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1. Introduction

Construction of noncommutative solitons and instantons has been a field of intense activity 
after the revival of field theories in noncommutative space, in connection with string theory 
and brane dynamics (see for example [1] for references on this issue). Not only the non­
commutative counterparts of vortices, monopoles and other localized solutions in ordinary 
space were constructed but regular stable solutions which become singular in the com­
mutative limit were also discovered (see for example [2] for a complete list of references). 
Concerning static classical solutions of the abelian Higgs model in the noncommutative 
plane, both BPS and non BPS vortices have been constructed and its moduli space studied 
in detail [3].

In the present work we consider vortex solutions in the abelian Higgs model defined 
on the noncommutative torus and then extend the analysis to the case of a U(2) × U(1) 
symmetry. This is motivated by the fact that, in commutative space, one can find stable 
solutions that correspond to periodic arrays of vortices in theories with gauge field coupled 
to Higgs scalars. Moreover, the analysis of such kind of arrays is equivalent to the study of 
models defined on the torus. This fact has been exploited in the search of vortex solutions 
in the Salam-Weinberg model where the only stable solutions correspond to such type of 
arrays [4]. Hence our results can be seen as a first step along this line in its noncommutative 
version.

Despite the fact that the 2 dimensional torus is one of the simplest examples of non­
commutative space, no discussion of the BPS equations and their solution for the Maxwell- 
Higgs model has been carried out. In this respect, our work fills in this gap and also opens 
the possibility of studying non-abelian extensions related to the noncommutative version 
of the Salam-Weinberg theory. Bogomolny equations for the abelian Higgs model on a two 
dimensional torus have been first considered by Shah and Manton [5]. More recently, Gon­
zalez Arroyo and Ramos [6] have analyzed them in detail and presented a high precision 
approximation scheme.



The paper is organized as follows: we introduce in section 2 the noncommutative 
torus T (and noncommutative parameter θ) and discuss periodicity conditions for gauge 
and matter fields. We show that consistency of gauge transformations and periodicity 
conditions naturally leads to the introduction of a scaled torus T¯ and a θ-depending scaled 
gauge charge. Then, in section 3 we discuss the dynamics of the Maxwell-Higgs model 
showing that the role of the scaled torus becomes crucial in the definition of gauge invariant 
expressions for the energy and magnetic flux as well as for the obtention of covariant BPS 
equations. We present a particular solution to these equations and we also discuss the 
strategy to obtain general vortex like solutions, analogous to that leading to numerical 
solutions in the commutative torus [6]. Finally, in section 4 we extend the discussion to the 
case of a U(2) × U(1) lagrangian for which we also write the BPS equations and indicate 
how one should look for their solution. We leave for an appendix the derivation of some 
results needed to implement periodic boundary conditions on the noncommutative torus.

2. Gauge and matter fields on the noncommutative torus

Let us consider noncommutative 2 + 1 dimensional space-time with coordinates satisfying

[x,y] = iθ, [x,t] = [y,t] = 0. (2.1)

Our model will be defined on a spatial torus T with periods (L 1 , L2 ).
We shall be interested in a U(1) gauge theory with Higgs scalars φ in the fundamental 

representation coupled to gauge fields Ai . The fields transform under the U(1) gauge group 
according to

Ai → A(V) = V-1AiV + i V-1∂iV 
g

(2.2)

Φ → Φ ( V ) = V - 1 Φ . (2.3)

As in ordinary space, a scalar field on the noncommutative torus can be defined as a 
function φ(x, y ) which is periodic up to gauge transformations. That is,

φ(x+ L1,y) = U1(x,y)φ(x,y) = φU1 (x,y) 

φ(x,y +L2) = U2(x,y)φ(x,y) = φU2 (x,y) (2.4)

where U1 and U2 are U(1) gauge transformations. Concerning gauge fields, boundary 
conditions are

Ai(x+L1,y) = Ai(U1 )(x,y)

Ai(x, y +L2) = Ai(U2 )(x,y)

Consistency of the precedent equations implies

U2(x+L1,y)U1(x,y) = U1(x, y +L2)U2(x,y).

(2.5)

(2.6)

(2.7)

Note that eq. (2.7) coincides with the well-known consistency condition for the commutative 
torus (See for example [7] and references therein).
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A particular solution to eq.(2.7) is

U1(x,y) = eiπωL1y , U2(x,y) = e-iπωL2x, (2.8)

where

k ∈ Z .
1 2πθk

ω = θπ 1- 1+ L1L2 ,

It should be noted that in the θ → 0 limit, solution (2.8)–(2.9) goes smoothly to the 
solution on the commutative torus. One can make easily contact between this result and 
the discussion in [8] on pure U(p) Yang-Mills theory on the noncommutative torus (in the 
particular p = 1 and zero 't Hooft twist case).

Since U1 and U2 are translation generators, then for any arbitrary function f(x, y) it 
holds that

(2.9)

U1(x,y)f(x,y)U1-1(x,y) = f(x+ πωL1θ,y)

U2(x,y)f(x,y)U2-1(x,y) = f(x,y +πωL2θ). (2.10)

Periodicity conditions (2.4) and the gauge transformation laws imply the following 
transformation laws for the transition functions under gauge transformations

U1(x,y) → U1^ (x, y) = V (x+L1,y)U1(x,y)V-1(x,y)

U2(x,y) → U2^ (x, y) = V (x,y +L2)U2(x,y)V-1(x,y).

Now, using property (2.10) we have

U1^ (x, y) = V(x+L1,y)V-1(x+πωL1θ,y)U1(x,y) 

U2^ (x, y) = V(x,y + L2) V -1(x, y +πωL2θ)U2(x,y).

Then, if the gauge transformation functions are periodic with periods

˜ 2πθk
L˜i = sLi, s = (1-πωθ) = 1+ L L

(2.11)

(2.12)

(2.13)i = 1 , 2

the transition functions are invariant. Thus, we will restrict ourselves to gauge transforma­
tions satisfying this property. From now on, we shall call T˜ the scaled torus with periods 
(L˜1, L˜2).

The boundary conditions (2.6) together with our choice of transitions functions (2.8) 
imply for the gauge field the following equations

A1(x+L1(1-πωθ),y) = A1(x,y)

A1(x, y +L2(1-πωθ)) = A1(x, y) - g1πωL2 

g
A2(x+L1(1-πωθ),y) = A2(x, y) + 1πωL1 

g
A2(x, y +L2(1-πωθ)) = A2(x,y) (2.14)
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which have as a general solution,

Ai(x,y) = A˜i(x,y)+ai(x,y). (2.15)

where A˜i is a periodic function in the scaled torus T˜ and ai is defined as

ai = f εij x (2.16)

with
f = g1θ 1- 1s

(s was defined in eq. (2.13)). The field strength Fij = ∂iAj - ∂jAi - ig [Ai, Aj] can be 
written more conveniently as

(2.17)

where

and

Fij = sF˜ij +fij ,

f = -ε 2πk 1
fij = -εij g L˜1L˜2

F˜ij = ∂iA˜j - ∂jA˜i - i g˜ [A˜i, A˜j ]

where we have introduced the scaled charge,

g˜ = sg

and we have used that
εij [xj, ] = -iθ∂i .

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Let see how does the field A transforms under gauge transformations. Applying a gauge 
transformation to (2.15) we have

Aî = V A˜i +ai V + gi V ∂iV-1

i
= V A˜iV +gf εij V xj V-1 + i V ∂iV-1 

g
(2.23)

But using (2.22) we can rewrite the middle term as a derivative term plus ai

i
Aî = V A˜iV -iθf V ∂iV-1 +ai + V ∂iV -1 

g
= V A˜iV +i1-gθf V ∂iV-1 +ai

g
i

= V A˜iV + i V ∂iV-1
g˜

+ a i . (2.24)

Thus a gauge transformation on Ai is equivalent to a gauge transformation on A˜i but with 
the scaled charge g˜ (and the field ai untransformed).
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We can summarize these results by stating that a gauge theory on the noncommutative 
torus T and with non-trivial boundary conditions (2.5), (2.6) is equivalent to a gauge theory 
on the scaled noncommutative torus T˜ , with periodic boundary conditions and with a scaled 
charge g˜.

Let us now solve the boundary condition equations for the Higgs field. A field φ(x) 
satisfying the boundary conditions (2.4) with the transition functions given in equation 
(2.8), can be decomposed as

φ(x,y) = φ0(x,y)η(x,y), (2.25)

where φ0 (x, y ) is an arbitrary function periodic in the scaled torus T˜ and η (x, y) satisfy 
the same boundary conditions as φ(x, y ). Then we just have to find a particular solution of

η(x+L1,y) = U1(x,y)η(x,y) 

η(x,y + L2) = U2(x,y)η(x,y). (2.26)

Inspired in the commutative case [6] let us consider a function h(x, y ) of the form

h(x, y) = eiα{z , y} , z = x + iy, (2.27)

where {z , y } = z y + y z and α is determined by the condition

h(x+L1,y) = U1(x,y)h(x,y)
= ei π ω L1 y eiα{z , y } (2.28)

Since [z, y ] = i θ , we can use the result (A.1) of the appendix to obtain

U1(x,y)h(x,y) = eiα{z+c,y}, θπωL1 
c=.1 - e -2θα (2.29)

Then, equation (2.28) is solved if we chose

α = -21θ log (1 - πωθ) = -21θ log s . (2.30)

Now we compute

U2(x,y)h(x,y) = e-iπωL2xeiα{z,y} (2.31)

Using several times equations (A.1), (A.20), (A.21) and (A.22) of the appendix we get

U2(x,y)h(x,y) = e-kπL2/L1 eiα{z+iL2,y-L˜2}
= ekπL2 /L1 eiα{z+iL2 , y-L2 } e-i2πk z/L1

= h(x,y +L2)ekπL2/L1 e-i2πkz/L1 (2.32)

(we used that ω (1 - πωθ/2) = k/L1 L2 ). Then, η(x, y ) can be written as

η(x,y) = h(x,y)Θ(x,y) (2.33)
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with Θ(x, y ) satisfying

Θ(x+L1,y) = Θ(x, y)
Θ(x,y +L2) = ekπL2/L1 e-i2πkz/L1 Θ(x, y) . (2.34)

In commutative space, a function that satisfies (2.34) is given by a product of Riemann θ3 

functions
k

Θ(x, y) = θ3 (π(z + an)/L1|iL1/L2),
n=1

(2.35)

where
θ3(z|τ) = eiπτn2+2inz

n 

and an are arbitrary complex numbers satisfying

(2.36)

k

an = 0
n=1

(2.37)

(the function Θ(x, y ) has k zeros at the points ai + (L1 + iL2)/4).
However, since the theta functions depend only on one variable, we can replace the stan­

dard product with the noncommutative product, as they both coincide. Then, eq. (2.35) 
is the solution of (2.34) in noncommutative space. Thus,

with

k
η(x,y) = eiα{z,y} θ3 (π(z +an)/L1|iL1/L2)

n=1
(2.38)

α = -21θ log s.

In the limit θ → 0 this function coincides with the one obtained in the commutative case 
(see [6]). For the special case of k = 1 we have

(2.39)

η(x,y) = eiα{z,y}θ3(πz/L1|iL1/L2). (2.40)

In order to discuss the dynamics through the introduction of the action and the energy 
of our model, we have to define an appropriate trace (or integral) on the noncommutative 
torus. Calling Aθ the space of functions defined on T , a generic periodic function f(x, y) 
can be written in the form

f(x,y) = fmn exp imLx exp inLy
m,n L1 L2

(2.41)

and then one can formally define integration in Aθ , which we shall call trace Tr, as follows

Trf(x,y) = f00L1L2 (2.42)

which in turns defines an integral over T . This operation satisfies Tr(f g) = Tr(gf ) and 
reduces in the commutative limit to the standard integral on T .
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We have defined in (2.42) the integration in the noncommutative torus of strictly 
periodic functions f(x, y). However the definition has to be corrected when the integrand 
satisfies twisted boundary conditions [9, 10]. We discuss this issue in detail in appendix 3 
and here give a brief summary. Consider a function f(x, y) that satisfies twisted boundary 
conditions in the adjoint section (as it is the case of Fij for example) 

f(x+L1,y) = U1(x,y)f(x,y)U1-1(x,y)

f(x,y +L2) = U2(x,y)f(x,y)U2-1(x,y). (2.43)

Then, using (2.10) we see that f(x,y) is in fact periodic in the scaled torus T˜. So the 
natural integration measure for the function f(x,y) is on the scaled torus T˜, that is

I[f] = TrT˜ f . (2.44)

It can be shown that this definition is crucial if we want to preserve the cyclic property 
of the integral (trace) which is essential in order to derive the equations of motion. Consider 
for example two functions φ1 (^x) and φ2 (^x) that have nontrivial boundary conditions 

φi(x+L1,y) = U1(x,y)φi(x,y) 

φi(x, y +L2) = U2(x,y)φi(x,y) , i = 1,2.

Then the product

(2.45)

φ1(^x) φ†2(^x)

1In this expression we are mixing covariantly periodic terms (Fij Fij ) with strictly periodic terms,
((DiΦ)†(DiΦ) and (Φ†Φ - φ20)2), so according to the previous discussion on integration, the integrals 
have to be defined in their appropriate domains. Note however, that we can convert the periodic terms 
into covariantly periodic ones by using property (2.48), and thus, the whole lagrangian or energy have to 
be integrated in the same domain, the scaled torus T˜ .

is strictly periodic in the torus T , but the transpose product,

φ†2(^x) φ1(^x)

(2.46)

(2.47) 

satisfy nontrivial boundary conditions in the adjoint, so it is periodic in the scaled torus T˜ . Nonetheless, as we show in the appendix, the cyclic property of the integral is still valid 
provided we integrate the first function in T and the second one in T˜ 

TrT φ1(^x)φ†2(^x) = TrT˜ φ†2(^x) φ1(^x) . 

That is, the cyclic property is preserved with the above definition.

(2.48)

3. The Maxwell-Higgs model 

We shall consider here a U(1) gauge field coupled to a Higgs scalar defined on the noncom­
mutative torus. Dynamics of the model is governed by the lagrangian

L = -14 FµνFµν +(DµΦ)†(DµΦ)-λ(Φ†Φ -φ02)2.

We are interested in static configurations so that the energy can be written in the form1

41 FijFij +(DiΦ)†(DiΦ)+λ(Φ†Φ-φ20)2 .E = Tr

(3.1)

(3.2)
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Here Di Φ = ∂i Φ - igAi Φ is the covariant derivative and Fij is the electromagnetic tensor. 
Notice that, via the covariant derivative, we are choosing for definiteness a Higgs-gauge 
coupling which corresponds to the fundamental representation (other choices are possible).

As in the commutative case, the energy can be rewritten using the Bogomolny trick 
as,

E = Tr 12 |DiΦ-iγεij DjΦ|2 + 41 Fij -γgεij(ΦΦ† - φ20) + 

+ λ- g2 Φ†Φ-φ0 -γ g2 φ02 εij Fij + total derivative ,

where γ = ±1
The BPS equation corresponding to a bound of the energy when λ = g 2/2,

E ≥ - γ 2 φ 0 Tr T ̃  ε ij F ij

then read,

DiΦ - iγ εij Dj Φ = 0 

Fij -γgεij(ΦΦ† - φ20) = 0.

(3.3)

(3.4)

(3.5)

(3.6)

Setting for definiteness γ = -1 and using (2.15)–(2.18), we can write the BPS equations as

2πkF˜12 = g˜ ΦΦ† - φ20 - g22L˜π1kL˜2 

πωD˜z¯Φ + 2 Φz = 0,

(3.7)

(3.8)

where z = x + iy.
Since the fields A˜ are periodic in the scaled torus T˜ , the total flux of F˜ij on T˜ vanishes 

(see equation (2.42)) and then we have

Φ = TrT˜ F12 = TrT˜ f12 = -2πgkT T g
(3.9)

Bogomolny equations (3.7)–(3.8) have the particular solution

A˜ = Φ = 0 (3.10)

provided the area of the torus and the Higgs vev are related according to

2 2πkφ20 = .
0 g2 L˜ 1L˜ 2 (3.11)

In the θ → 0 commutative limit this solution reproduces the so called Bradlow solution [11] 
on the torus. Moreover, as in the commutative case [6], solution (3.10)–(3.11) could then 
be used as a starting point to obtain new solutions with non-vanishing A˜ and Φ, by an 
appropriate expansion.
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In order to search for general solutions to eqs. (3.7)–(3.8) it will be convenient to 
parametrize the fields as

i
A˜z¯ = i M -1∂z¯M + A˜z0¯ 

g˜
Φ = M-1χ ,

(3.12)

(3.13)

(3.14)

where M is a complex (non unitary) function periodic in T˜ , A˜z0¯ is a constant field, and χ 
has the same periodicity as Φ. The BPS equation (3.8) then becomes,

˜0 π ω
∂z¯χ - ig˜A˜z¯χ + 2 χz = 0.

As we showed previously in equation (2.25), the function χ can be factorized as

χ(x,y) = χ0(x,y)η(x,y), (3.15)

where η carries the non trivial boundary conditions (see eq. (2.38)) and χ0 is periodic in T˜ . Replacing (3.15) in (3.14) we get

∂z¯χ0 - ig˜A˜z0¯χ0 η + χ0 ∂z¯η + π2ω z = 0 .

To compute ∂z¯η we first use equations (A.21) and (A.22) of the appendix to rewrite

η(x,y) = e-α{z,z¯}eπkz2/2L1L2 Θ(z),

(3.16)

(3.17)

where Θ, given in equation (2.35), in only function of z . Thus the problem reduces to 
compute the derivative with respect to z¯ of

and that [z, z¯] = 2θ we can show that

∂z¯e-α{z,z¯} =
∂z¯ =

e-α{z,z¯} . Using that

2θ [z, ] (3.18)

- πω e-α{z,z¯} z (3.19)

and then the second term of equation (3.16) vanishes. So, the BPS equation (3.8) reduces 
to

∂z¯χ0 - ig˜A˜z0¯χ0 = 0 (3.20)

with solution

(3.22)

χ0 = N eig˜(iA˜z0¯z¯+A˜0zz) , (3.21)

where N is a normalization factor. Periodicity of χ0 requires that A˜0 has the form
A˜z0 = π ^n0 +im0^ 

z g˜ L˜ 1 L˜ 2

with integers n0 y m0 . In commutative space this particular form of A0 is a pure gauge 
and thus can be simply gauged away. In noncommutative space this is also the case with 
the proviso that the gauge transformation will also transform the non-trivial part of the 
field A˜ (equation (3.12)). However the effect of the transformation will be only a shift in 
the coordinates of the fields. So, without losing generality we can make m 0 = n0 = 0.
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Concerning the BPS equation eq. (3.8), one has first to write the field F˜12 in terms 
of the variables M defined in eq. (3.12). Clearly the gauge invariant variables are to be 
defined from the combination

(3.23) 

so that one should be able to write the Bogomolny equations in terms of H . Since F˜12 

is not gauge invariant but covariant, one can not write it only in terms of H ; indeed a 
straightforward computation gives

F˜zz¯ = g˜iM-1H ∂z H-1∂z¯H M†-1. (3.24)

Substituting this expression, and that for Φ given by eq. (3.13) in the Bogomolny equation 
leads to ^ ^

H ∂z ^H-1∂z¯H^ = 21 g˜2 χχ† - µ20H ,

where χ is given in equations (3.15), (3.22) and

(3.25)

2 2 2π k
µ02 = φ20 - 2 ˜ ˜ .

g2L˜1L˜2
(3.26)

In order to make further progress to find solutions of eq. (3.25) one has in principle to 
resort to numerical techniques as it is already the case for θ = 0.

4. Non abelian extension and discussion

It should be possible to extend most of our results to the case of (appropriate) non abelian 
gauge groups. As it is well known, consistency of noncommutative theories requires to 
work with U(N ) groups and not SU(N ) [12]. One can then consider a U(2) × U(1) model 
as a first step in the study of vortex solutions in a noncommutative version of the standard 
model, along the lines of Ref.[4] for the commutative case.

Consider then the energy for static configurations,

E = TrT 12 tr(Wij Wij)+ 41 tr(BijBij)+(DiΦ)†(DiΦ)+λ(Φ†Φ-φ02)2 , (4.1)

where the U(2) gauge fields are defined as

Wi = Wia λa , λ0 = 12 I , k 1 k λk = 2 σk (4.2)

H = M M †

Bi is a U(1) gauge field, Φ is a Higgs field in the fundamental representation of U(2) and 
the covariant derivatives and field strengths are defined as

g^
DiΦ = ∂iΦ - igWi Φ + i 2 Φ Bi (4.3)

Wij = ∂iWj -∂jWi +ig[Wi,Wj], Bij = ∂iBj - ∂jBi +ig^[Bi,Bj]. (4.4)
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a square
Notice that the covariant derivative is defined so that it acts from the left for the U(2) 
group and from the right for the U(1) one. The appropriate way to write perfect 
`a la Bogomolny for the Higgs covariant derivative is in this case|DiΦ|2 = |DiΦ-iγεij DjΦ|2 - γ g tr(εijΦ† Wij Φ)+γg2 (Φ†Φ) εij Bij + 

+ divergence

leading to the following expression for the energy:

E = Tr 21 |DiΦ-iγεij DjΦ|2 + 12 tr Wij -γε g2ΦΦ† +

+ 4 Bij +γ 2 εij(Φ†Φ-µ2φ20) + γ 2 µ2φ02 εij Bij +
+^̂ λ- g42 - g8^2^ ^Φ†Φ^-φ0^2 -^g22 + g4^2(1-µ2)^Φ†Φφ02 + 

+^g22+g4^2(1-µ4)^φ40^.

(4.5)

(4.6)

Then, if we choose
g2 

µ2 = 1 + 2 g^2g^2

g2 g^2 
λ = g4 + g8 (4.7)

the energy is bounded as

E ≥ γ g^ µ2φ02ΦB - µ2(µ2 - 1)φ40A , (4.8)

where ΦB is the flux of the B field and A is the area of the torus.
The bound is attained when the following BPS equations are satisfied,

DiΦ - iγ εij Dj Φ = 0

Bij +γ g2 εij(Φ†Φ -µ2φ02) = 0 

Wij -γεij g2ΦΦ† = 0.

(4.9)

(4.10)

(4.11)

propor-As in the commutative space case [4]–[6], the bound has a topological component, 
tional to the B flux and a geometrical part, proportional to the area of the torus. The 
non-commutative nature of space and the extra U(1) factor associated to the U(2) group 
renders nevertheless, the analysis of the solutions of these equations considerably more 
involved.

Let us end our work by summarizing our main results. We have analyzed periodic 
configurations of matter and gauge fields in non commutative space. We have discussed in 
detail how as a result of coordinate non commutativity, the region of periodicity of gauge 
invariant and gauge covariant quantities may differ, a property that has to be kept in mind 
in order to obtain consistent results. In this work, we have focussed mainly in the abelian 
Maxwell Higgs model, where we have been able to obtain BPS equations whose vortex 
solutions also solve the Euler Lagrange equations. We have presented a particular solution 
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to these equations which, in the θ → 0 commutative limit corresponds the Bradlow solution 
on the commutative torus. In the general case, we were able to reduce the problem of the 
two coupled BPS equation to that of equation (3.25), which in principle should be solved 
using numerical techniques, as it is the case for the commutative torus [6].

We believe that the generalization to non-abelian models will not present ma jor diffi­
culties. As a particular example and as a first step in this direction, we have shown how 
the BPS equations of a U(2) × U(1), a simplified version of the Standard Model in non 
commutative space, are obtained. Of course, the noncommutative character both of the 
space and the gauge group makes the obtention of explicit solutions much more compli­
cated but a more detailed analysis should reveal the existence of Z-vortex arrays (possibly 
with the presence of charged mesons condensates) as it is the case in ordinary space [4]. 
We hope to report on this issues in a future publication.
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A. A useful result

We prove here a helpful result that was used extensively throughout the paper:

Lemma. Let A and B be two operators such that [A, B ] = iµA where µ is an arbitrary 
constant, then

eiA eiB = ei(f (µ)A+B), (A.1)

where
f (µ) = µ

eµ - 1 (A.2)

Proof. We write
eiA eiB = e iC (A.3)

First we notice that a quick look at the Campbell-Baker-Hausdorff formula

eAeB = eA+B+ 21 [A,B]+ 112 ([A,[A,B]]+[B,[B,A]])+···

reveals that C must be of the form

C = f(µ)A + B

(A.4)

(A.5)

since any arbitrary nested commutator with [A, B ] will give, either zero or something 
proportional to A. So the problem reduces to find the function f (µ).
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Consider now the function

we have that

But

U(s) = eisA eisB (A.6)

ddUs U-1 = i^A+ U BU-1^. (A.7)

eisA B e-isA = B + is[A, B]

= B - sµA (A.8)

since higher order commutators vanish. Thus we have

dU
ds = i((1 -sµ)A+B) U .

Now we write according to (A.3) and (A.5)

(A.9)

We have

U(s) = eiC(s) , C(s) = s (f(sµ)A + B) . (A.10)

dU 
ds

= ∞ in dC (s)n 
= n !

n=0 ds
(A.11)

but

Now we notice that

dC(s)n 
ds

n-1
= C p

p=0

dC (s) n-p 
ds C

n-1
= s-1 n C(s) + µf^(sµ) CpACn-p

p=0
(A.12)

C(s)A = AC(s) + [C(s), A]

= A (C(s)-isµ) (A.13)

and applying successively this result we have

C(s)p A = A (C(s)-isµ)p . (A.14)

Replacing this result back in (A.12) and then in (A.11) we get

dU ∞ in n-1
ds = is-1C(s)U + µf^(sµ) A n! (C(s) - i s µ)p C(s)n-p-1

n=0 p=0
(A.15)

The sum in p is a geometric sum, so it can be easily performed. It gives

n-1
(C(s) - i s µ)p C(s)n-p-1 = (isµ)-1 (C(s)n -(C(s)- isµ)n) 

p=0
(A.16)
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and substituting this result in (A.15) we get

dU ∞ in
ds = is-1C(s)U + µf^(sµ) A n! (isµ)-1 (C(s)n -(C(s)- isµ)n)

n=0

= is-1C(s)U - i s-1f ^(sµ) A eiC(s) - ei(C(s)-isµ)

= i^^f -f^(1-esµ)^A+B^ U . (A.17)

Finally, comparing this equation with (A.9) we have the following differential equation 
for f

f -f^(1-esµ) = 1 -sµ. (A.18)

The solution (with the initial condition f (0) = 1, as can be deduced from the series 
expansion of (A.6)) is

f(sµ) = esµ -1

and evaluating in s = 1 we get the desired result.
Taking the inverse of expression (A.1) (and rescaling the fields and µ) we have the 

equivalent result:

(A.19)

eiB eiA = ei(g(µ)A+B ) ,

Similarly we can prove,

and

In all cases
[A,B]=

ei(A+B) = eiB eik(µ)A ,

ei(A+B ) = eih(µ)A eiB ,

µ
1 - e - µ

eµ - 1 h(µ) = e µ-1 
µ

(A.21)

1 - e - µ k(µ) = 1-µe .
µ

(A.22)

A. (A.23)

B. Cyclic property of the integral

We will show below that the cyclic property of the integral is valid whenever one defines 
the integration on the appropriate torus.

First, from the definition of the integration on the torus, it is straightforward to see 
that for strictly periodic functions f(x, y) and g(x, y), the cyclic property holds

T f g = T gf . (B.1)

Consider now two functions φ1 (x, y ) and φ2 (x, y) satisfying the non-trivial periodic 
conditions

φi(x+L1,y) = U1(x,y)φi(x,y) 

φi(x, y +L2) = U2(x,y)φi(x,y), i = 1,2. (B.2)
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The product
w1(x,y) = φ†1(x,y)φ2(x,y)

is periodic on the torus T . On the other hand the reversed product

(B.3)

w2(x,y) = φ2(x,y)φ†1(x,y) (B.4)

is periodic in the scaled torus T˜ (2.43). Thus, following the definition of integral on the 
noncommutative torus, w1 must be integrated on T and w2 on T˜ . We will show that this 
definition satisfies ^ ^

w1(x,y) = ˜ w2(x,y).

Let us consider, for simplicity, the case k = 1. As we showed previously, the functions φ1 

and φ2 can be decomposed as

(B.5)

φ1(x,y) = φ01(x,y)η(x,y) 

φ2(x,y) = φ02(x,y)η(x,y), (B.6)

where φi0 (x, y) , i = 1, 2 are periodic in T˜ and

η(x,y) = eiα{z , y} θ3 πLz|iLL1 , α = -21θ log s . (B.7)

Then

w1(x,y) = η†(x,y)φ01†(x,y)φ20(x,y)η(x,y) 

w2(x,y) = φ20(x,y)η(x,y)η†(x,y)φ10†(x,y).

Consider first the integral

I1 = w1(x,y) = η†(x,y)φ10†(x,y)φ20(x,y)η(x,y)

(B.8)

(B.9)

Since φ10 †(x, y) φ02(x, y) is periodic in T˜, without loss of generality we can replace it by

ei2π(nx/L˜ 1 +my/L˜ 2 ) , n, m ∈ Z . (B.10)

Consider now the product

γ(x,y) = η†(x,y)ei2π(nx/L˜1+my/L˜2)η(x,y). (B.11)

It can be easily shown that for any function f(x, y) 

f(x,y)ei2π(nx/L˜1+my/L˜2) = ei2π(nx/L˜1+my/L˜2)f(x-t1,y + t2), (B.12)

where
θ

t1 = 2πm ˜ ,
L˜ 2 

θ 
t2 = 2π n ˜ .

L  ̃1
(B.13)
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Thus

γ(x,y) = ei2π(nx/L˜1+my/L˜2)η†(x-t1,y +t2)η(x,y)
= ei2π(nx/L˜ 1+my/L˜2) e-πL2/L1p2+i2πp(z¯-t1-it2)/L1 ×

pq

× e-iα{z¯-t1-it2 , y+t2} eiα{z,y} e-πL2/L1q2+i2πq(z-t1+it2)/L1 (B.14)

Next we have to expand this expression in Fourier modes

γ(x,y) = γpq ei2π(px/L˜1+qy/L˜2)
p,q

(B.15)

and keep the coefficient γ00 . Using several times the identities (A.1), (A.20), 
(A.22), and after a straightforward but long computation, we get

(A.21), and

Then

γ00=
^0 if m is even 

s 2L1/L2e-π2(L12m2 +L2n2)/2L˜1L˜2 if m is odd . (B.16)

Now consider the integral

I1 = γ(x,y) = L1L2 γ00 . (B.17)

I2 = ˜ w2(x,y) = ˜ φ20(x,y)η(x,y)η†(x,y)φ10†(x,y). (B.18)

Since the product η(x,y)η†(x,y) is periodic in the torus T˜, as well as φ10†(x,y) and φ20(x,y), 
we can rewrite I2 as ^

I2 = ˜ φ10†(x,y)φ20(x,y)η(x,y)η†(x,y) 

and again replace φ01†(x,y)φ20(x, y) by ei2π(nx/L˜1+my/L˜2).

First we compute

(B.19)

η(x, y) η†(x, y) = eiα{z , y} e-πL2 /L1 p2 +i2πpz/L1 ×
pq

× e-πL2/L1q2+i2πqz¯/L1 e-iα{z¯, y} . (B.20)

After another long computation, using the identities (A.1), (A.20), (A.21), and (A.22), we 
can write

η(x,y)η†(x,y) = s-1 2L1 e-π(L22p2+4L21q2)/2s2 ei2π(px/L˜1+2qy/L˜ 2).
L2 p,q

(B.21)

Thus, δ00 , the (0, 0) Fourier mode of the product

δ(x,y) = ei2π(nx/L˜1+my/L˜2)η(x,y)η†(x,y) (B.22)

– 16 –



is given by

^0 if m is even 
s-1 2L1/L2e-π2(L21m2+L2n2)/2L˜1L˜2 if m is odd . (B.23)

Notice that δ00 differs from γ00 in a factor s2 which precisely the relation between the area 
of the two torus. The integral is

I2 = w2(x,y) = L˜1L˜2δ00 = L1L2 s2 δ00 = L1L2 γ00 . (B.24)

So
φ†1(x,y)φ2(x,y) = ˜ φ2(x,y)φ†1(x,y). (B.25)
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