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Abstract. The determination of the value of the light neutrino mass, as well as the
determination of the nature of the neutrino, are two of the fundamental questions which motivate
the experimental search of signals of neutrinoless double beta decay transitions. Here, we shall
review some of the the essentials of the theory, based on both nuclear structure and elementary
particle physics, relevant for the understanding of the problem

1. Introduction
Various experiments conducted during the last decade have confirmed the existence of neutrino
oscillations [1]. The experimental findings have therefore confirmed the theoretical notions
advanced by Pontecorvo many years ago. The nature of the neutrino (as a Majorana or
Dirac particle) was not established yet. It requires to pass a more challenging test, that is
the experimental observation of neutrinoless double beta decay [2] and the determination of an
associated lepton-number violating mechanism [3].

The double beta decay is a very rare decay which takes place between nuclei which differ
in two units of charge and that have the same mass number; (A, N, Z) → (A, N ∓ 2, Z ± 2);
and it produces two electrons and two antineutrinos (two-neutrino mode) or just two-electrons
(neutrinoless mode). The two-neutrino mode is allowed by the Standard Model of Electroweak
interactions since it conserves the lepton number, but it is suppressed by kinematical reasons
( e.g.: four leptons in the final state) and it is independent of the neutrino properties. The
neutrinoless mode is by far the most interesting one, because it is forbidden by the Standard
Model of Electroweak interactions (e.g.; it implies lepton number violation), but if it is detected,
it will demonstrate that lepton number is not a fundamental symmetry. The two neutrino mode
has been observed in direct measurements, for a series of nuclei and it has the longest half-life
( ≈ 1020 years ) ever detected directly (that is in a laboratory). The expected half-life for the
neutrinoless mode is even larger, of the order of > 1025 years [2].

The calculation of nuclear matrix elements (NME) for double beta decay (DBD) transitions
is a matter of relevance, both for nuclear and particle physics. We shall referred hereafter to
[4, 5] for details. It seems that a consensus has been reached concerning the order of magnitude
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of the relevant NME [5], and that the reliability of the theoretical estimations of NME has
improved. In this note we review some of the elements which, in our opinion, are crucial to
determine the stability of the results. For details about the calculations we shall refer the reader
to Refs.[6, 7, 8].

2. Neutrino mixing
The relation between flavor (νe,µ,τ ) and mass (ν1,2,3) eigenstates, of the neutrino, assuming light
neutrinos and CP invariance is written




νe

νµ

ντ


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ν2
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
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The elements of the mixing matrix U can be determined from oscillation data, and the mass
eigenstates can be labelled by hierarchies of the mass values (either by adopting a normal
(m1 ≈ m2 < m3), inverse (m3 < m1 ≈ m2) or degenerate (m1 ≈ m2 ≈ m3) values). The square
mass differences δ2

ij = m2
i −m2

j are fixed by solar and atmospheric neutrino-oscillation data data
[1], and the value of the sum of the masses, Ω =

∑
i mi, may be extracted from astronomical

data [9]. The absolute mass scale can be fixed by DBD, once the decay mechanism is determined
by data. The average electron-neutrino mass is written
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miU
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eiλ
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(we assume CP invariance and U13 = 0). The average electron-neutrino mass (in units of eV),
for the best fit-matrix U and for the three mass hierarchies[6] may vary between 0.10 eV and
0.50 eV.

3. Nuclear structure
The mass mode of the 0νββ decay describes the exchange of a light virtual Majorana neutrino
between two decaying neutrons of the initial nucleus. The 0νββ-decay half-life is related to the
effective neutrino mass 〈mν〉 through the relation

[
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)2 (
M (0ν)

)2
, (3)

where G
(0ν)
1 is the leptonic phase-space factor [3]. The 0νββ nuclear matrix element M (0ν)

consists of the Gamow–Teller (GT), Fermi (F) and tensor (T) parts as

M (0ν) = M
(0ν)
GT −

(
gV

gA

)2

M
(0ν)
F + M

(0ν)
T . (4)

The tensor part in (4) is very small, and it can be neglected. The explicit expression of these
matrix elements can be found in [6]. The review of the fundamentals of the currently used
models can be found in [4, 5] and for the sake of brevity we shall focuss here on the spherical
proton-neutron Quasiparticle Random Phase Approximation (pnQRPA) and on the discussion
of the theoretical assumptions may affect the results.
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3.1. The pnQRPA approximation
The pnQRPA consists of the diagonalization of the residual proton-neutron two body interaction
in a subspace of two-quasiparticle (proton-neutron) states. It contains a free parameter, the
particle-particle strength parameter, gpp, that controls the magnitude of the proton-neutron
two-body interactions in the Jπ = 1+ channel [10]. The value of this parameter can be fixed
by fitting the data on the available two-neutrino double beta (2νββ) decay [6] or data on single
beta decay [11]. However, since the correlations which are involved in the NME for two-neutrino
(2νββ) and neutrinoless (0νββ) decays are basically different (see next section), the adjustment
of this parameter to the observed 2νββ may not guarantee the accuracy of the NME for the
neutrinoless DBD mode. The non-physical effects associated to attempts to go beyond the point
of collapse of the proton-neutron Quasiparticle Random Phase approximation (pnQRPA) are
notorious. As a consequence, the results of some extensions , like the pnRQRPA, should be
taken with care.

3.2. Jastrow and UCOM-Short Range Correlations
The average exchanged momentum, carried by the neutrino is of the order of 100 MeV/c, and the
two nucleons tend to overlap. This is a very distinctive feature of the NME for the neutrinoless
double beta decay (the 0νββ NME are relatively large, of the order of 3-5 ) as compared with the
two-neutrino mode ( the 2νββ NME are very small, e.g: ten to hundred times smaller than the
0νββ NME). A suitable microscopic approach for the inclusion of short-range correlations is the
unitary correlation operator method (UCOM). In [7] it was demonstrated that the conventional
Jastrow procedure leads to excessive reductions in the magnitudes of the 0νββ nuclear matrix
elements. For the Jastrow function, the combined action of the exponential and polynomial
factors (which are functions of the relative distance between nucleons) affects the balance
between the negative and positive contributions of the radial part of the two-nucleon wave
function, suppressing the predominantly positive contribution to the nuclear matrix element.
The UCOM correlation function acts upon the surface portion of the two-particle wave function,
thus producing a slighter reduction. A consistent description of short-range correlations should
include, at the same level of approximation, the treatment of the wave functions and that of
the transition operators. This can be achieved by constructing a theory of effective operators.
The differences which emerge from the study of the radial dependence of the NME is another
element to be considered at the time of adopting the adjustment of the parameter gpp.

Here, as illustration of these concepts, we present the results of nuclear-structure calculations
for the 0νββ ground-state-to-ground-state decays of 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te,
and 136Xe [7]. To obtain physical values of the proton-neutron particle-particle interaction
strength, gpp, of the pnQRPA, it was adjusted to reproduce the experimental rates of the
2νββ decay. The fit included the experimental errors and the uncertainty in the value of the
axial-vector coupling constant gA (1.0 ≤ gA ≤ 1.25). The extracted values of gpp and the
corresponding values of gA are listed in Table 1(see [7] for further details).

4. Adjusted single-particle energies and BCS occupation factors
The results of charge-exchange and one particle transfer measurements in A=76 nuclei can be
used as a guideline to adjust single-particle energies and occupation factors [12]. The proton
energies were inspected by using the odd-mass nuclei adjacent to 76Ge and 76Se as spectroscopic
tools [8]. The standard method to determine single-particle energies is to use the Woods–Saxon
mean-field potential in conjunction with spectroscopic data. Small adjustments of the resulting
energies can be done based on the data, particularly by looking at the sequence of energy
levels of odd-mass nuclei in the neighborhood of the nucleus where the pnQRPA calculation are
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Table 1. Calculated 0νββ NME for some of the DBD emitters. The gpp and gA values and the
resulting half-lives t

(0ν)
1/2 , are given in the table. Jastrow (J) and UCOM (U) matrix elements are

given in the last columns. The half-lives t
(0ν)
1/2 are expressed in units of yr/(〈mν〉[eV])2.

Nucleus gpp gA M (0ν)(J) t
(0ν)
1/2 (J) M (0ν)(U) t

(0ν)
1/2 (U)

76Ge 1.02 1.00 5.077 4.0× 1024 6.555 2.4× 1024

1.06 1.25 4.029 2.6× 1024 5.355 1.4× 1024

82Se 0.96 1.00 3.535 1.9× 1024 4.597 1.1× 1024

1.00 1.25 2.771 1.2× 1024 3.722 6.9× 1023

96Zr 1.06 1.00 3.131 1.2× 1024 4.319 6.1× 1023

1.11 1.25 2.065 1.1× 1024 3.117 4.7× 1023

100Mo 1.07 1.00 3.526 1.2× 1024 4.849 6.2× 1023

1.09 1.25 2.737 7.9× 1023 3.931 3.8× 1023

116Cd 0.82 (β− decay) 1.25 3.981 3.5× 1023 4.928 2.3× 1023

0.97 1.00 3.681 1.0× 1024 4.682 6.3× 1023

1.01 1.25 3.034 6.1× 1023 3.935 3.6× 1023

128Te 0.86 (β− decay) 1.25 4.068 9.5× 1024 5.509 5.2× 1024

0.89 1.00 4.279 2.1× 1025 5.841 1.1× 1025

0.92 1.25 3.383 1.4× 1025 4.790 6.9× 1024

130Te 0.84 1.00 4.061 9.5× 1023 5.442 5.3× 1023

0.90 1.25 2.993 7.0× 1023 4.221 3.5× 1023

136Xe 0.74 1.00 2.864 1.8× 1024 3.719 1.1× 1024

0.83 1.25 2.053 1.4× 1024 2.802 7.6× 1023

performed. In [12] the neutron pair correlations in the 76Ge and 76Se nuclei were measured by
(p,t) reactions. As a model space we have used the N = 3 and N = 4 oscillator shells and the
0h11/2 single-particle orbital, both for protons and neutrons. The single-particle energies were
obtained from the Coulomb-corrected Woods–Saxon potential. In Ref. [6, 7, 8] we describe the
details of the systematics.

4.1. DBD-NME results
The calculated NME (0νββ mode), for the decay of some DBD systems are shown in Table 2.

Table 2. NME for neutrinoless DBD transitions from the ground state of the mother nuclei.
The NME are given for two extreme values of the axial-vector coupling gA. The factor C(0ν)

contains the phase space factor and the calculated NME [8].
System NME(gA = 1) NME (gA = 1.25) C(0ν)

76Ge 3.23 5.52 1.36-3.96
82Se 2.77 4.57 0.46-1.24
128Te 3.74 5.62 4.98-11.2
130Te 3.48 5.12 0.24-0.52
136Xe 2.38 3.35 0.53-1.06

The magnitude of the pnQRPA (UCOM) calculated NME is rather close to the shell-model
result. The reason for the reduction of the magnitude of the 0νββ NME, as compared with

XXXV Symposium on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 387 (2012) 012007 doi:10.1088/1742-6596/387/1/012007

4



previous pnQRPA results, can be found by performing the multipole decomposition of the NME
[8]. For the Fermi matrix element the reduction stems from the 0+ intermediate states. For
the Gamow–Teller matrix element M

(0ν)
GT the significant changes concentrate on the 1+ and 2−

contributions. The wave function of the 2−1 state plays a key role when seeking the reason for
the reduction of the magnitude of the Gamow–Teller matrix element.

Concerning the decay of 76Ge, the quality of the lowest 2− state in the intermediate nucleus
76As can be tested by computing the β− decay log ft values for transitions from this state to
the ground state and one- and two-phonon states in 76Se. This transition tests exclusively the
2−1 wave function whereas the rest of the transitions depend also on wave function of the final
state. The single β− decay is a non-trivial way to check the reduction of the 0νββ NME. In
the calculation of [8] the wave function of the 2−1 state is more fragmented and thus reduces the
pnQRPA amplitude responsible for the transitions.

The computed 0νββ NME of Table 2 can be converted to half-life limits,

t
(0ν)
1/2 = C(0ν) × 1024 yr/(〈mν〉[eV])2 (5)

which yield, for an average electron-neutrino mass of the order of 0.1 eV, half-life lower limits
of the order of 1026 years. These limits are of the order of magnitude of the values which may
be accessible to the next generation of DBD experiments.

5. Conclusions
To conclude, we have presented the results of pnQRPA-based calculations of the nuclear matrix
elements involved in the neutrinoless double beta decay, and discuss some of the aspects related
to the sensitivity of the NME. Particularly, we have discussed the use of the available data on
particle transfer to adjust the single particle sector of the calculations, and the sensitivity of the
results upon the method adopted to account for short range correlations.
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