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Abstract

In this work we report on manifest universal features found in the nuclear matrix elements which govern the mass sector of 
the neutrinoless double beta decay. The results are based on the analysis of the calculated matrix elements corresponding to the 
decays of 76Ge, 82Se, 100Mo, and 116Cd. The results suggest a dominance of few low-lying nuclear states of few multipoles in 
these matrix elements. Dedicated charge-exchange reactions could be used to probe these key states to determine experimentally 
the value of the nuclear matrix element.
 2005 Elsevier B.V. Open access under CC BY license.

PACS: 14.60.Pq; 23.40.Bw; 23.40.Hc

The need to know in the most accurate way the val­
ues of the nuclear matrix elements which are relevant 
for studies of the neutrinoless double beta (0νββ) de­
cay is far from being a purely academic question. Con­
sidering the current efforts devoted to the experimental 
search of signals of 0νββ [1,2] and the implications for 
particle physics [3], the question about the scope of the 
involved nuclear-structure calculations and about their 
predictive power [4–7] cannot be avoided. While the 
existence of neutrino oscillations is supported by ex-
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perimental results [8], neutrinoless double beta decay 
is a unique source of information about the absolute 
scale of the light-neutrino masses and about the na­
ture of the neutrino [3]. In a recent publication [5], 
we have analyzed the combined set of data coming 
from the oscillation experiments and from the limits 
fixed by double-beta-decay experiments, for the case 
of the 0νββ decay of 76Ge. Similar studies were re­
ported, afterwards, in [7], while recent results of stud­
ies, specifically devoted to the neutrino-physics side, 
can be found in [9].

The adequacy of some of the theoretical assump­
tions adopted to describe double-beta-decay observ­
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ables, and the degree of accuracy of the corresponding 
calculations, can be tested experimentally by means of 
the single beta decay transitions [10], charge-exchange 
reactions ((p, n), (3He, t) and (n, p), (d, 2He), see [2, 
11]), muon capture [12] and neutrino–nucleus interac­
tions [13]. Theoretical study of these processes allows 
us to constrain the calculations related to the 0νββ de­
cay transitions.

In this Letter we are presenting some evidence 
which strongly suggests the existence of a certain de­
gree of universality in the calculated nuclear matrix el­
ements, which may indicate that the nuclear-structure 
sector of the neutrinoless double beta decay problem 
may be accurately determined by dedicated experi­
ments, in spite of the complexity of the problem [4]. 
For the sake of completeness, we briefly give the nec­
essary theoretical expressions. Details can be found in 
[4,6,15]. The mass sector of the half-life, for neutrino­
less double-beta decay transitions, is written [4,14]:

(1)

(2)

Cm(0mν) = G(10ν) MG(0Tν)(1 - χF) 2, 

where G(10ν) is a leptonic phase-space integral and 

MG(0Tν) = (meR)-2

× ^0F+^̂h+(rij,Ea)
ij a

× σ(i)σ(j)τ(i)- τ(j)- ^̂0I+ ^

is the nuclear matrix element of the two-body Gamow– 
Teller operator. In the above definition [15] of the 
Gamow–Teller operator we use the scaling factor 
(me R)-2 relative to the one introduced in [14]. This 
should be kept in mind when comparing our quoted 
numbers with numbers coming from some other 
works. The factor χF is the ratio between the ma­
trix element of the two-body Fermi operator and the 
two-body Gamow–Teller operator, with I denoting the 
initial and F the final nuclear state. In these definitions 
the value of the axial-vector electroweak coupling 
constant gA is absorbed in the definition of the phase­
space integral G(10ν)[4,14] and in the ratio χF.

The conventional procedure to evaluate (2) consists 
of performing the expansion of the neutrino potential 
h+(rij ) in spherical multipoles, which are then cou­
pled to the spin operators appearing in (2). A suitable 
way to calculate this expansion consists of introduc­
ing, for each multipole, a complete set of states, which

span the space of states represented by the sub-index 
a in (2). These are nuclear states, whose wave func­
tions should be determined to compute the transition 
densities of the isovector multipole operators [4] 
ρλI(,Fµ)(n,k)=^Jπ,n^̂(Ykσ)λ,µfk(r)τ-^̂0I+(F)^ (3)

between the initial (I) and final (F) ground states and 
the excited states of the intermediate double-odd-mass 
nucleus, denoted in (3) by their multipolarity J , parity 
π and eingenvalue index n . The radial function is a 
Bessel function of the order k .

In the present work the evaluation of (2) has been 
performed by using the standard proton–neutron Qua­
siparticle Random-Phase Approximation (pn-QRPA) 
in conjunction with single-particle states obtained by 
diagonalizing a Woods–Saxon potential and includ­
ing the Coulomb interaction, for protons. The mono­
pole pairing effects are accounted for in the Quasi­
particle Mean-Field Approximation. Details about this 
theoretical framework can be found in [4]. The ma­
trix elements of the two-body interaction, used in the 
calculation, are the ones obtained from the G-matrix 
treatment of the OBEP [16]. The parameters of the 
proton–proton and neutron–neutron pairing channels 
were fixed to fit the observed odd–even mass differ­
ences and the energy of low-lying quasiparticle states 
in the neighborhood of the considered double-beta­
decay systems.

It is known [17,18] that in the pn-QRPA calcula­
tions the values of the nuclear matrix elements, corre­
sponding to the two-neutrino double-beta (2νββ) de­
cay, vary very much as functions of the value of the 
scaling parameter gpp of the proton–neutron particle– 
particle channel of the two-body interaction. This fact 
is well established. Concerning the matrix elements 
governing the mass sector of the neutrinoless double 
beta decay it was first shown in [19] that this sensitiv­
ity is not that strong there. This conclusion agrees with 
ours, as we show below.

In the present calculation we have chosen the val­
ues of gpp as done in [20], i.e., by making a fit to the 
matrix element extracted from the recommended two- 
neutrino double-beta-decay data [21]. We improve on 
the procedure of [20] by taking into account also the 
experimental uncertainties in the measured 2νββ half­
lives and in the value of the axial-vector coupling con­
stant gA . Here we considered the interval 1 ^ gA ^ 
1.25 for gA. This procedure yields two bands of possi­
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ble values of gpp, one for positive and one for negative 
values of MG(2Tν). By determining the range of the pa­
rameter gpp in this fashion, one guarantees that the 
variation of the contribution of the J π = 1+ multi­
pole to the 0νββ is at its largest, i.e., within this in­
terval that contribution gradually decreases, vanishes 
and changes its sign, while still keeping the conver­
gence of the pn-QRPA solutions. However, we have to 
be aware that this procedure does not necessarily yield 
the best possible value of the coupling constant gpp, 
since for the 0νββ decay the effect of the 1+ multi­
pole is not that important as it is for the 2νββ decay, 
as we show below.

Our starting point is the calculation of each of the 
terms entering in the multipole expansion of the matrix 
elements of Eq. (2). The results are shown in Table 1, 
where we are listing the values obtained for the consid­
ered decays, and for different values of the strength gpp 
of the renormalized particle–particle channel allowed 
by the experimental values of the matrix element (the 
method of extracting the values of gpp was discussed 
above). In Table 1 we show the values of MG(0Tν) (third 
column), the contribution to MG(0Tν) from the set of 
J π = 1 + states (fourth column) and the bulk of the 
matrix element MG(0Tν), which is obtained by exclud­
ing from the multipole expansion the contribution of 
the J π = 1+ states (fifth column). The contributions 
of Fermi transitions to the matrix element appearing 

in (1) are absorbed in the definition of χF, and they 
are shown for two values of the axial-vector coupling 
constant, gA , in the last two columns of Table 1.

From the results shown in Table 1 it is seen that 
the variation of the bulk matrix element amounts to 
less than 7% (76Ge), 4% (82Se), 4% (100Mo), and 2% 
(116Cd), for the considered ranges of gpp. It demon­
strates that the bulk of the matrix elements remains 
practically unaffected by the value of gpp. For all cases 
the contribution of the 1+ multipole to MG(0Tν) repre­
sents, at its largest, less than 10% of the sum over all 
multipoles (0+ → 11+,0- → 10- ) included in (2). 
Hence, one may think of that estimate as the largest 
possible theoretical uncertainty in the value of the nu­
clear matrix element (2) coming from the 1+ multi­
pole.

To reiterate the basic ideology of our calculations, 
in all cases we have considered the experimental half­
lives of the 2νββ decay modes, including the corre­
sponding error bars, to extract the values of gpp which 
are compatible with the data. For the case of the de­
cay of 100Mo our calculation could not reproduce the 
small value of the measured matrix element. In this 
case only one value of gpp is chosen, and it is the 
one which closest reproduces the two-neutrino double­
beta-decay data. More details of our procedure are 
given in [22].

Table 2 shows the leading multipoles contributing 
to MG(0Tν). Also there the variation of the 1 contribu-

Table 1
Value of the matrix element MG(0Tν) of Eq. (1) as a function of the parameter gpp, across the domain of gpp which best fits the experimental data 
on 2νββ. The results of the sum over all multipoles is given in the third column, the contribution of only one set of states (Jπ = 1+) is shown 
in the fourth column, and the bulk value, obtained by excluding the J π = 1+ states from the sum, is shown in the fifth column. The last two 
columns show the results of the ratio χF , for two values of the axial-vector coupling constant gA = 1.00 and gA = 1.254, respectively

Case gpp MG(0Tν) (all) MG(0Tν) (1+) MG(0Tν) (bulk) χF (gA = 1.00) χF (gA = 1.254)
76Ge 0.89 162.35 19.18 143.17 -0.419 -0.266

0.96 148.31 8.89 139.42 -0.428 -0.272
1.00 137.98 1.06 136.92 -0.439 -0.279
1.05 120.39 -12.79 133.18 -0.470 -0.299

82Se 0.98 114.83 12.23 102.60 -0.378 -0.240
1.10 103.39 3.07 100.32 -0.374 -0.238
1.17 95.16 -3.69 98.85 -0.374 -0.238
1.23 86.70 -10.82 97.51 -0.376 -0.239

100Mo 1.16 142.30 20.44 121.86 -0.373 -0.237
116Cd 1.44 66.12 6.80 59.32 -0.363 -0.231

1.50 62.77 4.37 58.40 -0.371 -0.236
1.55 59.06 1.55 57.51 -0.381 -0.242
1.58 56.01 -0.98 57.99 -0.391 -0.249
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Table 2
Leading multipole decomposition of the matrix element MG(0Tν), as function of the parameter gpp. The values of gpp were chosen as it is 
explained in the captions to Table 1

Case gpp 1+ 2+ 3+ 1- 2- 3- 4-

76Ge 0.89 -19.183 -9.525 -19.431 -11.553 -41.172 -9.833 -16.343
0.96 -8.885 -9.314 -19.097 -11.107 -38.789 -9.772 -16.261
1.00 -1.059 -9.186 -18.891 -10.842 -37.107 -9.734 -16.211
1.05 12.788 -9.016 -18.614 -10.497 -34.465 -9.683 -16.142

82Se 0.98 -12.231 -5.755 -12.532 -7.043 -35.118 -7.004 -11.689
1.10 -3.071 -5.597 -12.349 -6.865 -33.744 -6.955 -11.571
1.17 3.690 -5.498 -12.231 -6.760 -32.845 -6.924 -11.496
1.23 10.815 -5.408 -12.123 -6.668 -32.009 -6.898 -11.428

100Mo 1.16 -20.436 -9.166 -18.019 -12.485 -29.643 -6.879 -11.128
116Cd 1.44 -6.801 -4.048 -7.916 -7.892 -12.490 -2.744 -5.196

1.50 -4.375 -4.014 -7.713 -7.765 -12.123 -2.728 -5.151
1.55 -1.544 -3.982 -7.523 -7.649 -11.755 -2.713 -5.108
1.58 0.984 -3.966 -7.410 -7.589 -11.524 -2.706 -5.084

tion becomes evident. On the other hand, the other 
multipoles are practically independent of gpp within 
the experimentally determined range of values of gpp. 
The contribution of all multipoles to the final matrix 
element is shown in Fig. 1, for the case of the decay 
of 76Ge, and in Fig. 2, for the case of the decay of 
116Cd. We have taken these cases as illustrative exam­
ples of the results shown in Table 2. It shows the clear 
dominance of the contribution of the J π = 2- virtual 
transition, which amounts to roughly 30 percent of the 
bulk value of the matrix element. This feature may 
indicate that a mechanism, similar to the single-state 
dominance [23] found in 2νββ decays, could possibly 
be present, in a softer way, also in the case of 0νββ 
decays. It is interesting to see that out of the high num­
ber of multipoles (0+ → 11+ ,0- → 10- ), only few 
contribute with significant amounts to MG(0Tν), and that 
their contributions are also stable against changes in 
the value of the parameter gpp.

From Table 2 one sees that, with the possible ex­
ception of the virtual transitions going by the set of 
1- states, whose contribution may still be reduced by 
center-of-mass corrections [24], most of the remaining 
value of MG(0Tν), after subtracting the 2- contribution, is 
given by the transitions going by the set of states with 
J π = 3+ and 4-, at the level of 10 to 12 percent, and 
J π = 2+, 5+, and 3-, at the level of 6 to 10 percent.

In view of the found dominance of the contribution 
of the 2- multipole, we have analyzed the structure 
of it, by looking at the corresponding wave functions.

Fig. 1. Multipole contributions to the matrix element MG(0Tν). The 
results correspond to the decay of 76Ge (a), with gpp = 1.00.

This analysis indicates that, for the case of the decay 
of 76Ge there is one state that contributes the most 
and this is the first 2- state. The wave function of 
this state is practically a pure configuration, which in-
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Fig. 2. Multipole contributions to the matrix element MG(0Tν). The 
results correspond to the decay of 116Cd (a), with gpp = 1.55.

volves the neutron intruder orbit g9/2 coupled to the 
proton orbit f5/2. The same situation appears in the 
case of the decay of 82Se, where the bulk of the contri­
bution is coming from the same configuration. Though 
the dominance of the 2- is also clear for the cases of 
100Mo and 116Cd, the distribution of intensity is more 
fragmented since the states have typically two to four 
components with similar amplitudes, also based on the 
coupling with the intruder states. These are features 
which greatly simplify the task of setting theoretical 
limits on the values of the matrix elements, because 
they can be absorbed in a sort of polarization factor, 
once the total matrix element is written as

(4)MG(0Tν) = MG(0Tν) 2-(1 + fm), 

where the factor fm represents the contribution of 
all other multipoles. From the results of the present 
calculations we have extracted the following values: 
f (76Ge) = 2.6, f (82Se) = 2.0, f (100Mo) = 3.2, and 
f (116Cd) = 3.8. These values are very stable for the 
range of gpp values reproducing the 2νββ data.

The results of calculations using different interac­
tions can be found in [20], and from there one may 
conclude that the results are insensitive to the used 
two-body interaction. The findings of [20] support the 
notion that the kind of universality reported here will 
show up in further studies performed with different in­
teractions, too.

Some studies of the multipole decomposition of 
the 0νββ matrix elements have been reported already 
earlier. These are given, e.g., in Refs. [25,26]. In 
[25] the plain pn-QRPA and in [26] renormalized and 
self-consistent renormalized versions of the pn-QRPA 
were used in the calculations. In both calculations ad­
ditional refinements were done concerning the basic 
nucleonic weak current, namely, the short-range cor­
relations between two nucleons and the finite-size ef­
fects of the nucleon form factors were taken into ac­
count. Both of these contributions were deemed im­
portant in these articles. Both [25] and [26] show in 
their Fig. 2 the decomposition of the mass mode ma­
trix element in terms of multipoles for the 0νββ decay 
of 76Ge. From their Fig. 2, for gpp values near unity, 
one notices that the leading contribution is, indeed, 2- . 
In [25] one can already speak about dominance of the 
2- contribution for the Gamow–Teller operator.

In the present formalism we take into account the 
finite-size effects by computing the nucleon form fac­
tors starting from the quark level [27]. These effects 
are generally accepted to be important for the neu­
trinoless double beta decay. However, we have not 
included the short-range correlations. The matter of 
short-range correlations is still somewhat open since 
some authors, like [26], claim to obtain sizable effects 
from this correction whereas some others not (see, 
e.g., [28,29]). Obviously, the results vary depending 
in which way these correlations have been taken into 
account.

To conclude, the following common features 
emerge from the analysis of the nuclear matrix el­
ements entering the mass sector of the neutrinoless 
double beta decay:

(i) Changes in the particle–particle coupling con­
stant gpp, around the values which best fit the 
matrix elements extracted from the available rec­
ommended results for 2νββ transitions, do not 
affect the bulk value of the matrix element of 
Eq. (2).



O. Civitarese, J. Suhonen / Physics Letters B 626 (2005) 80–85 85

(ii) The contribution coming from the J π =2- setof 
states dominates, and it represents 30% (or more) 
of the total value of Eq. (2).

(iii) Of the other multipoles only very few contribute 
significantly, and their summed contributions 
amounts to about 50% of (2).

(iv) The theoretical uncertainty in the calculated 
value of (2), stemming from the variation of the 
contribution of the set of 1+ states near the total 
cancellation of this contribution, can be placed 
at the 10 percent level, or below. The overall 
uncertainty of the nuclear matrix elements is 
not known since the uncertainties of the leading 
multipoles in the 0νββ matrix elements are not 
known.

(v) In view of Eq. (4) and the discussion in point 
(iv) above, dedicated experiments to look at the 
charge-exchange reactions to few lowest 2 states 
in the intermediate nuclei of double beta decays 
are called for. Work along these lines has been 
started recently (see, e.g., [2,11]).
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