is such that

(2.6) i rnI.Ti= I rj.Ti, ¿ = 1,2,3,
JdTi JdTi

and which satisfies (see [11] for example)

(2.7) ||i) — ni)||o < C’/z||i)||i Vi) G Hq(Q).

Therefore the approximate solution (flh,Wh,'yh) G H/, x Wh x T/, is defined by

(2-8)
a(.0h,')lh) + (Ph, - Tlrjh) = (pQh), 7% G H/,, G Wh,

- II/3J.

Hereafter, C denotes a constant which could depend on the minimum angle of 
the triangulation but is independent of the thickness t and the meshsize h, and the 
symbol ||.|| denotes a norm over the region Q, if no explicit reference to the region 
is made.
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For the error in the approximation of the Reissner-Mindlin model with this 
method, the following a priori estimates are known [12], [15]:

(2-9)
II/3-/3/JI1 +i|l7-7Jo + IIW-M1 < C/i{||/3||2 hill + Ihllo} 

and also [12],

(2-10) H7-7.IL1 < Ch{\\^\2 +t||7||1 + ||7||0}

and when Q is a convex polygon [2],

(2.H) Il/3||2+thlli + ll7llo< CII/llo-

Taking into account the definition of the norm in Ho (rot, Q), we add to this a 
priori estimates the following one related with ||rot(7 — 7a.) ||o-

Lemma 2.1. For the method defined previously it holds that 

(2-12) hM(7 -7/Jllo < C/i{||/3||2 + t||7||i + ||7||0}.

Proof. From the definition of 7 and p'h it follows that

t2rot(7 - 7J = -rot(j3 - n/3J.

3. Preliminary error estimates

According to the approximation results in the previous section and our remarks 
in the Introduction, our aim is to give an estimator for the following sum of errors:

IIVw - Vw^llo + H/3 - /3Ji + t2||rot(7 - 7ft.)II0 + ¿117 - 7ft.II0 + h - 7ft.IIr-

However, for the sake of clarity, we have divided the definition and analysis of the 
estimator in two sections. In this section we give, as a preliminary result, estimates 
for the errors in the rotation and the shear force in a weak norm.

Then

(2-13)
t2||rot(7 - 7a.)II0 < IM(/3 - H/3)||o + ||rot(n/3 - n/3J||0.

It is known [11] that for r/ e Ho(roi, Q),

(2.14) rot(n-z)) = Prot(rf),

where P denotes the L2 projection operator into Qh := rot(I\) and 

(2-15) ||wot(77 — n77)||0 < C'/z||77||2.

From (2.13), (2.14) and (2.15) we obtain

(2-16) t2||rot(7 — 7a.)IIo < + II/3 “ Z3ft.Hi},

then (2.12) follows from the a priori estimates in (2.9). □
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We define the weak norm for the error in ¡3 and 7, as the dual norm in Hg(Q) x 
JfJ(Q) of the operator a,(j3 — ¡3h,77) + (7 — 7^., VC — 77); that is,

(3.1)
ll(/3-/3/l)47- 7/JII*,n

sup

(»?k) k (0,0)

l«(/3 - ßh, n) + (7 - 7fe, V< - 77)I
kill + IICII1

Let k be a fixed integer, k > 1. The estimator for this error norm is defined for 
any T G Th as 

(3-2)

£t = E
dTiCdT

2
0,dTillhTIL] j H

where Pk is the L2 projection onto Ph, \T\ and \dp\ are the area of T and the 
length of dp, 11, is the normal vector to the edge dp, and [.] j denote the jump 
of the corresponding function across dp.

For each T G p let

uT = {\^TeTh : Tnf y 0}.

The following theorem shows the equivalence between the error norm and the 
estimator.

Theorem 3.1. There exist two constants C\ and C2, depending on the minimum 
angle of the mesh, such that

(3.3) ||(/3-/3J,(7-7j||t <cJ ^[4+||/_Ffc/lb,rk|]l

lrerfc J

and

(3-4)
eT<C’2{||(/3-/3J,(7-7j||tWT+ m1/2H/-Pfc/llo,f}-

(T try

Proof From (2.3) we have

(3-5)
«(/3 - 0h, n) + (7 - 7fe, V< - 77) = (/, 0 - a(./3h, n) - (Ph, V< - 77).

For <’ G Hj(Q) or Hq(Q) we denote by rp G Hj(Q) or Hq(Q), respectively, a 
piecewise linear average interpolant, as defined in [13, 18], satisfying

(3-6) H-kilo <^110111

and

(3-7) Hkzlli < C'Hklli-
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TeTh

We are going now to bound the term (7^, — Hr/j).
It is known ([16], Lemma 3.3) that for as defined above, there exists <j> G (Q) 

such that </>\t G Vq, and
Vo = ih - rbjj.

In [16] it is also proved that <j> vanishes at all the nodes of the triangulation. Hence, 
an usual scaling argument on each element T yields

Iloilo,ar. < C'|ari|1/2||V^||o,T.

Then 

(3-9)
(.Ih, Vi ~nVi) = (Th, V</>) = 2 E /

TeTh Z dTiCdTJdTi

- E 7 E II hrni] jllo,dTi IIPIIo,dTi 
TeTh Z dTtCdT

E
dTiCdT

II hrw] jllo.ar. |9Ti|1/2

I £ ||[7/JiAllo,arJdTi||T| 

dTtCdT

livello, T

where we have used (2.7) and (3.7) to obtain the last inequality.
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This shows that the last inner product in (3.8) can be bounded by the previous 
terms of the same expression.

From (3.8) and (3.9) we obtain

(3.10)

TETh

from which it follows (3.3).

In order to prove inequality (3.4) we need the following lemma.

Lemma 3.1. Let T G Ti. Given q G L2(T), p G L2(<9T), there exists fjT G Pfc+3 
such that

Vr & Pfc(T)

(3.11) Vs & Pfc+i(dT)

= 0 at the vertices of T,

and

(3.12) ||17tI|o,t < C’iHqllo.T + 7^ l5Ti|1/2||p||o,aTj.
VTiEdT

In particular ifp = 0. then f]T\dT = 0.

Proof The proof follows with arguments similar to those given in [1]. □

G

In particular, the previous result is also valid for scalar functions:

Lemma 3.2. Let T G Th. Given q G L2(T), p 
such that

L2(<9T), there exists G Pk+3

G Pk(Tf

G(3.13) Pk+ion

Ct = 0 at the vertices of T,

and

(3.14) ||Cr||o,T < C’{||g||o,T + |dîi|1/2||p||o,âTj.
dTtCdT

In particular ifp = 0, then Ct|st = 0. □

Now for fixed T G Th, we take

q = Pkf\T\ePk{Tf
(3.15)

p\dT, = i |9Ti I hr Ili] J, p G Pi(dT), 
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and we take the corresponding Qt defined in Lemma 3.2, making appropriate mod
ifications when T intercepts 9Q; whereas for each T G o>r, T T, C|ÿ is defined 
by the same lemma taking now

7 = 0,
(3.16) _ ( 0 if 97) n 97 = 0,

P 'iT' [ the same as in (3.15) if 97) Cl 97 0.

Let <) be defined such that <)|t = Qr if T G uj? and 0 is outside of uj?. From its 
definition we see that Q G 77j(Q), and

(3-17)

II^/IIo,t|T| + j E II Ml IIMTJII9T1I
dTtCdT

= E <( ’̂ v0r + (.PkL Qt} = hh - vcu + E (pfc/ - ôr-

For the same fixed T we proceed in the same way and determine f]T applying
(3.11) for

q = - (divPH(/3J + 7J|7| GPi(T),
(3.18)

p|aTi = p G Pi(9T),

and f]? for T G «y, T T, making the corresponding modifications as in (3.16).
Let f] G Hq(Q) be defined as î)|t = f)T if T G t,i and 0 are outside of cpy. Then

(3.19)

||div7»H(/3J+7J^T|7| + j E II I^G^W j\\o,dT,\dTi\

dTtCdT

= E ^Phi VÎT - ^hi VÙt} = a(Ph - Pi tihr + <Cih - 7, -Vi'hT ■
T (Eojt

Adding (3.17) and (3.19) we obtain

(3.20)

IICII 1,wt A ||f)|| 1,WT

< c i H/3 - Phi + (7 - 7/» VÇ - f)kr I + ~ K Ôt 1
[ IKIIl^r + I|1)I|1,wt IKIIl^r + I|1)I|1,wt /

iipfl n i ( in ! \\Pkf ~ f\\o,f IKIIo.f 1< C < ||(/3 — /3h\ (7 - 7/l)||*,WT + —-7-----------—2--------- --  ) .I IICIIi^T + inlier J

IKIli,^ + \\f}\\ 
\\pkf-f\\0,fA,f 

IKII l,wy “1“ 11^)11 1,wt

Replacing (3.15) in (3.14) and (3.18) in (3.12), we get the bound 

IKIIo,t + Iloilo,t<C’4|1/2pt for Tg^, 

and by standard scaling arguments we also get

IKII 1,WT + ll^lll,WT < CST-
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Using these bounds in (3.20), it follows that

£t< C{||(/3-/3J,(7-7J||w+ m1/2H^7-/llo,f}>
T

so the theorem is proved. □

4. Error estimator

Now we are able to define an estimator for the whole error. For any T G Th we 
define it as

(4-1) W = {4 + II Ph ~ HA, || It + \\rot(.i3h - H/3J || 2jT}V2.

Before coming to the main result of equivalence we need the following proposition.

Proposition 4.1. There exists a constant C such that

(4.2)
|| Vw - Vw||0 + ||/3 - ¡3h||i + t||7 - -ih||o + t2||rot(7 - 7a.)IIo

<c[ Ei^4i/-pfc/ii4iT4 • 

l/'L. J

Proof. Consider the expression

u oa l«(/3 ~ Ph, + (7 ~ 7/» VC ~ ?7)l
IMli + IICIIi

If we replace in (4.3) f = w — Wh and r/ = ¡3 — ¡3h, we obtain

l«(/3 ~Ph,P~ Ph) + II7 ~ 7a.IIo + (7 ~ 7h, Ph ~ n/3J|
(4.4) ||/3 - Z3a.Hi + II Vw - Vw^llo

< ll(/3 ~Ph), (7 —7a.)II*-

Taking into account that ¡3h — n/3ft G Ho (rot, Q), and according to Proposition 
2.1, there exist <f> G Hj(Q) and ip G Hj(Q) such that

(4-5) ¡3h - H/3^ = VV> -

with

(4.6) ||VV’Ho + 14111 < CiH/3^ - n/3ft||0 + \\rot(j3h ~ ^Ph)Ho}-

Replacing again in (4.3) f = if and r/ = <j>, and using (4.6) we get

(4-7)
HP ~ Ph, </>) + (7 ~ 7/i.; Ph ~ H/3JI < |a(/3 -/3fe, <?!>) +(7-7fe,VV>-<?!>)|

H/3^ - n/3ft||0 + \\rot(j3h - n/3J||o " II W||o + |4||i

< C||(/3-/3J,(7-7j||t.
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Then
(4-8) 
1(7-7/^ -n/3j |

<C{||(/3-/3J,(7-7j||4||/3Zl-n/3Zl||o+||M/3Zl-n/3J||o] + ||/3-/3Zl||1||^||1}

< C{||(/3 - /3J, (7 - 7ft.) II * III/3ft. - IW|o + \\rot^h - II/3J||0]
+ [||/3fe - II/3Jo + \\rot(J3h - H/3J||o] ||/3 - || J

< C{[|| (/3 - /3J, (7 - 7^)11* + H/3^ - n/3Jo + \\rot(Ph - II/3J||0]

x [11/3 - /3J1 + IIVw - Vw^llo + H/3^ - n/3fe||0 + \\rot(Ph - II/3J||0]}, 

where we have used continuity of a(,) to obtain the first inequality, and (4.6) to 
bound ||</>||i in the second inequality.

Returning to (4.4) we can see that 

(4-9)
«(/3 - Ph,P~ Ph) + i2Il7 - 7ft.IIo

< ll(/3 - /3J, (7 -7JII4H/3 - /3JI! + ||Vw - VW||0

+ WPh - n/3Jo + \\rot{(5h - n/3J||o}

+ 1(7 -^Ph - n/3j|,

so, using the coerciveness of a(,) and (4.8) we also have 

(4-10)
\\p-Ph\\i+t2\h-7hr0

< C{||(/3 - /3h), (y - 7ft.)II* + IIPh ~ n/3Jo + \\rot(/3h - II/3Jo}

x{||/3-/3J|i + ||Vw-Vw^HoT H/3^ - n/3J0 + \\rot(Ph - n/3J||0}.

From the definition of 7 and we have the following identity:

(4.11) Vw - Vwh =t2(^i - yh) + (/3 - ¡3h) + (J3h - II/3J,

from which it follows that
(4-12)

||Vw - Vw^llo < t||7 - 7ft.II0 + H/3 - /3fe||r + ||/3fe - n/3J0.

Adding ||/3ft — n/S^Hgd-1| rot(j3h — II/3fe)||o to both members in (4.10) and making 
use of (4.12) we arrive at

(4-13)
IIPh ~ n/3J|2 + \\rot(j3h - H/3J ||I + H/3 - Ml + P h -

< C{|| (/3 - /3h), (y - 7ft.)II* + ll/3ft. - IWIo + \\rot(/3h - II/3J||0}

x<11/3^ - n/3^||o + \\rot(j3h - II/3J||0 + ||/3 - /3Ji +11|7 - 7ft.Ilo}, 

from which we obtain
(4-14)

WPh - n/3J0 + \\rot(j3h - n/3J||o + ||/3 -/3J|i +t||7 -7J0

< C{\\<j3-Ph), (7 “7/011* + ll/3ft. -II/3Jo + \\rot(/3h - n/3J||0}.
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Also from (4.11) we have

(4-15) i2roi(7 - 7J = -rot(/3 - (3h) - rot(f3h - H/3hf

from which

(4.16) i2||roi(7 - 7J||o < ||/3 - /3J! + \\rot<J3h - n/3fe)||0.

From (4.12) and (4.16) we see that

(4-17)
t2||rot(7 - 7ft.)IIo + || Vw - Vw^llo + ||/3 - ¡3h|| ! + t||7 - 7J0

< c'{ll/3ft. - n/3J0 + \\rot<J3h - n/3J||o + ||/3 - ¡3^ + t||7 - 7ft.Ho}-

From this inequality and (4.14) we get

(4.18)
t2||rot(7 - 7ft.)II0 + IIVw - Vw^llo + ||/3 - ¿3^||r + tH7 - 7J0

< C{||(/3 —/3fe), (7 — 7/i)ll* + ll/3ft. -n/3Jo + \\rot<J3h - n/3J||0}.

Finally (4.2) follows easily from (4.18), using (3.3) and the definition of r/r- □ 

In the following theorem we obtain the main result of equivalence between the 
estimator and the sum of errors.

Theorem 4.1. There exist two constants C\ and C2 depending on the minimum 
angle of the mesh such that

(4.19)
||Vw - VuyJlo + 11/3 - /3J|i + t2||rot(7 - 7zi)||0 +11|7 - 7ft.II0 + Ü7 - 'thIIr

<^i| E + 11/- Pkf\\20,T\T\]I

l/'L, J

and
(4.20)

r]T < Gill/S -/3Zi)||i,Wt + ||Vw - VwHo,^ +^11^(7-7^)110,^

+ i||7-7jo,^+t||7-7/J|i>T+ £ m1/2||/-Pfc/llo,r}-

Proof For the proof of the first inequality, taking into account Proposition 4.1, we 
have to bound only ||7 — 7ft.||r • F°r fixed r/

INIIi + kill £ ll('3 “ (7 “ 7,JI1-

From this,

(4.21) h - 7ft.II-1 < C{ 11/3 - /3JI! + IK/3 - /3J, (7 - 7JH*}.

Also

(4-22) ||d+(7 — 7ft.)ll-i < IK/3 -Phf (7 -7^)11*-

Combining (4.21), (4.22), and the results in Proposition 4.1 and Theorem 3.1, we 
arrive at (4.19).
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To obtain (4.20), we consider the bound for -■/ from Theorem 3.f and the fol
lowing inequality:

(4.23)
ll(/3 - Phh (7 -7/JIMt < II/3 - i^hWi^T + 117-7^11-1,,^ + Pw(7 - 7/011-1,^T-

On the other hand we obtain from (4.11)

(4.24)
\\0h ~ !WIo,t < ||Vw - Vw||0,t+ ||/3 +

and from (4.15)

(4.25) \\rot(j3h -n/3J||0,T < t21|rot(7 - 7^)||0,t + ||/3 - ¡3h||ljT.

The proof is completed by adding (3.4), (4.24) and (4.25) and making use of (4.23).
□

Acknowledgment

I want to thank Dr. M. Ainsworth, Dr. R. Duran and Dr. R. Rodriguez for 
their helpful comments.

References

[1] D. N. ARNOLD and F. Brezzi, Mixed and non conforming finite element methods imple
mentation, postprocessing and error estimates, R.A.I.R.O., Model. Math. Anal. Numer. 19, 
1985, pp. 7-32. MR 87g:65126

[2] D. N. ARNOLD and R. S. Falk, A uniformly accurate finite element method for the Reissner- 
Mindlin plate, SIAM J. Numer. Anal. 26 (1989), 1276-1290. MR 91c:65068

[3] I. BABUSKA AND A. MILLER, A feedback finite element method with a posteriori error es
timation. I. The finite element method and some basic properties of the a posteriori error 
estimator, Comp. Meth. Appl. Meeh. Eng. 61 (1987), 1-40. MR 88d:73036

[4] I. BABUSKA AND W. C. RHEINBOLDT, A posteriori error estimators in the finite element 
method, Int. J. Numer. Methods Eng. 12 (1978), 1587-1615.

[5] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differ
ential equations, Math. Comp. 44, (1985), 283-301. MR 86g:65207

[6] K. J. BATHE and F. Brezzi, On the convergence of a four-node plate bending element 
based on Mindlin-Reissner plate theory and a mixed interpolation, MAFELAP V (J. R. 
Witheman, ed.), Academic Press, London, 1985, pp. 491-503. MR 87f:65125

[7] K. J. BATHE and F. Brezzi, A simplified analysis of two plate bending elements—the 
MITCf and MITC9 elements, NUMETA 87 (G. N. Pande and J. Middleton, eds.), Numer
ical Techniques for Engineering Analysis and Design, vol. 1, Martinus Nijhoff, Dordrecht, 
1987.

[8] K.J. BATHE, F. Brezzi and M. Fortin, Mixed-interpolated elements for Reissner-Mindlin 
plates, Internat. J. Numer. Methods Eng. 28 (1989), 1787-1801. MR 90g:73090

[9] K. J. BATHE and E. N. Dvorkin, A four-node plate bending element based on Mindlin 
Reissner plate theory and a mixed interpolation, J. Numer. Methods Engrg. 21 (1985),367- 
383.

[10] F. BREZZI and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. 
Comp. 47 (1986), 151-158. MR 87g:75057

[11] F. BREZZI and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New 
York (1991). MR 92d:65187

[12] F. BREZZI, M. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements 
for Mindlin-Reissner plates, Math. Models Methods Appl. Sci. 1 (1991), 125-151. MR 
92e:73030

[13] P. CLEMENT, Approximation by finite element functions using local regularization. RAIRO 
Anal. Numer., 9 (1975) 77-84. MR 53:4569

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/journal-terms-of-use


1396 ELSA LIBERMAN

[14] E. Dari, R. DurÁN, C. PADRA, V. VAMPA A posteriori error estimators for nonconforming 
finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (5) (1996), 385-400. MR 
97f:65066

[15] R. DURÁN and E. Liberman, On mixed finite element methods for the Reissner-Mindlin 
plate model, Math. Comp. 58, Num. 198 (1992), 561-573. MR 92f:65135

[16] R. Durán, L. Hervella-Nieto, E. Liberman, R. Rodríguez and J. Solomin, Approxi
mation of the vibration modes of a plate by Reissner-Mindlin equations, Math. Comp. 68 
(1999), 1447-1463. MR 99m:73045

[17] P. PEISKER AND D. BRAESS, Uniform Convergence of Mixed Interpolated Elements for 
Reissner-Mindlin Plates, RAIRO Modél Math. Anal. Numér. 26 (5) (1992), 557-574. MR 
93j:73070

[18] L. R. SCOTT and S. Zhang, Finite element interpolation of nonsmooth functions satisfying 
boundary conditions, Math. Comp. 54 (1990) 483-493. MR 90j:65021

[19] R. VERFÜRTH, A posteriori error estimators for the Stokes Equations, Numer. Math. 55 
(1989), 309-325. MR 90d:65187

[20] R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element dis
cretizations of elliptic equations, Math. Comp. 62, Num. 206 (1994), 445-475. MR 
94j:65136

Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional 
de La Plata, C.C.172, (1900) La Plata, Argentina

E-mail address: elsali@mate.unlp.edu.ar

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

mailto:elsali@mate.unlp.edu.ar
https://www.ams.org/journal-terms-of-use

