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Abstract

We construct 1/(2) noncommutative multi-instanton solutions by extending Witten's ansatz [1] which reduces the problem 
of cylindrical symmetry in four dimensions to that of a set of Bogomol’nyi equations for an Abelian Higgs model in two- 
dimensional curved space. Using the Fock space approach, we give explicit vortex solutions to the Bogomol’nyi equations and, 
from them, we present multi-instanton solutions.

© 2002 Elsevier Science B.V. Open access under CC BY license.

After the first instanton solution with topological 
charge Q — I was presented in [2], many efforts 
were devoted to the construction of Q — n instantons, 
as well as to the analysis of free parameters of the 
general solution. A first successful result was reported 
in [1], where a cylindrically symmetric multi-instanton 
solution was constructed by relating the problem with 
that of vortex solutions in two-dimensional curved 
space. After 't Hooft proposal of a very simple 
ansatz [3], another family of multi-instantons was 
constructed [4], Finally, a systematic method for 
finding instanton solutions and their moduli space, the 
so-called ADHM construction [5], was developed.

Instantons were rapidly recognized as a basic ingre­
dient for studying non-perturbative aspects of quan­
tum field theories. They are also relevant in the con­
text of string theory and noncommutative geometry. 
Concerning this last issue, instantons in noncommu­
tative R4 space were first presented in [6] where the 
ADHM construction was adapted to the noncommu­
tative case. In this Letter the discussion was mainly 
centred in the L/(l) gauge group and q = 1 instanton. 
Prompted by this work, many other applications of the 
ADHM method in noncommutative space were pre­
sented [7-10],

The alternative't Hooft ansatz approach to non­
commutative instantons was also analysed in [6], but 
problems with selfduality were overlooked in that 
work. These problems were overcome in [11], where 
a regular solution for the q = 1 U (2) instanton was ex­
plicitly constructed by an appropriate extension of the 
't Hooft ansatz (related work on this issue was dis-
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cussed in [12,13]). Concerning multi-instantons, the 
analogous of't Hooft solution for U(N') instantons 
with N > 1 has not been found (some problems pre­
venting their construction were already discussed in 
[11]).

As in the commutative case, there is still the pos­
sibility to look for noncommutative multi-instanton 
U(2~) solutions by connecting the problem with that 
of (noncommutative) vortex solutions in curved space, 
the analogous of the solution presented in [1] in or­
dinary space. It is the purpose of the present work to 
analyse this issue which has the additional interest of 
requiring the construction of noncommutative solitons 
in a nontrivial metric.

In order to extend the approach in [1], connecting 
an axially symmetric ansatz for the instanton gauge 
field with vortex solutions in 2-dimensional curved 
space-time, we shall consider the following commuta­
tion relations for cylindrical coordinates ((r,A <p~) and 
i) in Euclidean 4-dimensional space:

[r, t] = if)(r, t), (1)

[r,!?] = [r, y] = [i,!?] = [i, y] = [A y] = 0. (2)

Eq. (2) corresponds to the most natural commutation 
relations to impose when a problem with cylindrical 
symmetry is to be studied. Although 6(r, t) in (1) is 
in principle an arbitrary function, we shall see that, in 
the reduced 2-dimensional problem, a covariantly con­
stant 9 guarantees associativity of the noncommutative 
product of functions. As we shall see, this in turn im­
plies 

0(r, i) = 0Qr2 (3)

with 0o a dimensionless constant. We shall then take 
(3) as defining noncommutativity of coordinates r, t 
from here on.

Thanks to the fact that 0 is covariantly constant in 
two-dimensional space, there is a change of coordi­
nates that greatly simplifies calculations. Indeed, tak­
ing (r, A rp, t) -a (u = -\/r, ft, rp, t), Eq. (1) reduces 
to

[u, f] = Z0Q, (4)

while (2) remain unchanged (with r replaced by 
-1/m). Note that in terms of curvilinear coordinates 
(M = -1/r, Ay,f), 0MV is constant and hence the 

Moyal product * provides a realization of the noncom­
mutative product of functions.

We shall take the gauge group to be U(2) and define 

F/J.V = dfj,Av — dvA^ + i\Atl, Av] (5)

with

= A/( ■ — + A^- (6)

and a = (aa) the Pauli matrices. The dual field 
strength is defined as 

F^^^^vapVgg(a)g^Fap. (7)

Here we have used that the metric tensor associated 
with curvilinear coordinates (u = -l/r, A y, t) is 
diagonal. Its components read

= (8) 

We shall look for multi-instanton solutions to the 
selfduality equations

= ±A,,,. (9)

To this end, we consider an ansatz for the gauge 
field components, which is the £7(2) noncommutative 
extension of the one solving the commutative case. 
For the SU(2) sector we just take Witten's ansatz [1], 
which can be written as

Au = Au(u, <p),

At = At(u, <p),

A$ = ^(u, <p)
+ (1 + 02 (w, i))i2(A y) A 3#i2(A y),

Av = <pt(u, y)

+ (1 + 02(m, r))i?(A y) a A>i?(A y), (10)
with

/sinPcosy\
i?(A y) = I sinP siny j. (11)

\ cosP /
Concerning the remaining L7(l) components, it is 
natural to propose the ansatz

Au = Au(u,t), 
Aj = Aj(u, t), 

4 = 4 = °- (12)
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With this ansatz, the selfduality equations (9) become -1/r, t and a metric

— 't/ h, + - [ ,4/. ,4 - [Aj, Au ]

= 1- 01 -<$,

3M^-9HA4 + i[AtA4] + i[Az,AH]

= —¿101, 02],
1 i

(13)

As in other instanton analysis [11] one could restrict 
even more the ansatz for the U (1) sector so that 
the form of the equations for the SU(2) components 
become the natural noncommutative generalization of 
those in ordinary space. We then propose the following 
identification:

A^(u, t) = At(u, t),

Aiu(u,t) = Au(u,t). (14)

With this, and introducing the notation

<b = — i<f>2, D<f> = dc/> + i A(p.

Ftu — dtAu — duAt + i[A/, Au], (15)

system (13) reduces to

Ftu = ~^[</>,</>l (16)

Ftu = l-^,0]+, (17)

Dt<p = iu2Du<p- (18)

This system of equations is one of the main steps in 
our task of constructing multi-instantons and deserves 
some comments. It is an overconstrained system but, 
as we shall see, nontrivial solutions can be found. 
The two last equations resemble the BogomoTnyi 
equations arising in ordinary two dimensional curved 
space. In fact, they coincide (in the commutative limit) 
with those discussed in [1], with coordinates u =

with detg(x) = 1. Hence, we succeeded in con­
necting, also in the noncommutative case, instanton 
selfdual equations in 4-dimensional Euclidean space 
working in curvilinear coordinates (u = -\/r, ft, cp, t) 
with vortex Bogomol'nyi equations in 2-dimensional 
curved space with coordinates (u,t). Were we able to 
find noncommutative multivortex solutions, we then 
could explicitly write noncommutative multi-instanton 
solutions, as done in [1] for the commutative theory.

There is, however, the third equation (16) in the 
coupled system (16)-(18), a remnant of the C/(l) 
sector necessarily present in the noncommutative case. 
We shall see, however, that this equation becomes 
identical to Eq. (17) for a particular family of scalar 
field solutions. We then pass analysing this and we 
obtain vortex solutions in curved noncommutative 
space.

At this point, we have to handle a noncommuta­
tive field theory in curved space. This problem can be 
related to that of defining a noncommutative product 
with 0 depending on the coordinates. Let us briefly re­
call this last problem. Consider a general noncommu­
tative product o such that

[ym, /]o = ym o yn - yn o yn = (20)

Associativity of the o product can bee seen to impose 
the following condition on 9ab [14-16],

0mnd„0ab + G™dnGbm + Qbti^Qma = q, (21)

which is equivalent to

9mn Vn0ab + 0anVn0bm + 0bnVn0ma = 0 (22)

with

V7 nab n nab . r^a nsb . r^b nas— dmV + 1 msV + 1 msV , (23)

Here r^s is the Christoffel symbol associated with the 
two-dimensional metric gab(y)- Now, as exploited in 
[16], a covariantly constant 9ab,

Vm0ab = O, (24)

trivially verifies (22), and hence leads to an associative 
product. One can see that, in two dimensions, Eq. (24) 
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reduces to
-Um(V£0^) = O, (25)
V §
where g = detg^. Then, the most general covariantly 
constant 9ab takes the form

jnn
omn = ---- (26)

Let us consider at this point the two-dimensional 
metric relevant to the vortex problem in ordinary 
space. It corresponds, in coordinates (r, t) to gab = 
r28ab. According to Eq. (26), a covariantly constant 
9ab = sab9(r, t) takes, in such a metric, the form 

9(r, t) = 9(jr2. (27)

This is precisely the form chosen for 9 (r, t) in Eqs. (1), 
(3). Now, in the coordinate system (w = -1/r, t) the o 
commutator becomes the ordinary Moyal commutator 
since

[U, f]o = Z0Q- (28)

Going back to the problem of solving the Bogo- 
mol'nyi system (16)-(18), it is convenient to define 
complex variables

1 1
z = —=(u + it), z = —=(u — it),

\/2 \/2
in terms of which Eqs. (16)-( 18) become

(1 - |(z + ~z)2^Dz<p = (1 + |(z + ~z)2^D-z<p, 

iFzz = 1 -

iFzz = -|[0,0].

In view of equation (28), if one defines

Z^g9oa, z^’-gfJoa',

one then has

[a, = 1, 

(29)

(30)

(31)

(32)

(33)

(34)

and hence one is lead to follow the alternative Fock 
space approach to noncommutative field theories, tak­
ing a and o' as annihilation and creation operators 
generating the Fock space {|n}}. Concerning deriva­
tives, one has

----7=[a+, ], ]. (35)

One should notice at this point that, in the case at 
hand, the complex variable z is defined in the half­
lower semiplane and this could cause problems when 
connecting the product of operators in Fock space 
with Moyal products in coordinate representation. In 
fact, this connection can be established through an iso­
morphism which results in a mapping between opera­
tors in Fock space and functions in R2". If the two- 
dimensional manifold is not R2 but a half plane one 
should analyse whether the isomorphism is modified. 
Instead, we shall follow an alternative approach which 
consist in doubling the space manifold so as to work 
in R2 and exploit the ordinary connection. Afterwards, 
we shall restrict the solutions to the relevant domain. 
Having in mind the features of Witten's solutions in 
ordinary space, with an even magnetic field associated 
as a function of w = -1/r, we shall seek for solutions 
with such a magnetic field behavior in R2.

Note that Eq. (31) coincides with the correspond­
ing flat space original Bogomol'nyi equation for the 
magnetic field. It is Eq. (30) governing the scalar field 
dynamics where the curved space metric plays a role. 
As discussed before, there is also the new third equa­
tion (32) arising from the additional 7/(1) sector.

One can easily see that compatibility of (31) and 
(32), implies

<p<p = 1 (36)

and hence the only kind of nontrivial solutions follow­
ing our ansatz should have the form

(¡) = '^2\n + q}(n\. (37)
n=Q

With this, it is easy now to construct a class of solu­
tions analogous to those found in [17-20] for noncom­
mutative Nielsen-Olesen vortices in flat space. Indeed, 
take

<P = '^g\n + q)(n\,
n=Q

. q-\
Az =----^=V(Vm + 1)|m + 1)(m|

-I—(v'7/ + 1 - 7 - 7» +1) 1» + 1)(m|.

(38) 
One can trivially verify that functions (38) satisfy 
Eqs. (30)-(32) provided 0q = 2. In particular, both the 
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l.h.s. and r.h.s of Eq. (30) vanish separately. Regarding 
the particular value of 0o for which we find a solution, 
let us recall that also for vortices in flat space it 
was necessary to fix 6>o = 1 in order to satisfy the 
corresponding Bogomol'nyi equations [19,20].

The magnetic field Bea = iFz-z associated with 
solution (38) takes the form

Bea=2 = (|0><0| + ■ ■ ■ + \q - 1)(<? - 1|) = B (39)

with associated magnetic flux

<I> = .vOgTr/W = — 7r<?- (40)

Note the factor ttOq in the definition of the magnetic 
flux. It is one half of the usual factor, since our actual 
problem corresponds to the half plane.

We can now easily write the self-dual multi-instant- 
on solution in 4-dimensional space by inserting the 
solution (38) in ansatz (10). The resulting selfdual 
field strength reads

Ftu = BÌ2, Fùip = BsindQ,
F?U = B, (41)

with the other field-strength components vanishing. 
The instanton number is then given by

Q = ¿2^ f dixe'"VapFl^F^
0 co

= I du I dt B2 = 2TrB2 = ^. (42)

—co —co

We thus see that Q can be in principle integer or semi­
integer, and this for ansatz (10) which is formally the 
same as that proposed in [1] for ordinary space and 
which yielded in that case to an integer. The origin of 
this difference between the commutative and the non- 
commutative cases can be traced back to the fact that 
in the former case, boundary conditions imposed on 
the half-plane force the solution to have an associated 
integer number. We were not able to find boundary 
conditions such that semi-integer configurations were 
excluded. Then, in order to have regular instanton so­
lutions with integer number we just restrict vortex con­
figurations (38) to those with q = 2n so that the instan­
ton number Q = n e Z. In fact, if one plots Witten's 
vortex solution in ordinary space in the whole (u,t) 

plane, the magnetic flux has two peaks and the corre­
sponding vortex number is even. Our choice then cor­
responds, in Fock space, to selecting the analogous of 
that solution in noncommutative space.

In summary, we have presented multi-instanton so­
lutions to the CZ(2) selfduality equations (9) in a non­
commutative space where the commutation relations 
for coordinates are those defined by Eqs. (1), (2). In 
such a noncommutative space the problem can be re­
duced to that of solving Bogomol'nyi equations for 
vortices in curved space. Using the Fock space ap­
proach one can easily find a family of solutions for 
the latter, Eqs. (38), (39), and, from them, to explic­
itly construct instanton solutions, (41), with arbitrary 
charge. Let us end by recalling that axially symmetric 
instantons in ordinary 4-dimensional space-time can 
be employed to seek for multimonopole solutions in 
3-dimensional space [21-24], One could then follow 
a similar approach in the noncommutative case in the 
search of explicit magnetic monopole solutions. We 
hope to discuss this issue in a future work.
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