
Groupware for Collaborative
Tailoring

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften
des Fachbereichs Informatik der

FernUniversität in Hagen

vorgelegt von
Lic. Inform. Alejandro Fernandez

Hagen, April 2005



ii

To Analia and Magdalena.



Acknowledgments

Now, while I make the last corrections to this document, I look back and try
to summarize the past years. It was February 2001 when we (my wife and I)
landed in Frankfurt airport. We had clear goal, getting our Ph.d. I just did the
research and the writing; she did everything else. Of course, we received a little
bit of help (well, maybe more than just a bit).

I thank my advisors, Jörg Haake and Adele Goldberg for their continuous
support and guidance.

Thanks Jörg. You are a great boss and advisor. I wish I ever acquire your
ability to explain the most complex concepts with a simple drawing. I wish I
ever have your patience with students and colleagues and your ability to see the
best in them and help them develop it. Your a great motivator.

Adele, what can I say. . . I never imagined I could meet you, and suddenly
you became my fairy godmother. I guess it is partly your fault that I got this
far. You planted the seed of my work (present and future) when you pointed
me to Donald Schön’s work on Reflection in Action, Hutchins work on Dis-
tributed Cognition, Richard Gabriel’s work on Software Habitability, and Peter
and Trudy Johnson-Lenz definition of groupware. I am the luckiest student on
Earth to have you as my teacher, mentor and friend. ”Thanks” will never be
enough.

Anyone who says that Germans are cold and distant, has not met my Ger-
mans. Of course they don’t go around dancing, kissing and hugging. They sim-
ply take you with the families, without much noise, and make you feel at home.
Thanks to the Schuckmanns, the Schümmers (both branches), and the Tandlers.
Thanks to the Kässefondue troupe, to the IViewers and the Go4groupers. I re-
gret of only one thing: I should have taught them more Spanish.

Working in the Concert division of Fraunhofer IPSI as been an experience I
will never forget. Concert taught me the real meaning of the term collaborative
work, with and without computer support. Thanks to all of your for the many
hours of reflection about team work that nurtured my work. I miss the talks we
had in the balcony or by the espresso machine.

Although I was many kilometers away, I never felt far from LIFIA. Gustavo,
thanks for helping me with my lack of self-confidence. Alice, thanks for you
visits in Darmstadt. They helped me feel part of the team. Fede, Richard,
Diego, Diego and Lea, thanks for keeping my chair in the groupware group
warm.

Thanks to my sister for taking good care of my parents while I was abroad.
Thanks to my family in law for letting me take their Precious away.

iii



iv



Abstract

In everyday work, teamwork in the presence of the tools, the resources, and the
processes that enable work is mostly transparent to the workers. They center
their attention on performing work. However, a noticeable change in the work
conditions, in the required quality of the product, or in the perceived results of
work, may be experienced as a breakdown that brings teamwork to the center of
attention. To deal with breakdowns it is currently common practice to include
tailoring facilities in groupware systems. The extent to which these facilities are
provided, and the way in which they are implemented, determine the power users
have to change the groupware system. Determining these facilities has been the
focus of most research on tailorability in CSCW. How collaborative tailoring
(defined as, collaboration for and in tailoring) can be facilitated remains as yet
undetermined.

This thesis tackles the problem of the lack of computer support for dis-
tributed team members that need to perform tailoring in the context of team-
work. The challenge of tailoring in the context of teamwork is to understand
and support the needs of the group members, from the moment they encounter
a breakdown during work until they have enacted the changes they deem nec-
essary.

This thesis is based on the premise of participation as a means to achieve
acceptance of change. The approach to support collaborative tailoring of team-
work presented in this thesis consists of a method for collaborative breakdown
handling, a selection of specific groupware tools to be used for the deliberation
activities defined by the method, and guidance in the form of scaffoldings for
the application of the method. Breakdowns can also occur during tailoring. To
deal with breakdowns that occur during tailoring, the method, the tools, and
the scaffolding can be tailored. The proposed support for collaborative tailor-
ing of teamwork is delivered as a stand-alone groupware system for collaborative
tailoring. The system can be deployed along existing groupware systems, thus
extending them with support for collaborative tailoring.

This thesis exceeds related work by approaching tailoring of teamwork as a
social system with a model that explains tailoring as the result of collaborative
breakdown handling. The requirements of communication, collaboration, co-
operation and coordination, and negotiation observed in the social system are
supported by the corresponding technical system. The approach in this thesis
is not limited to its application in a particular scenario or groupware system.
The only requirement is that the target system/scenario can be tailored. The
approach has been conceived to enable and support its own evolution as the
result of its tailoring.

v



vi



Contents

1 Introduction 1

2 Problem Analysis 7
2.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Virtual Organization . . . . . . . . . . . . . . . . . . 7
2.1.2 The Product of Work . . . . . . . . . . . . . . . . . . . . 8
2.1.3 A Work Process . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Tools and Resources . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Breakdowns: a Driver of Change . . . . . . . . . . . . . . 11

2.2 Teamwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 The Distributed Team . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Focusing Communication . . . . . . . . . . . . . . . . . . 17
2.2.3 The Product of Teamwork . . . . . . . . . . . . . . . . . . 18
2.2.4 Work Processes, Resources, Tools, and Communication . 18

2.3 Collaborative Tailoring of Teamwork . . . . . . . . . . . . . . . . 20
2.3.1 Teamwork Support for Breakdown Handling . . . . . . . . 22
2.3.2 Triggering Breakdown Handling . . . . . . . . . . . . . . . 24
2.3.3 Definition of the Breakdown . . . . . . . . . . . . . . . . . 25
2.3.4 Diagnosis of the Breakdown . . . . . . . . . . . . . . . . . 26
2.3.5 Design of a Solution . . . . . . . . . . . . . . . . . . . . . 30
2.3.6 Treatment of the Breakdown . . . . . . . . . . . . . . . . 32
2.3.7 Follow-Up Evaluation . . . . . . . . . . . . . . . . . . . . 32
2.3.8 Summary of Requirements . . . . . . . . . . . . . . . . . . 33

3 State of the Art 35
3.1 Tailorable Groupware . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Understanding Tailoring . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Collaboration in Tailoring . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Approach 43
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Guidance and Coordination Support . . . . . . . . . . . . . . . . 47

4.2.1 The Specification of the Method . . . . . . . . . . . . . . 47
4.2.2 The Scaffolding Server . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Triggering Breakdown Handling . . . . . . . . . . . . . . . . . . . 63
4.3.1 Presentation of the Method . . . . . . . . . . . . . . . . . 63

vii



viii CONTENTS

4.3.2 Overview of the Triggering Phase . . . . . . . . . . . . . . 64
4.3.3 Participant: Reporter . . . . . . . . . . . . . . . . . . . . 65
4.3.4 Participant: Moderator . . . . . . . . . . . . . . . . . . . 66
4.3.5 Activity: Report . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.6 Artifact: Breakdown Report . . . . . . . . . . . . . . . . . 67
4.3.7 Tool: Breakdown Landscape . . . . . . . . . . . . . . . . 69
4.3.8 Activity: Weight . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.9 Activity: Publish . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.10 Activity: Aggregate . . . . . . . . . . . . . . . . . . . . . 77
4.3.11 Activity: Select . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.12 Participant: Manager . . . . . . . . . . . . . . . . . . . . 79
4.3.13 Tool: Breakdown In-box . . . . . . . . . . . . . . . . . . . 79
4.3.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Defining the Breakdown . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 Overview of the Definition Phase . . . . . . . . . . . . . . 87
4.4.2 Activity: Invite . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.3 Participant: Contributor . . . . . . . . . . . . . . . . . . . 89
4.4.4 Artifact: Effort Estimate . . . . . . . . . . . . . . . . . . 91
4.4.5 Activity: Estimate Effort . . . . . . . . . . . . . . . . . . 91
4.4.6 Tool: Co-Estimation Tool . . . . . . . . . . . . . . . . . . 92
4.4.7 Generic Architecture for Loosely Coupled Deliberation

Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.8 Tool: Breakdown Landscape (continuation) . . . . . . . . 98
4.4.9 Activity: Evaluate Relevance . . . . . . . . . . . . . . . . 102
4.4.10 Artifact: Relevance Evaluation . . . . . . . . . . . . . . . 102
4.4.11 Tool: Co-Evaluation Tool . . . . . . . . . . . . . . . . . . 103
4.4.12 Activity: Decide . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.13 Tool: Voting Tool . . . . . . . . . . . . . . . . . . . . . . 106
4.4.14 Activity: Collect Support . . . . . . . . . . . . . . . . . . 106
4.4.15 Activity: Abandon . . . . . . . . . . . . . . . . . . . . . . 107
4.4.16 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Conducting the Diagnosis of the Breakdown . . . . . . . . . . . . 108
4.5.1 Overview of the Diagnosis Phase . . . . . . . . . . . . . . 108
4.5.2 Activity: Contribute Forces . . . . . . . . . . . . . . . . . 108
4.5.3 Tool: Breakdown Landscape (Continuation) . . . . . . . . 110
4.5.4 Artifact: Breakdown Diagnosis . . . . . . . . . . . . . . . 120
4.5.5 Activity: Call for Contributors . . . . . . . . . . . . . . . 122
4.5.6 Activity: Weight Forces . . . . . . . . . . . . . . . . . . . 122
4.5.7 Tool: Co-Scale . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.8 Activity: Identify Causes . . . . . . . . . . . . . . . . . . 127
4.5.9 Tool: Cause Finder . . . . . . . . . . . . . . . . . . . . . . 127
4.5.10 Activity: Review Diagnosis . . . . . . . . . . . . . . . . . 130
4.5.11 Activity: Log effort . . . . . . . . . . . . . . . . . . . . . . 131
4.5.12 Artifact: Effort Log . . . . . . . . . . . . . . . . . . . . . 132
4.5.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.6 Designing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.6.1 Overview of the Design Phase . . . . . . . . . . . . . . . . 134
4.6.2 Activity: Develop Alternatives . . . . . . . . . . . . . . . 134
4.6.3 Artifact: Teamwork Alternatives . . . . . . . . . . . . . . 136
4.6.4 Tool: Breakdown Landscape (continuation) . . . . . . . . 138



CONTENTS ix

4.6.5 Participant: Editor . . . . . . . . . . . . . . . . . . . . . . 139
4.6.6 Activity: Recruit . . . . . . . . . . . . . . . . . . . . . . . 139
4.6.7 Activity: Select Candidates . . . . . . . . . . . . . . . . . 143
4.6.8 Activity: Choose Solution . . . . . . . . . . . . . . . . . . 144
4.6.9 Activity: Request Diagnosis Review . . . . . . . . . . . . 144
4.6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.7 Treating the Breakdown . . . . . . . . . . . . . . . . . . . . . . . 146
4.7.1 Overview of the Treatment Phase . . . . . . . . . . . . . . 146
4.7.2 Activity: Delegate Execution . . . . . . . . . . . . . . . . 146
4.7.3 Activity: Tailor . . . . . . . . . . . . . . . . . . . . . . . . 147
4.7.4 Artifact: Tailoring Report . . . . . . . . . . . . . . . . . . 148
4.7.5 Activity: Document Change . . . . . . . . . . . . . . . . . 148
4.7.6 Tool: Breakdown Landscape (Continuation) . . . . . . . . 149
4.7.7 Activity: Log effort . . . . . . . . . . . . . . . . . . . . . . 150
4.7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.8 Evaluating the Solution . . . . . . . . . . . . . . . . . . . . . . . 151
4.8.1 Overview of the Evaluation Phase . . . . . . . . . . . . . 151
4.8.2 Activity: Evaluate . . . . . . . . . . . . . . . . . . . . . . 151
4.8.3 Artifact: Evaluation Report . . . . . . . . . . . . . . . . . 152
4.8.4 Activity: Close or Reschedule . . . . . . . . . . . . . . . . 152
4.8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5 Implementation 155
5.1 Implementation Architecture . . . . . . . . . . . . . . . . . . . . 155
5.2 Scaki: the Scaffolding Server . . . . . . . . . . . . . . . . . . . . 155
5.3 Breakdown Landscape . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4 Lightweight Framework for Loosely Coupled Deliberation Tool . 161

5.4.1 Breakdown In-box . . . . . . . . . . . . . . . . . . . . . . 161
5.4.2 CoScale Tool . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Usage Experience 163
6.1 Early Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 A Communication Breakdown: Counterproductive Pride . . . . . 165

6.2.1 Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2.3 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2.5 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3 Handling Level B Breakdowns . . . . . . . . . . . . . . . . . . . . 170
6.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.1 The Groupware . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Conclusions 175
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 175
7.2 Comparison to Related Work . . . . . . . . . . . . . . . . . . . . 176
7.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography 178



x CONTENTS

A Selected Publications 185



Chapter 1

Introduction

The goal of CSCW–Computer Supported Collaborative Work–is both to study
how people work together using computers and how computers can be used to
improve how people work together. Ultimately, CSCW researchers attempt to
change work habits through the introduction of computer-based systems. These
systems are typically called ”groupware”[38]. Their invention is a challenge be-
cause the very nature of working together continually changes as a consequence
of changing work needs, but also as a consequence of how the systems themselves
tend to change work relationships and processes. Systems must themselves
adapt to reflect the inevitable and often unpredictable differences between the
requirements of support for collaborative work documented during analysis and
the actual requirements. Tailoring refers to continued development of an ap-
plication by making persistent modifications to it [30]. Tailoring is initiated
in response to an application being inefficient or difficult to use. It can occur
during installation, before use, or during use. It involves users and developers
[42]. This thesis asks the question of how to design our systems to adapt to
change, not automatically, but rather through the team’s negotiated tailoring
of its work processes, communication, resource management, and production of
work results? Can we provide people working together with the ability to tailor
their own teamwork and, in doing so, create effective tailored groupware?

In everyday work, teamwork in the presence of the tools, the resources, and
the processes that enable work is mostly transparent to the workers. They center
their attention on performing work. However, a noticeable change in the work
conditions, in the required quality of the product, or in the perceived results of
work, may be experienced as a breakdown that brings teamwork to the center of
attention. That is to say, a change may drive workers to reflect about teamwork.
Heidegger 1 demonstrated that, while performing work, the presence of objects
and properties of the world is transparent to the worker. Only in the event of a
breakdown do some of these objects and properties become visible and demand
attention.

Workers’ inability to understand what to do can also motivate reflection.
Hettinga [32], in her research on evolutionary use of groupware, explores these
triggers of reflection and labels them ”breakdowns”. A breakdown signals a
mismatch between teamwork and what workers expect it to be. A breakdown

1See Winograd and Flores[76] for a discussion of Heidegger’s work in the context of com-
puters and cognition.

1



2 CHAPTER 1. INTRODUCTION

represents an opportunity for tailoring, a time when team members have the
opportunity to make teamwork conformant with a new situation.

A breakdown sends a signal that is potentially perceived by many group
members in different ways. Whether someone realizes the occurrence of a break-
down and how depends on each individual. How a person participates in work;
how tools, resources, and processes support the work of each participant; and
what each individual participant brings to work from professional experience,
are all factors that affect the perception of a breakdown. Similarly, the changes
that need to be made to solve the perceived problem will affect each worker’s
ability to do work differently. Negotiating on the basis of these differences
contributes to an increased likelihood of acceptance of the changes. If people
collaborate to agree on a change (both its what and its how) they are more
likely to implement the change.

It is currently common practice to include tailoring facilities in groupware
systems. Anders Mørch [42], et al., identifies three forms of groupware tailor-
ing2: customization, integration, and extension. Customization is defined as
the capability to modify the appearance of presentation objects or to change
their attributes by selecting from a set of predefined options. Integration is
defined as the capability to add new functionality without accessing the under-
lying implementation code. Extension is defined as the capability to improve
the functionality of an application by adding new code. The extent to which
these capabilities are provided, and the way in which they are implemented,
determine the power users have to change the groupware system. Determining
these capabilities has been the focus of most research on tailorability in CSCW.
As it has been previously indicated, tailoring of teamwork requires collabora-
tion. How collaborative tailoring (defined as, collaboration for and in tailoring)
can be facilitated remains as yet undetermined. An approach that supports
collaborative tailoring must, at least, provide the following capabilities:

• To be able to discuss and reach a shared understanding about the way
work is currently done and the perceived problems;

• To be able to share and discuss ideas about how work may be done in the
future to solve the perceived problems; and

• To be able to identify and agree on a course of action that takes the way
work is done from the current to the desired situation.

These capabilities allow users to collaboratively reflect on teamwork; to col-
laboratively agree on changes in tools, resources, processes, or communication;
and to collaboratively plan and execute changes. Figure 1.1 depicts the discus-
sion so far.

Being able to tailor and having support for collaboration during tailoring
does not complete the picture of collaborative tailoring. The expectations that
motivated tailoring in the first place—to provide support that matches user’s
needs, and to provide support that evolves as these needs evolve—apply to the
tailoring facilities themselves. Although it would be possible, for example, for
the designers of a groupware system to provide an initial set of generic techniques
for collaborative tailoring, they would hardly match the user’s needs in the long

2The paper provides a comprehensive discussion regarding the different, and often contra-
dicting uses of the term tailoring and of other related terms.



3

Figure 1.1: Tailoring teamwork

term. Firstly, successfully enabling users to discuss their work depends on the
particular users, the way they participate in work, their professional experiences,
and their preferences. Any one particular model of user structure, relationship
and interaction can represent a source of problems (if not initially, certainly as
the group structure changes with the incorporation of new members). Secondly,
because as users learn to tailor, their expectations increase, and they may want
to change their ways of tailoring. This change in needs renders the support
provided by the system insufficient or at least inadequate.

Douglas Engelbart [23] studied the problem of organizational improvement
and proposed a model that is applicable in this context. He identified three levels
of capabilities. Level A comprises all capabilities that support the core business
activities in an organization. Capabilities in level B support the activities that
aim at improving capabilities in level A, notably, level B includes the capabilities
for improving how work at level A is performed. Capabilities in level C provide
a boost to this model by focusing on the improvement of the improvement
capabilities. In this way, he points out that it is not enough to be able to
improve work, but it is also necessary to be able to observe how improvement
takes place, and then improve how to improve.

Figure 1.2 combines the previously presented view of collaborative tailoring
with Engelbart’s model. The activities in everyday work are supported by level
A capabilities (these are the activities supported by traditional groupware). A
breakdown that occurs in relation to an everyday activity (in level A) moves
the context of discussion to level B. In level B, group members discuss ways
to improve what happens in everyday work. Tailoring how work is done (this
includes tailoring the groupware) is therefore a level B capability. Software
to support the activities on level B takes the form of groupware to support
collaborative tailoring.

At some point while working together to tailor, group members may realize
that these collaboration facilities for tailoring are not enough or are inadequate
(e.g., the process of tailoring they follow does not match the structure or needs
of their organization). This realization brings the support for collaborative tai-
loring to the center of attention. If they are to continue tailoring work (changing



4 CHAPTER 1. INTRODUCTION

Figure 1.2: Collaborative tailoring in Engelbart’s levels B and C

how activities occur in level A), they first need to get rid of the problems they
encountered in level B. This breakdown takes them to level C, which in turn
means they need to tailor how they tailor everyday work. The capabilities that
were required to improve work become a requirement to improve the tailoring
support:

• The capability to discuss and reach a shared understanding about how
they currently tailor work, and about the perceived problems.

• The capability to share and discuss ideas about how tailoring may be done
in the future to solve the perceived problems.

• The capability to identify and agree on a course of action that takes col-
laborative tailoring from the current to the desired situation.

Tailoring at level C may also be an activity supported by groupware.

Problem Statement

This thesis tackles the problem of the lack of computer support for distributed
team members that need to perform tailoring in the context of teamwork. The
challenge of tailoring in the context of teamwork is to understand and support
the needs of the group members, from the moment they encounter a breakdown
during work until they have enacted the changes they deem necessary. Any
contribution in this area will act as a multiplier for the value of existing tailoring
capabilities.



5

This thesis aims at the following contributions:

1. It proposes a conceptual view of collaborative tailoring of teamwork, cen-
tered on the existence of multiple perspectives and the occurrence of break-
downs.

2. It presents an approach to support collaborative tailoring of teamwork.

3. It provides a proof of concept of the recommended approach in the form of
a groupware environment that supports collaborative tailoring of everyday
practice according to the definition proposed here. In addition, the system
supports collaborative tailoring of the team’s tailoring practices and is
itself tailorable. The approach hypothesizes two levels of reflection on
how a team works together, and the exemplar groupware environment
provides the context in which to apply work improvement practices and to
then improve those very practices (thereby supporting effort at Engelbart’s
level C).

4. It validates the proposed approach through case studies of tailoring in real
organizations.

Approach of This Thesis

This thesis is based on the premise of participation as a means to achieve ac-
ceptance of change. This premise and the context in which it is used are the
focus of Chapter 2. Section 2.1 presents a scenario to illustrate where collabo-
rative tailoring is found. The elements in the scenario, namely work processes,
resources, tools, and communication are discussed in detail in Section 2.2. Sec-
tion 2.3 is then a discussion of tailoring in the context of Engelbart’s levels of
improvement. The discussion leads to a set of capabilities that enable a group
to tailor teamwork (documented as teamwork requirements).

Chapter 3 presents the state of the art. A discussion of what has being done
regarding the development of tailorable support for teamwork situates this work
in the context of related research on groupware tailorability. The picture of
related work is completed with a review of existing research regarding the role
of collaboration in tailoring.

As presented here, collaborative tailoring is another activity for the dis-
tributed work group. As such, it becomes the target for computer support.
Chapter 4 presents a conceptualization of teamwork (targeting processes, tools,
artifacts and communication) to support collaborative tailoring and a prototyp-
ical implementation of a groupware system that embeds this approach.

The lessons learned while defining, developing, and using teamwork for col-
laborative tailoring tell something about the design of groupware in general.
These lessons are summarized before presenting conclusions and suggesting fu-
ture lines of research.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Problem Analysis

2.1 Scenario

The scenario documented in this Section describes a fictitious, distributed, soft-
ware engineering organization. The core of the scenario consists of a description
of breakdowns that the organization’s members experienced. Section 2.2 char-
acterizes teamwork in the context of similar organizations. Following, Section
2.3 recalls the scenario to present the conceptual view of collaborative tailoring
that serves as the basis for the thesis, listing the requirements that the proposed
groupware system needs to fulfill.

The scenario is motivated by the author’s experience as a software engineer,
and is based on experiences collected and documented by many others. Despite
being imaginary, the breakdowns are inspired by the problems approached by
published software engineering practices, such as Extreme Programming [12],
and well-known organizational patterns so as to validate the scenario as realistic.

2.1.1 The Virtual Organization

Communication technology such as the Internet has been a booster for the
emergence of virtual organizations [57]. Clustered Solutions is a fictitious vir-
tual organization for the production of software for distributed work teams.
Clustered Solutions acts as an umbrella for a cluster of existing organizations
in the area of research, development, and consulting. Each of the participating
organizations, Celsius, Globe, and Aconcagua, has a different strength that de-
fines its role in the cluster. By being part of the cluster, the three companies
increase their chances of success in the market. Figure 2.1 shows how Clustered
Solutions is organized in a structure of teams from the three companies. Each
team provides a core service or competence.

Celsius is a Swedish consulting company in the pharmaceutical industry.
Celsius has produced software for many middle-sized companies in Sweden and
Norway. During the last years, Celsius has observed a growing interest among
its clients in forming strategic alliances with other pharmaceutical companies
in Europe. This interest translates to an increasing number of requirements
for software to support distributed teams. The role of Celsius as a member
of the virtual organization is to act as a link to the market and as a domain
expert. Celsius additionally contributes with a small (three-person) software

7



8 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.1: Team structure of Clustered Solutions.

development team devoted to software maintenance and support desk. Celsius
takes care of marketing and commercialization.

Globe is a German research institute with focus on the conception, devel-
opment, and evaluation of methods and software to support distributed work
teams. Globe plays a double role in the virtual organization. First, Globe con-
tributes with the method and the tools that support the function of the virtual
organization. Second, Globe contributes with expert knowledge about the needs
of distributed work teams, and with experience in supporting these needs with
computers. Additionally, Globe takes care of managing the work of the virtual
organization.

Aconcagua is a young software development company in Argentina. It orig-
inated as a spin-off of a research institute with a strong knowledge in object-
oriented software engineering. In the past years, Aconcagua has provided off-
shore software development for many North American and European customers.
Additionally, the economical situation of the country makes Argentina an at-
tractive alternative for high quality, low cost software development. Aconcagua
provides the core development force of Clustered Solutions.

2.1.2 The Product of Work

Clustered Solutions’ strategy for product development is to exploit the com-
monalities of distributed work supported by computers across different domains.
These commonalities inspire the development of generic services that are later
customized to match the needs of particular customers. Depending on the
amount of customization needed, the customization work is delegated to the
core development team or to the maintenance team.

”Wisdom bricks” is a good sample of a system developed by Clustered So-
lution. It is a system to support training and continuing education in the work-
place through mentoring and collaboration among peers. The strategy behind
the development of the system is the creation of a set of reusable, self contained
bricks that can be used to assemble a virtual company’s training infrastructure.
Figure 2.2 provides a coarse level overview of the systems’ architecture.

The users have access to the system through a web-browser. The learning
material and activities is accessible through a unifying portal. The main com-



2.1. SCENARIO 9

Figure 2.2: Coarse level overview of the systems’ architecture.

ponents of the system are the portal, the repository of learning material, the
community services, and the collaboration server.

The repository of learning material is provided as a collaborative hypermedia
implemented on a variation of the WikiWikiWeb system [45]. The learning
material is created and continuously enriched by expert trainers, mentors, and
students.

Learners are teamed up with other learners. A mentor is assigned to each
small team to serve as a guide through the material and exercises. Building up
teams is one of the purposes of the community services subsystem. It addition-
ally provides access to discussion forums, instant messaging, shared calendars,
and shared file repositories. Mentors have the important role of showing how
the learning material reflects the organization’s history. To serve this purpose,
learning material can include hyperlinks to documents from past projects, which
are available from the organization’s intranet.

A set of collaboration tools are made available to enable employees to learn
at the workplace, working in tight collaboration with peers and with a mentor.
The collaboration server serves the tools, which are started via links in the
learning material via Sun’s Java Webstart. Two types of tools are available,
namely, generic collaboration tools such as a shared whiteboard and coupled
web-browsing, and dedicated collaboration tools which are specifically developed
to support collaborative learning of a particular concept.

The collaboration server is under constant development. New generic and
dedicated tools are developed based on the demands of the customers and on
the visions of the research division. A framework hides implementation details
and provides developers with high-level abstractions that ease the creation of
tools. The experience from the development of tools feeds the improvement of
the framework that is periodically released.

2.1.3 A Work Process

The master plan of Clustered Solution dictates that the activities of the organi-
zation are to be planned on a half-yearly basis. Representatives from the three
companies and from each of the work teams meet at the beginning of the period
in a coordination meeting to agree on that period’s plan. Work is organized in
concurrently running projects in the areas of research and innovation, product



10 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.3: Action plan for the C-Browser project.

development, marketing, and improvement. During the coordination meeting,
which can start as a virtual meeting weeks before the face-to-face meeting takes
place, project proposals are developed, evaluated, and selected.

An accepted proposal created by the area of product development aims at
the development of a generic coupled-browser, named the C-Browser, which was
previously postponed. In addition, it proposes to use this opportunity to refac-
tor the framework. The objective of the refactoring is to improve integration of
collaboration tools in customer companies’ existing groupware infrastructure.
Figure 2.3 presents a coarse action plan. A review of the state of the art in
groupware infrastructures commonly found in companies feeds a proposal for
refactoring. The effort for the development of the C-Browser is estimated based
both on the framework without refactoring, and on the expected characteristics
of the refactored framework. The results of the effort estimation and an assess-
ment of the potential impact that refactoring would have on existing tools are
used to decide how to proceed with the project. If the effort/benefit ratio of
refactoring the framework is not convincingly positive, the refactoring will be
canceled and the C-Browser will be developed with the framework as it is. Oth-
erwise, the development of the C-Browser and the refactoring of the framework
will be conducted in tightly coordinated weekly cycles (i.e., Scrums).

Two developers from Aconcagua are assigned to the C-Browser. The creator
of the framework is the only one authorized to change the framework.

2.1.4 Tools and Resources

Distributed teamwork in Clustered Solutions is supported by a set of traditional
groupware tools. CVS, the version control system, is used to store all work
documents as well as source code for systems developed by the organization.
The infrastructure additionally provides a shared address book, discussion areas,
instant messaging, calendar, and application sharing.



2.1. SCENARIO 11

Interaction with the customer is usually performed via an issue report sys-
tem. The issues documented with the system are a valuable resource for the
customer support team, for the maintenance team, and for the development
team.

The structure of the document repository was specified at a coordination
meeting. The organization of the source files in packages and folders is fixed
at the start of each project. The framework is a key resource for system devel-
opment. It is kept in a separate module in the CVS repository. The structure
of the framework module reflects the different subsystems and layers of the
framework.

2.1.5 Breakdowns: a Driver of Change

The following breakdowns occurred during the execution of the project for the
development of the C-Browser and the refactoring of the framework that was
described in the previous sections.

Collective Code Ownership

It was decided that the refactoring of the framework would take place. For
the last three weeks, the refactoring of the framework and the development of
the C-Browser proceeded in concert. At the beginning of each scrum, the tool
developers choose the requirements to be implemented in the week that starts.
Additionally, they feed the framework developer with ideas for refactoring they
had during the previous scrum. The framework developer releases a new version
of the framework, explains the changes that were made, and selects the next
target changes.

At the beginning of the fourth week, the developers of the C-Browser expe-
rience problems adapting the code to work with the new release of the frame-
work. Integration takes two days, forcing the team to postpone some of the
requirements of the C-Browser to the next scrum. In an informal meeting, the
developers of the C-Browser discuss the possibility that this problem will reap-
pear and informally assess the cost of a recurrence. For the developers, this is
an issue that requires attention, therefore they decide to bring up the topic in
the next scrum coordination meeting.

After the C-Browser developers talk about the cost of integrating the last
release of the framework, it is clear that the effort was beyond the expectations
of the original plans. The framework developer perceives the discussion as an
attack. For the framework developer, the framework is far more important than
any tool; when the framework is finished, all tools will see the benefits. A local
manager moderates the discussion and helps the others realize that each of them
is partially correct. The conversation continues, driving to the conclusion that
the cost of ignoring the problem is too high.

Initially, the problem is defined by the symptom that was observed: ”exces-
sive integration effort required”. Further analysis reveals the probable causes
of the problem that should be examined to understand any possible solutions.
The following list enumerates the most relevant of these causes.

1. The amount of changes that can be made to the framework in a week are
too much to integrate.



12 CHAPTER 2. PROBLEM ANALYSIS

2. A simple requirement for the framework that tool developers find on the
first day of the scrum needs at least a week to be implemented by the
framework developer.

3. One week is an adequate time frame for a scrum; smaller scrums add too
much coordination overhead.

4. The refactoring of the framework needs continuous feedback from tool
developers; they know the framework and represent the main source of
requirements. The importance of the relation between the framework
development and immediate use of the framework contradicts any proposal
to do the framework refactoring more independently.

5. If every team member can contribute to the development of every piece of
software, expertise bottlenecks are minimized, and the idle time waiting
for new features can be reduced. However, it could bring along a loss of
control that negatively affects the results. In contrast, having well defined,
separated responsibilities regarding code editing increases control but also
increases idle time and introduces expertise bottlenecks.

The three developers and the local manager exchange e-mails for two days
trying to figure out how to proceed. An e-mail with a proposal motivates a
counter-proposal that brings up new issues. Follow-up proposals try to consider
as many issues as possible, focusing on what seems to be more important. By the
end of the second day, the discussion seems to converge. The proposal suggests
keeping the one week scrums, and to have the three developers form one single
team. At the beginning of each scrum, the three developers will choose the
requirements for the framework and for the tool. Any developer can modify the
framework under the conditions that unit test coverage for the framework must
always be over ninety percent, and only running code will be committed to the
CVS repository. Integration will be done on a daily basis, at the end of the day.

The three developers and the local manager consider that the proposed so-
lution has the potential to simplify the work of integration, while at the same
time speed up the process of implementing the requirements that tool develop-
ers have for the framework. The framework developer is not very happy with
losing absolute control of the framework, but nonetheless commits to contribute
to the plan.

To implement the solution, all developers need to be given commit access to
the framework module in the CVS repository. However, for the time being, the
change is only relevant for developers using the new releases of the framework.
A daemon process is included to report the results of the unit tests, specially
highlighting the levels of code coverage. Before the solution is implemented,
the local manager e-mails the management team at Globe to provide a detailed
report of the issue and the proposed solution. Once the management team gives
the OK, the solution is implemented.

All developers, including those from the maintenance team, are informed
of the new work policy. The maintenance team expresses happiness about the
change, because it means that in the future they will be able to fix certain bugs
in the framework without the need to delegate all the work to the development
team with the delays caused by such delegation. Moreover, they commented
that such a way of working is commonly called Collective Code Ownership. Had



2.1. SCENARIO 13

they been invited to the discussion, they would have suggested this approach and
would have reported on successful experiences in the application of Collective
Code Ownership at Celsius.

The handling of the breakdown changes the flow of work. The previously
independent tasks of tool development and framework development now form
a single task called ”develop scrum”, to which all developers are assigned. The
process now includes a daily integration task. Setting test coverage to a min-
imum of ninety percent raises the standards of the programming tasks. The
adoption of Collective Code Ownership changes the distribution of roles and
responsibilities. The daemon process, a new tool, is included.

Coding Conventions

On a given day, one of the developers at Aconcagua triggers discussion about
the lack of homogeneity that the code has acquired in the last weeks. It is
difficult to infer the goal of methods and the semantics of the object’s properties.
Code became harder to read and modify. This slowed down development and
jeopardized quality. This is specially noticeable during pair programming and
during refactoring. When looking at the differences between source files during
integration, many changes are simply layout and have no functional impact.
These simple changes consume effort for integration because they still need to
be carefully compared.

The organization employs Collective Code Ownership as a result of a decision
made after a prior breakdown. Any developer can change any line of code to
add functionality, fix bugs, or refactor. The representation shown in Figure 2.4
is used by the organization to display the key elements of the currently used
development practices in meetings or discussions. The developer that triggered
the discussion about code homogeneity used the diagram to mark the parts of
the work practices where the problem seems to appear.

Developers at Aconcagua know from past experience that it is wise to invite
the team at Celsius to any discussion about work breakdowns. They start to
discuss the problem via e-mail. Some of those in the discussion decide to include
in their reply-to-all e-mails other organization members they think would be
interested in participating or who could make a useful contribution. In a short
time, the discussion grows to involve a group of developers and researchers from
the three institutions. The size of the group that engaged in the discussion
seems to confirm the relevance of the problem. The infrastructure team prepares
a discussion forum on the issue, and invites everyone who participated in the
initial interactions.

An Argentinian developer on a stay at Celsius points out that the problem
may be caused by the different backgrounds of all developers. Most developers
at Aconcagua started programming Pascal, then moved to Smalltalk, and now
program in Java. Their Java code has a mixed Pascal-Smalltalk flavor. In
contrast, developers at Celsius come from a C++ background. Their Java code
looks just like C++.

One of the youngest team members points out that this is a common problem
whose sources have been discussed and documented in several places. She refers
the others to Jeff Langr’s book Essential Java Style [43]. An experienced Java
developer contributes a WWW link to Sun Microsystems’ Code Conventions
for the Java Programming Language [1]. Moreover, he comments that many



14 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.4: A representation of collective code ownership adapted from [72].
Key elements for a breakdown have been marked.

development tools provide mechanisms to format and check compliance with an
agreed upon coding style. After a short period of discussion, most team members
share the opinion that they are confronting a communication breakdown (where
communication takes place through source code) and that a coding standard
would help.

Some hours after the discussion started, a proposal argues for the adoption
of Sun’s conventions. After a short conversation about the positioning of open-
ing curly brackets, those in favor of a Pascal style (Sun’s conventions favor C
style) accept that this detail is not worth the effort of documenting alterna-
tive guidelines. Sun’s guidelines are adopted. All team members agree to code
according to Sun’s guidelines.

In order to ensure that the coding conventions are followed, a code check
process is run before every commit to the code repository. On every attempt
to commit, the process checks the code against a specification of the convention
and generates a report. Code that does not follow the convention will not be
committed.

Handling the breakdown changes how work is carried out. The definition
of the programming tasks is extended to included the need to follow coding
conventions. A link to Sun’s coding conventions now appears as a resource for
all programming tasks. The set of supporting tools now includes the check-style
daemon.

Initially, the breakdown seems to be relevant only for the developers. How-
ever, as the coding conventions need to be enforced, the participation of the
project managers became important. These managers contributed with an es-
timate of how measures of coding conventions can adversely affect the organi-



2.1. SCENARIO 15

zation, notably how these rules could be received by less agile team members.
Consequently, the managers offer a compromise solution for the incremental
introduction of the standards in order to reduce initial effort and personnel
conflicts. They propose to retain existing nonconforming code in those cases
where the implementation stays substantially unchanged (where the definition
of ”substantially” is left up to the common sense of the developers).

Six weeks after the decision, the approach seems to be proceeding positively.
The parts of the software system that are actively developed evolve towards
full compliance to the guideline. Those parts that were already mostly finished
when the breakdown was perceived stayed mostly unchanged. However, the
breakdown did not recur because these finished parts of the system were seldom
explored.

The breakdown started as an issue from one of the developers. Soon, other
developers acknowledged the problem and started contributing to a discussion.
As the discussion evolved towards a need to set up organization-wide rules,
project managers felt the need to contribute. Discussion went through the
phases of defining the impact of the problem, making a diagnosis of what the
causes of the problem could be (based on knowledge of similar problems being
already documented by others), evaluation of alternatives to approach the prob-
lem (also based on already documented solutions), and implementation of the
chosen alternative.

The following list enumerates the main forces that those who participated
in the original event acknowledged in a later meeting. The term ”force” is used
in the way Christopher Alexander [5, 4] introduced it to document the ”system
of forces” that form the problem or goal approached by a pattern, and as it was
later adopted to document the problems approached by software design patterns
[26]. Forces are the concerns that make the problem a problem, and must be
taken into consideration in any solution. The forces of a pattern document the
trade-offs, goals and constraints, and motivating factors/concerns that make-up
the problem and its solution. Forces document why the problem is difficult.
[51].

Force 1: Source code is a means of communication. It communicates intent
and approach. The reader can be the original developer or someone else.

Force 2: In an environment that includes several organizational cultures, id-
ioms that are particular to only one culture can make communication
difficult for others.

Force 3: In some cases, idioms empower communication within the culture to
which they belong (e.g., usage of i++ instead of i = i + 1 when both are
applicable).

Force 4: Collective code ownership requires code to be readable and modifiable
by other than the original creator.

Force 5: CVS (the version control system) does not differentiate layout changes
from more significant changes.

Force 6: IDEs (Integrated Development Environments) provide functionality
to automatically format entire source code files or parts of it following a
well-defined style.



16 CHAPTER 2. PROBLEM ANALYSIS

Force 7: Enforcing one unique style can help communications. However, hav-
ing a unique style in an environment that includes several organizational
cultures requires that some subgroups agree to abandon the use of idioms
and/or to adopt the idioms of other subgroups.

Force 8: Having the opening bracket in the same line generates more compact
code.

Force 9: Having the opening bracket in a new line makes it easier to identify
the start and end of the method or class.

Force 10: Modifying a file only to accommodate to a coding style introduces
unnecessary effort and risk.

Force 11: Refactoring is a good opportunity to reformat code to make it com-
pliant to a particular style.



2.2. TEAMWORK 17

2.2 Teamwork

Work processes, resources, tools, and communication enable the distributed
team to collaboratively develop the product. In Chapter 1, the term ”team-
work” was introduced to label this phenomenon. Section 2.1 presented a moti-
vating scenario of teamwork in the context of a distributed, software engineering
organization. This section discusses teamwork at a more abstract level in more
detail. Where necessary, the domain of discourse is narrowed to the part of
interest for this thesis: gaining a representation of teamwork that can be used
in handling breakdowns during work in the context of a groupware system.

2.2.1 The Distributed Team

This thesis looks at a distributed software engineering team that works in a
coordinated manner to produce a software system. The characteristics of the
product being produced introduce the need for participation of people from dif-
ferent disciplines, and with different professional and educational backgrounds.

The team is part of a larger organization where similar teams work. Em-
ployees of this organization can be members of more than one team.

Team members are physically distributed in small co-located sub-teams (po-
tentially, only one individual in a single location). The physical separation, often
spanning country borders, can imply a separation in time. This separation in
space and time renders some common team practices impracticable—or at least
prohibitively expensive. An example is regular, face-to-face, coordination meet-
ings.

The form in which a team member views and approaches a problem is to a
large extent influenced by the discipline the team member represents, and by
the educational and professional background of the team member. The term
”perspective” is used in this thesis to refer to a team member’s stance toward
a problem.

In a team, members from the same discipline or with similar background are
likely to share a perspective. The term ”shared perspective” refers to a stance
towards teamwork problems that is common to a group of team members.

The shared perspectives of a team can be affected by changes in the organi-
zation and its context. For example, a change in the balance of competence of
team members can cause existing shared perspectives to vanish, and new shared
perspectives to appear.

2.2.2 Focusing Communication

In the event of a breakdown in teamwork, collaboration aiming at the resolution
of the breakdown will focus on the product of work and on different aspects of
teamwork. For example, discussions will make references to tools that cause
problems, and to parts of the product whose quality is affected by the problem.
A commonly understood description of the product and of teamwork is central in
order to focus communication to solve the breakdown. These descriptions need
to be consistent for all team members, need to be always available, and need to
be complemented with the tools and functions that enable the distributed team
to focus communication on any of the elements of the product and of teamwork.



18 CHAPTER 2. PROBLEM ANALYSIS

2.2.3 The Product of Teamwork

Team activities concentrate around the product to be developed. The goal of
the team is to produce a product within an agreed frame of time, budget, and
quality constraints.

A product can be described with different degrees of details and formalism
depending on the goal of the description. For example, the description of a prod-
uct can aim at specifying the conditions of a contract with the customer. This
would require a formalism that can be interpreted by the customer, and that
simultaneously captures all the details that are needed for successful contract
negotiation. A description of a product can be fed into a software system that
computes some of the product properties and exchanges product information
with other systems. In that case the formalism used to describe the product
does not need to be human readable. However, it may need to conform to cer-
tain computational properties. STEP (Standard for the Exchange of Product
Data) [36] is one such formalism.

Schematic representations of the product (e.g., diagrams, tables, sketches)
are commonly used in meetings to focus discussion. A representation of the
product on a whiteboard or on a piece of paper serves meeting participants as
a common object to which contributions can refer. This usage of diagramming
conventions in communication has been the research focus of Steve Whittaker
et al. [74] and of Stephen Casner [18] among others. Although in many cases
these representations may resemble some existing formalism (that reflects the
background of team members), formalization is not a requirement. For Casner,
these diagramming conventions are ways of expressing meaningful abstractions
that are particular to a task or problem domain. These languages do not need
to be formally defined in advance. On the contrary, team members develop the
skill to use these conventions and share a background of knowledge that enables
understanding. For Casner, conventions are defined through mutual agreement
for the meaning of symbols, signs, and the techniques for manipulating them.

The sort of representations of products based on diagramming conventions
discussed by Casner and Whittaker fits the needs of team members trying,
together, to understand and to solve a breakdown in teamwork. Aside from
the difference in the level of formalism, these diagramming languages capture a
set of characteristics of the product similar to those captured by more formal
languages.

2.2.4 Work Processes, Resources, Tools, and Communi-
cation

In the scenario, the work of the distributed team members to produce the prod-
uct is organized in projects. The product, the quality criteria to be fulfilled,
and the distribution of team members set the stage for the definition of the
work processes, for the allocation of resources to tasks in these processes, for
the choice of tools, and for the choice of forms of communication.

Work processes describe tasks (or activities) and their execution ordering.
Tasks are associated through different constructors such as sequence, choice,
parallelism and joint synchronization. Tasks can represent atomic units of work,
or can be composed of subtasks organized in some execution order.

For the execution of a task, the participation of team members may be



2.2. TEAMWORK 19

required (unless the tasks can be fully automated). Workers are assigned to tasks
usually by means of roles, themselves derived from skill sets. For a single task,
the participation of several individuals may be required. Roles (or positions)
are usually arranged and related to shape the organizational structure of the
organization.

Certain tasks may require the use of specific tools. Moreover, the scope of
tools can span beyond the boundaries of single tasks. This is the case where tools
are used to support activities that are orthogonal to the production process.
Examples of these activities are knowledge management and coordination.

During the production process, intermediate artifacts are generated, modi-
fied, and consumed. They flow through the net of tasks . Artifacts can also be
seen as a part of the tools or as a mechanism for communication.

Work processes and the mechanisms that aid the conduct of work processes
aim at supporting cooperation and coordination during work performance. If a
task is to be performed by several team members in close collaboration, special
assistance from tools is usually required. The needs of communication vary
according to the type of interaction needed. Tight collaboration usually requires
rich, synchronous communication.

Software systems that aim at the provision of support for communication,
coordination, cooperation, and/or collaboration are named ”groupware”.

For collaboration towards a solution of a work breakdown, team members
need a representation of the work process that is rich enough to cover the key as-
pects of the observed problem and of an eventual solution. Workflow diagrams,
for example, can be used to simultaneously express several views of teamwork
[67]. They capture work processes (the control flow view of the workflow), as-
signment of resources to tasks (the resource view of the workflow), usage of
tools (the operational view of the workflow), and artifacts (the data view of
the workflow). Other formalisms can be used along with workflow diagrams to
express the remaining aspects of teamwork, such as organizational charts that
can be used to express the governing structure of the organization.

Any system built to provide collaboration in handling teamwork breakdowns
needs to have a representation that is (a) understood by the team members, (b)
able to denote all four aspects of work (processes, resources, tools, and artifacts),
and (c) consistent with the collaboration or coordination systems used by the
team. Therefore, in building the exemplar system for this thesis, the context
of intended use dictated much of the representational choices, and should be
understood as so derived.



20 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.5: Overview of breakdown handling

2.3 Collaborative Tailoring of Teamwork

The scenario presented in Section 2.1 demonstrated how a single team member’s
perception of certain work problems transforms into a breakdown in the team’s
ability to work effectively. By raising awareness about a possible source of the
breakdown, the team can focus its attention on improving its teamwork (even
though work must be temporarily interrupted and refocused). Recognition that
a breakdown exists and certifying its possible source engages the whole team in
a phase of reflection aimed at taking the work back to its normal flow or, better,
to an improved flow. Each breakdown handled represents collaborative tailoring
of teamwork.

At the outset of the period of reflection, team members are not yet sure
that the issue raised represents a relevant problem, or that in fact there is a
breakdown. The outset of issue resolution is to define the problem. Both the
resulting definition and the process leading to the definition create a common
understanding about the nature and impact of the problem, and the importance
of its resolution. In a commitment to understand the situation, team members
agree to collaboratively prepare a detailed diagnosis of causes of the breakdown.
The diagnosis then feeds the design in which team members collaborate to
identify and plan possible courses of action.

The patterns of behavior found in the scenario have already been described
in some form in the extensive literature on organizational and social psychology
(including on organizational behavior and project management), usually under
the topic of problem solving in groups and group decision making. There are



2.3. COLLABORATIVE TAILORING OF TEAMWORK 21

several models to explain how problems are identified and resolved in groups
that match the events in the scenario. Most models of problem solving and
decision making (e.g., those found in [58, 16]) include at least four phases: 1) a
phase in which a problem is perceived and an attempt is made to understand
the situation or problem (this includes raising awareness about the occurrence
of the problem, evaluating its relevance, and making a detailed diagnosis); 2)
a phase in which alternatives are generated and evaluated, and a solution is
selected; 3) a phase which includes planning for and implementing the solution;
and 4) a phase in which the solution is evaluated and modifications are made,
if necessary. Figure 2.5 provides an overview of the phases of breakdown han-
dling. Additionally, the figure lists the main objectives of each phase. In this
thesis, perceiving and understanding the problem is seen as consisting of three
phases namely, triggering, definition and diagnosis. The triggering phase, aims
at reporting breakdowns and selecting breakdowns for handling. The definition
phase aims at estimating the effort of handling breakdowns, evaluating their
relevance, and deciding how to proceed handling them. The diagnosis phase
aims at documenting the forces that make-up breakdowns, making sure that
all stakeholders participate. The design phase aims at creating solution alter-
natives, evaluating these alternatives according to agreed criteria, selecting one
alternative for implementation, and creating a plan for the evaluation of results
once the selected solution is implemented. During the design phase, team mem-
bers may gain new insight regarding the problem, thus making a review of the
diagnosis necessary (indicated in the figure by the arrow going back from design
to diagnosis). The treatment phase aims at implementing the chosen solution
and documenting the implemented changes. Finally, the evaluation phase aims
at conducting the evaluation activities which were planned in the design phase.

Ongoing research investigates the relation between the cognitive style of a
group (i.e., the ways in which group members organize stimuli and construct
meanings for themselves out of their experiences) and the patterns of activities
the group follows for problem solving and decision making processes. Reports
[44] suggest that differences in the cognitive style of a team lead to different
processes for problem identification and decision making. As an aside, it can be
noted that different processes may require different tools, meaning that no one
system can provide appropriate tools for all teams, and that the potential for
tailoring such a system by its users would provide a larger potential user base.

Breakdown handling is an example of a wicked problem where each step
towards a solution changes the understanding of the problem itself [61]. There
isn’t only one definition of the problem, and there aren’t right or wrong solutions,
but simply ”better”, ”worse”, ”good enough”, or ”not good enough”.

Approaching a breakdown in teamwork is in many cases a situation char-
acterized a the symmetry of ignorance[25]; none of the group members holds
all the knowledge required to understand and solve the problem . On the con-
trary, many of them (potentially all of them) have a contribution to make. For
example, in the breakdown of Coding Conventions of the scenario, the project
managers realize their intervention is needed as the various proposed solutions
require enforcing new policies. Moreover, they contribute with their ability to
negotiate compromise solutions.

Team efforts to solve the breakdown and to restore the common team work
flow may result in changes to the product of work, to work processes, to re-
sources, to tools, and/or to the forms of communication. The impact of these



22 CHAPTER 2. PROBLEM ANALYSIS

changes eventually reaches other group members.
Symmetry of ignorance, the complexity of resolving breakdowns in team-

work, and the global impact of changes in teamwork result in a need for col-
laboration. All group members are valuable participants, especially as each
member is expected to cooperate in applying any solution. Once triggering
takes place, there is an agreement among the team members that a breakdown
exists. The next four phases of breakdown handling — defining, making a diag-
nosis, designing, treating, and conducting follow-up evaluation of a breakdown
in teamwork— translate to tasks that require informed participation from all
group members. This thesis introduces the term collaborative breakdown han-
dling to label this situation.

The remaining sections of this section explore collaborative breakdown han-
dling in more detail. Each sub-section is motivated by a system requirement
that captures a challenge suitable to be the target of computer support. Par-
ticular attention is given to the need to cope with the dynamic nature of group
decision processes, and therefore with the existence of alternative breakdown
handling patterns.

2.3.1 Teamwork Support for Breakdown Handling

Requirement 1: Provide teamwork support for
collaborative breakdown handling, both at the level of

everyday work and at the level of tailoring.

The idea behind the breakdown handling phase is to acknowledge that a
problem exists. Such acknowledge requires affected team members to agree on
how to define the problem, to share that definition, but notably the construction
of that definition, and to maintain awareness of progress towards resolving the
identified problem.

Breakdown handling can be described as a high-level team activity consist-
ing of smaller activities and organized in phases as shown in Figure 2.5. From
the triggering of a breakdown, until the evaluation of the required modifica-
tions, state changes occur in the constituent activities (i.e., they are started,
completed, or canceled) and the content of the related artifacts is modified. At
a given time, the state of the constituent activities and the content of the related
artifacts define the status of the breakdown handling (namely, how far they have
gone and how much more must still be done). Members of the distributed team
need to be aware of the status of breakdown handling in order to know what
to expect and what is expected from them. Their participation in activities
needs to be coordinated and they need to communicate effectively. Teamwork
support for breakdown handling at this level consists of the specification of the
breakdown handling processes, the coordination tools needed to support the
execution of the breakdown handling processes, the data structures to hold the
content of the artifacts and the state of the activities that reflect the status
of breakdown handling, and the communication channels that are required to
foster participation.

The solution that team members develop and choose during the design phase,
is implemented in the treatment phase. The result of both phases depends on the
forms of changes to teamwork (including to teamwork tools) that are available.
Being able to identify the required changes is only valuable if the supporting



2.3. COLLABORATIVE TAILORING OF TEAMWORK 23

Figure 2.6: Schematic view of the relation between teamwork, tailoring hooks,
and support for tailoring

systems are prepared to incorporate these changes. The term tailoring hooks is
used in this thesis to refer to those aspects of teamwork that can be changed to
enable tailoring (For example, a tailoring hook could be a software system API
whereby specialized tools can be added to the system, accessing shared data
repositories). To support collaborative tailoring of teamwork as the result of
breakdown handling, it is required that for any team activity tailoring hooks
are available, and teamwork support for breakdown handling is provided.

Collaborative breakdown handling, as a team activity, is itself subject to the
occurrence of breakdowns. Attention is no longer directed to the ways of every-
day work. The focus of attention is now on the ways of handling breakdowns
(i.e., work processes, resources, tools, and communication applied during break-
down handling). In Engelbart’s terms, this represents improvement at Level
C. In consequence, (1) support for collaborative breakdown handling should be
designed to also support handling breakdowns that occur during breakdown
handling, and (2) teamwork support for collaborative breakdown handling (i.e.,
resources, processes, tools, and communication) should provide adequate tailor-
ing hooks.

Figure 2.6 provides a schematic view of the relation between teamwork, tai-
loring hooks, and support for tailoring. Tailoring of teamwork in relation to any
everyday activity is enabled by the provision of tailoring hooks in resources, pro-
cesses, tools, and communication (label 1 in the figure). Breakdown handling is
supported with specific teamwork support (label 2). The same teamwork sup-
port can be used to handle breakdowns encountered during tailoring (label 3).
Changes to teamwork support for tailoring that result from breakdown handling
are enabled by the provision of tailoring hooks in the resources, processes, tools,
and communication for breakdown handling (label 4).

During the diagnosis phase, teamwork is analyzed for the causes of the break-
down. During the design phase, solution alternatives are designed and one of
them is chosen for implementation. During the treatment phase, the chosen



24 CHAPTER 2. PROBLEM ANALYSIS

solution is implemented, thus, introducing changes to teamwork. This view of
collaborative breakdown handling assumes that teamwork stays unchanged be-
tween the phases of diagnosis and treatment. If that were not the case, the
conclusions reached during diagnosis could no longer hold, and/or the solution
chosen during design could no longer be applicable. Unforeseen and undetected
changes to the original teamwork that occur during breakdown handling can
render worthless large parts of the breakdown handling effort. Therefore, all at-
tempts to change teamwork should be channeled through the teamwork support
for collaborative tailoring, if only to avoid wasted effort.

2.3.2 Triggering Breakdown Handling

Requirement 2: Provide teamwork support for triggering
breakdown handling.

Understanding and supporting the processes that bring a team to a point of
reflection (i.e., that bring work processes or tools to the focus of attention) are
outside the scope of this thesis. This is also true for understanding the relation
between work breakdowns and reflection. Particular research interest has been
given to improvement of the processes that motivate reflection with the aim of
obtaining more reflective teams (see [32]). The focus of this thesis is activities
that occur after acknowledging a breakdown, on the phenomena that unfolds
when some members of a team experience a work breakdown that can no longer
be ignored.

At the beginning of the breakdown Collective Code Ownership , as described
in Section 2.1.5, the developers of the C-Browser experience problems integrat-
ing the new release of the framework. The problem is perceived by the develop-
ers as a load of work beyond the effort predicted for the task. The immediate
impact of the problem is that the development of some requirements needs to
be postponed to the next scrum. The developers of the C-Browser share the
opinion that this issue is not the result of an accidental circumstance but a
symptom of a problem with the potential to recur. As it is not in their hands
to understand and solve the problem, they raise awareness about it in the next
weekly meeting.

The team members that experience the breakdown can tell about the symp-
toms they observe, can tell how the breakdown affects their ability to work,
and can assess the probability of the breakdown to recur. They include this
information in a breakdown report.

The severity of the breakdown depends on the impact perceived by those
directly affected by the breakdown, and on the importance of their contribution
to the team’s goal. The breakdown report is an initial indicator of the severity
of the problem; the complete picture of the severity is available only after the
problem behind breakdown is defined, taking the perspectives of other team
members into account.

Triggering breakdown handling involves raising awareness about the problem
in the team. As a result of triggering the handling of a breakdown, all team
members must become aware of the existence of an unhandled work breakdown.
The details of the breakdown as it was experienced by those who report it must
be available to all team members.



2.3. COLLABORATIVE TAILORING OF TEAMWORK 25

There is no restriction to the form or number of breakdowns. For example,
the first day of work with a new set of tools may result in several breakdowns
with varying degrees of severity being reported. The team will possibly discover
that some of these breakdowns have a common origin and can be dealt with
simultaneously. Support for triggering should allow the coexistence of numer-
ous breakdown reports and should allow aggregating closely related breakdown
reports.

How many breakdowns are handled at a time, and how they are chosen for
handling depends on the team’s priorities and appreciation of the importance of
the breakdowns. For example, in the scenario, the breakdown of slow integra-
tion is handled immediately because it has strong impact on the critical path
of the project plan. Support for triggering should provide means to classify
reports according to an initial assessment of severity, and to select breakdowns
for proceeding with their definition.

2.3.3 Definition of the Breakdown

Requirement 3: Provide teamwork support to define the
breakdown and to decide on continuing breakdown han-
dling.

The breakdown report is the input for the definition of a breakdown. The
report usually considers only the perspective of a limited portion of the commu-
nity. Before advancing to any decision, other team members need to validate
the report.

The outcomes of the definition phase are: an agreed evaluation of the rele-
vance of the reported problem; and a team decision to proceed with, postpone,
or ignore the handling of the breakdown.

Any attempt to solve a problem is preceded by an assessment of the im-
pact/relevance of the problem. In particular, an assessment of the impact in-
cludes the costs the team will incur if the breakdown is not handled.

Deciding to proceed involves accepting the cost of involving the group in the
process of reflection. If the team already performed any breakdown handling,
an estimation of the effort is based on the team’s experience from previous
occasions. For the first breakdown, the team needs to resort to best guesses.
In any case, estimations need to be accompanied with an indication of how
certain they are. For estimations based on the observation of past events, the
indication of certainty reflects how many past events have been considered. For
estimations based on an estimator’s best guess, the value of certainty reflects
how much the estimator trusts the given estimation to be correct.

Deciding to postpone breakdown handling implies that the group recognizes
its relevance but anyway accepts to sacrifice the cost of any recurrence of this
breakdown until this cost justifies the effort of handling.

A decision about how to continue handling a breakdown can be the respon-
sibility of a single person entitled to do so. This is the case for most traditional
teams, in which the manager takes the responsibility for strategic decisions.
The opinion of the team is a valuable resource used by the manager to make a
decision.

There are distributed teams where important decisions are taken by the
group as a whole, for example, participative teams. Additionally, there are cases



26 CHAPTER 2. PROBLEM ANALYSIS

in which the costs mainly fall on the team members’ shoulders, for example if
not handling the breakdown results in less enjoyable work hours. For these
teams or breakdowns, deciding on breakdown handling is a group task.

It is possible that the group decides not to engage in handling the breakdown,
however, its existence and cost is recognized. The cost may be too high for the
likely payoff. The team must stay alert for any recurrence and be prepared to
change to the estimated cost and benefit and reevaluate its decision.

Ignoring the symptoms implies that the group has agreed that the observed
symptoms are not an indication of a problem in teamwork that needs to be
dealt with immediately. This could be explained as the group recognizing that
the observation had been incorrect, or that the observed phenomena is part of
normal behavior and does not require a change in teamwork or is not actionable.

2.3.4 Diagnosis of the Breakdown

Requirement 4: Provide teamwork support to document
and to evaluate the forces that shape the breakdown.

Once the group decides it will handle a recognized problem, a phase of
diagnosis starts. What is known about the symptoms serves as the starting
point.

The goal of this phase is to learn enough about the cause and effect of the
problem that hides behind the observed symptoms so that appropriate corrective
action can be planned and taken on the basis of sound understanding.

It is hard to formally estimate up-front how much information is enough.
This is in some way a matter of experience. The group as a whole needs to decide
that enough is known to proceed to treatment. For example, each member could
evaluate whether enough is known from his/her perspective in order to explore
and evaluate solution alternatives.

Participating in the Diagnosis

A challenge the team faces at this point is to find a balance between having
gathered enough useful information, and the cost of gathering more. If, for
example, every perspective has to be diagnosed in depth, the cost could be too
high.

A breakdown may recur, possibly taking a new form. During diagnosis the
team must analyze the data available from past breakdowns and attempt to
reuse what applies to the new case. If the new breakdowns is a variation from
a previous one, the group needs to identify the differences to produce a tailored
solution. If the breakdown is the recurrence of a previous breakdown for which
the attempted solution failed, the team needs to focus on the reasons for the
failure to produce a better solution.

Not all perspectives are valuable in all situations. For example, if the prob-
lem has an origin in some aspect of the product or process, it can be expected
that the perspectives responsible for that aspect would have more valuable con-
tributions to make than those that are less related. In order to balance the cost
and the value of the results, the perspectives with more to provide need to be
identified and all team members that belong to these perspectives need to be
invited to contribute.



2.3. COLLABORATIVE TAILORING OF TEAMWORK 27

Structuring Contributions to the Diagnosis

The literature about systems to support decision making [10] points out that
discussions tend to be unstructured, dominated by rhetoric, and lack a tangible
model able to represent all important aspects for any one participant. Moreover,
there are incompatible levels of argumentation and abstraction.

To structure the characterization of the main elements in the problem and
solution of a pattern, the documentation style of patterns in software engineering
[26] emphasizes identifying ”forces”1. Similarly, forces are useful in character-
izing breakdowns. Forces play a double role; first, they are used to convince
others about the existence and relevance of the problem; second, they serve as
the acceptance criteria for the solution (they are the requirements that can be
checked against any solution). In this way, forces have an important part in
enabling participation in problem solving and evaluation.

Forces can be classified according to three types: contextual fact, argument,
and system of forces.

A force stated as a contextual fact documents an invariant in the context of
the breakdown. A contextual fact cannot be changed. It acts as a restriction,
an opportunity, or both. In the breakdown Coding Conventions of the scenario
(see Section 2.1.5 on Page 13), Force 5 is stated to express a restriction for the
CVS system. In contrast, Force 6 is stated with the intention of presenting
an opportunity, namely that many IDEs provide functionality to automatically
format code.

A force stated as an argument relates choices for a tailoring hook in teamwork
(see discussion in Section 2.3.1) to their impact on a common value. In the
breakdown Coding Conventions, Force 2 is stated as an argument that relates
the use of idioms 2 to difficulties in communications with other subgroups. In the
diagnosis of a breakdown, an argument can be inspected to see if the breakdown
is caused by a choice made for the tailoring hook. In the phase of design of
solutions for the breakdown, an argument can be used to generate solution
alternatives (i.e., by experimenting with different choices for the tailoring hook).

A system of forces groups contextual facts, arguments, and further systems of
forces. It documents a trade-off between forces. A system of forces is introduced
to make an interdependency between existing forces explicit. Force 2 in the
scenario states that idioms can make communication difficult in an environment
with several organizational cultures. Force 3 states that the use of idioms can
empower communication within one organizational culture. Force 7 states that
enforcing one unique style can help communication, but it may require that
some subgroups agree to abandon the use of idioms and/or to adopt the idioms
of other subgroups. Force 7 is a system of forces, an explicit trade-off between
Force 3 and Force 2.

Evaluating the State of a Force

During diagnosis, team members produce an evaluation of the state of forces.
The state of a force can either be ”resolved” or ”unresolved”. From all forces

1The term force has been defined in Section 2.1.5. Forces are concerns that make the
problem a problem, and must be taken into consideration in any solution. They document the
trade-offs, goals and constraints, and motivating factors/concerns that make-up the problem
and its solution

2Being able to choose idioms to be used team-wide is a tailoring hook.



28 CHAPTER 2. PROBLEM ANALYSIS

that are important for the context of the breakdown, some of them are not
being resolved in the current situation and need attention. They are deemed
the source of the problem. Moreover, in the context of the breakdown, there
are already resolved forces that must stay resolved. The team also evaluates
forces during the design phase, to assess the effect of a solution alternative, and
during the evaluation phase, to check the impact of the chosen and implemented
solution.

Arguments are evaluated by considering the current choice for a tailoring
hook, effective at the moment of a breakdown. If this choice is seen by team
members as a cause of the breakdown, the argument is defined as unresolved.
Otherwise, it is resolved. If team members see a contextual fact as a cause of the
breakdown, then it is unresolved; otherwise it is considered resolved. A system
of forces is resolved if all constituent forces are resolved, and it is unresolved if
any one constituent force is unresolved.

During the design phase, a solution alternative aims at finding a choice for
the tailoring hooks of an argument that causes it to be resolved. If a force is
part of a system of forces, the choice should not cause any other force in the
system to become unresolved.

Contextual facts are not inherently unchangeable. They are sometimes a
value previously fixed for a force in a situation external to the breakdown (e.g.,
availability of a resource). What once was variable gets imported to the break-
down as an invariant, thus limiting the freedom to explore alternatives of change.
Whenever possible, forces should be expressed as arguments or as systems of
arguments (a system of forces containing only arguments or further systems of
arguments).

Figure 2.7 provides an overview of the forces involved in the breakdowns
Coding Conventions and Collective Code Ownership of the scenario (presented
in Section 2.1.5). Forces were re-written to fit a one page layout of the figure.
Each box in the figure lists the forces in a breakdown. The box at the top
(labeled ”Breakdown 1”) represents a previous breakdown which has not been
discussed in the scenario. In each box, forces are organized as facts, arguments,
and systems of forces. Moreover, at the bottom of each box is the list of the
decisions that were taken to handle the breakdown. The figure additionally
shows how the decisions that are taken to handle a breakdown represent facts
(invariants) that later breakdowns must honor.

Evaluating the state of a system of forces is based on subjective appreciation,
and therefore cannot be fully automated. Deciding on this matter is done as a
collaborative effort. In order to evaluate the state of forces, team members are
asked and their independent appraisals are consistently aggregated. Each team
member judges the force from his/her own perspective using available evidence.

The fact that forces are expressed in natural language represents a drawback
of using forces as an element for the problem analysis. Being able to identify
and describe forces is a valuable skill that requires practice. Moreover, the value
of a force cannot always be formally measured, although it can be judged by
how much it helps to understand the problem and to determine a solution.

For each involved team member, the forces that make-up a particular sit-
uation are implicitly known. In order to use these forces in a team process of
problem identification and resolution, they must be made explicit.

During treatment of the breakdown, forces play a role for the evaluation of
alternatives. In cases where a balance of all involved forces cannot be achieved,



2.3. COLLABORATIVE TAILORING OF TEAMWORK 29

Figure 2.7: A decision to balance forces in the context becomes an invariant for
the breakdown.



30 CHAPTER 2. PROBLEM ANALYSIS

a compromise solution needs to be found. Successful negotiation depends on
understanding the consequences of the possible different sets of alternatives. In
this case, this means understanding how forces (the balance of forces) is related
to the way work is done (i.e., the product, the team, the process).

Team members understand teamwork and the product of teamwork by being
immersed in its everyday practice. However, in cases such as training or analysis,
team members make use of documentation that explicitly describes teamwork
and the product of teamwork. Documentation serves as an agreed basis on
which team members can build. As illustrated in Section 2.2, this thesis builds
on the use of diagramming conventions as a means to graphically document
teamwork and its product or outcome. Understanding how forces relate to
teamwork implies understanding and documenting how forces relate to these
graphical representations.

The choice of forces is particular to a given problem. Moreover, a forces
can be part of the diagnosis of several breakdowns. Forces can potentially stay
unchanged for the lifespan of the organization.

Each breakdown that is handled brings new insights about the forces that
shape the organization. Each phase of diagnosis is an opportunity for the or-
ganization to learn something more about itself. This continuous learning con-
tributes to reducing the cost of handling breakdowns (there is less to be inves-
tigated). However, it requires that some form of memory support is provided.

As the organization learns and evolves, its forces may change. The existence
and relevance of forces may change. In correspondence, the organizational mem-
ory needs to reflect this evolution.

2.3.5 Design of a Solution

Requirement 5: Provide teamwork support to generate al-
ternatives that model possible new forms of teamwork, to
select an alternative for implementation, and to plan eval-
uation.

The goal of the phase of design is to plan the actions that are needed (if
any) to resolve the forces that are the cause of the work breakdown, while at
the same time keeping all other forces in their existing resolved state.

To resolve forces, team members can introduce changes in any of the different
aspects of teamwork that are open for change (i.e., tailoring hooks). If the forces
that need to be balanced depend only on external aspects (i.e., those not under
the control of the team), there is nothing that can be done to change them
(other than bring the issues to the attention of those who can).

Introducing changes to the way work is done requires exploration, assess-
ment, and agreement.

During exploration, the team identifies alternatives for a new form of per-
forming work. Each alternative needs to be assessed for feasibility and impact.
At the end, the group needs to agree on the implementation of one alternative.
The alternatives become the focus of collaboration. As such, they need to be
explicitly represented in forms that allow the group to collaborate.

Each change to any of the aspects of the product or process defines a new
form of teamwork. It is to be expected that, for a non-trivial breakdown, many
aspects need to be examined and changed.



2.3. COLLABORATIVE TAILORING OF TEAMWORK 31

The extent to which a team member can contribute to the construction of
these alternatives depends on how close his/her perspective is to the aspects
that need tuning, or to the aspects that will be affected by the change. In
the presence of symmetry of ignorance, constructing an alternative requires the
participation of members with different perspectives. The distributed nature of
the team introduces new challenges for the coordination of their efforts to create
alternatives of work.

The team conducts an evaluation of the forces as discussed in Section 2.3.4
for each of the generated alternatives. The expected effect of an alternative
is that it resolves all known forces in the domain of the breakdown, without
negatively affecting other aspects of work (e.g., forces that have been resolved
for previous breakdowns). However, the actions taken to eliminate the cause
of the observed symptoms, could have side effects. A side effect could be a
trigger for new cycles of reflection, each of them adding cost and potentially
generating new cycles of reflection. Negative side effects need to be identified
and minimized to the extent possible.

After conducting the evaluation of the forces for each of the designed alterna-
tives, the team needs to choose one alternative for implementation. Alternatives
are compared regarding how they impact forces, and regarding implementa-
tion cost and other applicable requirements such as budget limitations. Let
fResolved() be a function that returns the set of forces that the team evaluates
as resolved for a given alternative. An alternative ”A” is better than an alter-
native ”B” with respect to fResolved(), if fResolved(B) is strictly included in
fResolved(A). ”A” is as good as ”B”, if fResolved(A) equals fResolved(B). Let
estimatedCost() be a function that returns the cost estimated by the team for
the implementation of a given alternative. An alternative ”A” is better than an
alternative ”B” with respect to estimatedCost(), if estimatedCost(A) is strictly
less than estimatedCost(B). Let criteriai() be a function that returns the esti-
mation provided by the team for how a given alternative fulfills the criteriai.
Assuming that there is a way to determine if an alternative ”A” is as good or
better than an alternative ”B” with respect to criteriai(), then an alternative
”A” is a non-dominated alternative if there is no alternative ”B” such that ”B”
is as good as ”A” regarding all criteriai(), fResolved(), and estimatedCost(),
and, in addition, ”B” is better than ”A” regarding at least one of all criteriai(),
fResolved(), and estimatedCost(). The choice of an alternative is made from
the set of all non-dominated alternatives.

The extent to which forces are resolved by an alternative and the cost of
implementing the alternative are elements that affect the feasibility of its im-
plementation. For example, an unfair distribution of effort and benefit can
cause teamwork to fail [28]. Participation becomes central to the acceptance of
changes to teamwork.

The time needed for the effects of tailoring to be perceivable depends on
the nature of the problem that is approached, and on the changes that are
chosen as a way to approach it. Once these factors are known, the team can
plan evaluation. The plans for evaluation consist of a schedule of dates where
all team members will evaluate the forces and see if they have reached their
planned status.



32 CHAPTER 2. PROBLEM ANALYSIS

2.3.6 Treatment of the Breakdown

Requirement 6: Provide support to spawn the tailoring
project and resume breakdown handling when tailoring fin-
ishes, and to document changes.

The goal of this phase is to change teamwork to conform to the alternative
agreed upon during design.

A ”tailoring project” is created with the goal of doing what is necessary to
make teamwork as in the agreed alternative. In this thesis, the tailoring project
is seen as an independent process that spawns from breakdown handling. While
the tailoring project is running, breakdown handling is suspended, and so is the
actual work (at least, the part of work directly affected by the breakdown).

Support for executing the changes to teamwork that are required in order
to implement the chosen alternative falls outside the scope of this thesis. The
complexity of this task depends on the nature of the changes that need to be
done. For example, changes to the infrastructure may require hiring external
development teams. Moreover, work cannot, in most cases, stop until changes
have taken place. This confronts the tailors with the challenge of changing
work, while it takes place. These challenges are the focus of future research
investigations.

When the tailoring project finishes, the corresponding breakdown handling
process is resumed. As already discussed, collaboration for breakdown han-
dling relies on the existence of up-to-date representations of teamwork and the
product of teamwork. After the tailoring project has introduced changes, these
representations of teamwork and the product need to be updated to reflect the
new status.

2.3.7 Follow-Up Evaluation

Requirement 7: Provide teamwork support for conducting
follow-up evaluation of the results of change.

The goal of breakdown handling is to eliminate the cause of the problem that
started the process. These changes have been carefully planned. However, their
effect can only be assessed but never ensured. Although the core of the process
of reflection can be said to end after the corresponding actions have been taken
(i.e., change is implemented), its result is still to be seen.

Executing and maintaining corrective actions requires effort. Such effort
is only worthwhile if corrective actions are effective. In order to ensure this,
the planned evaluation needs to take place. On the scheduled dates, all team
members will assess the status of the forces. Their individual observations need
to be consolidated. The result needs to be compared with the expected status
by the given date.

If the results of the evaluation show that the solution had the expected
impact on the forces, the solution is marked as successful, the breakdown is
closed, and all related information is persistently stored. On the other hand, if
the results of the evaluation show that the solution did not have the expected
effect, two paths of actions are possible. If there are signs that indicate that the
solution is working but it needs more time, the team may decide to re-schedule
evaluation. Or, the breakdown solution is marked as failed, the breakdown is



2.3. COLLABORATIVE TAILORING OF TEAMWORK 33

closed, and all information is persistently stored. Breakdowns for which han-
dling failed reappear as new breakdowns that are treated in a new cycle of
breakdown handling. As part of handling of such a new breakdown, the team
may decide to tweak the failed solution based on a deeper definition and design,
or to undo the changes prescribed by the failed solution and implement a new
one.

2.3.8 Summary of Requirements

Collaborative breakdown handling is the process of tailoring teamwork by solv-
ing work breakdowns collaboratively. Collaborative breakdown handling re-
quires teamwork support, both at the level of everyday work and at the level
of tailoring (Requirement 1). In particular, it requires specific teamwork sup-
port for each of the six phases of the process. It requires teamwork support
for triggering breakdown handling (Requirement 2). It requires teamwork sup-
port to define the breakdown and to decide on continuing breakdown handling
(Requirement 3). It requires teamwork support to document and to evaluate
the forces that shape the breakdown (Requirement 4). It requires teamwork
support to generate alternatives that model possible new forms of teamwork, to
select an alternative for implementation, and to plan evaluation (Requirement
5). It requires support to spawn the tailoring project and resume breakdown
handling when tailoring finishes, and to document changes (Requirement 6). It
requires teamwork support for conducting follow-up evaluation of the results of
change (Requirement 7).



34 CHAPTER 2. PROBLEM ANALYSIS



Chapter 3

State of the Art

This chapter presents an overview of the state of the art in the area of support
for collaborative tailoring. Relevant related work is organized in three sections.
Section 3.1 provides an overview of the most relevant contributions towards the
construction of groupware that can be tailored. Section 3.2 presents work that
contributes to understand tailoring as a process. Finally, Section 3.3 summa-
rizes the most relevant contributions regarding collaboration in the context of
tailoring.

3.1 Tailorable Groupware

In 1992 Thomas Malone [50] introduced the idea of radical tailorability as an
approach to match cooperative work tools to their contexts of use. Radically
tailorable systems allow end users to create a wide range of different group-
ware applications by progressively modifying a working system. The approach,
instantiated in a system called OVAL, is based on four key building blocks.
Structured objects represent domain elements such as people, tasks, messages
and meetings. User customizable views display collections of objects and can
be used to edit individual object’s properties. Rule based agents automatically
perform tasks on behalf of users without requiring human intervention. Links
represent relationships among objects. Radical tailoring is done by defining new
types of objects, adding fields to existing object types, selecting and configur-
ing views, creating agents and rules, and inserting new links. This approach
to tailorability is reminiscent of computer programming generally, and object-
based, rule-based programming specifically. It is rare to find much flexibility in
a system that does not manifest itself as some kind of programming.

Malone was not the first to find tailorability as a way to build successful
groupware. A year before, Greenberg identified tailoring 1 (for individuals and
for the group) as an approach to increase groupware acceptance and to be able
to keep pace with evolving user needs. He built SHARE, an example of a
personalizable application sharing system 2. In SHARE, a system component

1Greenberg uses the term personalization, that he defines as the ability to tailor a system’s
behavior to match the particular needs of users or groups of users.

2An application sharing systems allows single user applications to be shared through the
network.

35



36 CHAPTER 3. STATE OF THE ART

provides functionality to tailor the floor control policy used to share applica-
tions. A handful of other contemporary systems included similar provisions
for tailorability. Information LENS [49], an information manager for news and
e-mail, allowed users to created tailored groupware by customizing templates
and creating filtering rules. CRUISER [62], a virtual hallway based on video to
support casual interaction, allows people to configure privacy settings and, as
a consequence, to tailor interaction options. Virtual Learning Community [37]
is an asynchronous conferencing system. The conference facilitator can tailor
some of the system’s settings to achieve a variety of collaboration settings. For
example, the facilitator can tailor the system to force equal participation and
discourage lurking.

Recent work by Robert Slagter [64] proposes a design methodology for group-
ware based on the principle of composing generic groupware services. A group-
ware application provides a Groupware Service (GS). The groupware service
is composed of several Groupware Service Modules (GSM). End users can se-
lect and compose GSMs in a GS to obtain the desired behavior. In a finer
granularity, GSM consist of Groupware Service Module Elements that represent
elementary units of externally observable, groupware behavior (e.g., starting
a conference). The key criteria behind the success of this approach to enable
end-user tailoring is that users can find and learn about module elements (i.e.,
understand the groupware behavior associated with a GSME) and use them to
describe and prescribe groupware.

Implementing tailorability in groupware was the topic of two workshops held
in 1998 and 1999. The workshop reports [52, 66] document the workshops’ find-
ings. The organizers report that tailoring groupware differs from mainstream
tailoring in that proposed changes must be accepted by all members of the group
(or at least a critical mass or accepted decision-makers for the group). As a re-
sult, the question of how to regard tailoring as a collaborative activity was found
to be a relevant open issue. Tailoring must involve end users as the primary
source of information about the work to be performed and the groupware that
has been used. Successful tailoring is only possible if it contributes to improv-
ing the groupware as an integral part of the work process. As a participant,
Volker Wulf introduced the concept of ”scopes of validity” to refer to a partic-
ular situation or scenario to which a set of changes (the tailoring) apply. The
major problem in being able to specify scopes of validity is to provide flexibility
while simultaneously keeping consistency. Wulf points out that meta-tailoring
facilities need to be provided to be able to handle inconsistencies and conflicts.
This observation is in-line with the discussion presented in Section 2.3.1 of this
thesis regarding the need to support ”tailoring of the tailoring support” and the
need to provide tailoring hooks that support tailoring.

State of the art in tailorable groupware focuses on building groupware that
can be changed through a variety of technical means. The main objective of
these approaches is to achieve richness and flexibility in how systems can be
tailored (where presumably the more aspects of a system that can be tailored
and the more alternatives for tailoring each aspect are available, the better).
Although researchers realized the need to involve communities of users in col-
laboration for tailoring, existing approaches for tailorable groupware fall short in
providing specific community support functions thus, failing to cover the core
concern of the seven requirements presented in this thesis. Tailoring is only
covered as a technical issue (looking at the technical system) without consid-



3.2. UNDERSTANDING TAILORING 37

ering the team processes that form the context of tailoring (the corresponding
social system). Most approaches to tailorable groupware focus on end-user tai-
lorability. End-user tailorability is a valuable resource to cover requirement 6
(support to spawn the tailoring project), as it makes possible the participation
of end-users in the tailoring project. Participation in the tailoring project is
important to ensure that the implemented changes match the intention of the
users. Moreover, by directly participating in tailoring, team members gain a
better understanding about the tailoring hooks in the teamwork. Understand-
ing the tailoring hooks is important for fruitful participation in the design of
the solution, and therefore, for covering requirement 5 (teamwork support for
the generation of solutions).

3.2 Understanding Tailoring

Anders Mørch [42] sees tailoring as a form to bridge the gap between presen-
tation objects (available to the users) and implementation code (hidden from
the users). He classifies tailoring in relation to the types of activities that are
performed using three levels of tailoring. The first level of tailoring is customiza-
tion. To customize is to modify the appearance of presentation objects, or to edit
their attribute values selecting from a set of predefined options. Customization
is done through templates or forms that show users the configurable attributes
and the possible values. The second level of tailoring is integration. Integration
allows bridging the gap between presentation and implementation by allowing
users to add functionality (both presentation and implementation). It is not
necessary to access the underlying implementation code. Users link predefined
components from a set of available ones. Each component encapsulates a unit
of system behavior required to perform a well-defined task (e.g., save a file).
The work done by Slagter (see previous section) mainly focuses on this type of
tailoring. Extension is the third level of of tailoring. Tailoring as extension is to
improve the functionality of an application by adding new code. Depending on
the complexity of the programming facilities that are available, extension may
be done by end-users or may require the participation of developers.

Mørch considers that the previously mentioned gap between presentation
objects and implementation code reflects the distance that exists between the
work of groupware developers and the work of end users. Thus, to bring de-
velopers and users closer to each other would help bridge the gap. In Mørch
and Mehandjiev [53], the authors propose a way to improve collaboration be-
tween users and developers. They propose building and tailoring applications
by composing application units and by documenting the design rationale with
multiple representations. Applications are decomposed in applications units.
Each application unit is specified using different representations. User-oriented
representations capture high-level views of the systems, aspects of the domain,
and aspects of how to use the system. Design representations are more techni-
cal, addressing specific design decisions and the context in which those decisions
were made. Good tailorable systems are build with a rich set of user-oriented
representations, some of which are executable since they describe functionality
in a way that can be translated to program code.

Richard Bentley and Paul Dourish [13] talk about the ”customization gulf”
which is characterized by two inter-related problems: level of customization pos-



38 CHAPTER 3. STATE OF THE ART

sible and the language of customization. They propose the idea of incremental
customization where different levels of customization require different levels of
expertise, to the point where users can only express what they want to more
advance users or to the developers. They aim at systems that can be customized
and used in unpredicted ways (that support innovation). The more aspects of
the systems that can be customized the better (e.g., being able to alter the con-
currency control mechanisms). They argue that all the aspects that are fixed in
most groupware systems should be open to customization.

Wendy Mackay [47] takes an ethnographic stance towards tailoring. She pos-
tulates that the use of information technology is a co-adaptive phenomenon; the
use of technology affects human behavior and at the same time, human behavior
redefines technology. Tailoring allows particular patterns of use to be encoded
in the system, later influencing the way the system is used. The presence of
shared artifacts (e.g., customization files) is of particular relevance to her ap-
proach. Shared artifacts provide the mechanism by which individual behavior
can influence global institutional properties and future implementations of the
technology. Mackay also discovered common patterns of customization. Users
most commonly customize when they are new to the organization and know the
least about the technology and its use. Customization is commonly done as a
way to explore new environments. Users create customizations as an attempt
to capture their current work setting. External effects that cause users to re-
flect upon their work increase the probability that users will customize. Users
that customize like to keep the same work environment. As a consequence, new
new software is adopted (e.g., as a result of management decision) they try to
retrofit new software to be like the old one. Customization can generate a feel-
ing of ownership that motivates users to oppose any changes in the system that
would threaten their customizations. The most common form of customization
occurs when users realize the existence of recurring work patterns and encode
them in a customization. Mackay proposes that software should be designed
to include mechanisms that support reflection about the use of software and
mechanisms for sharing customizations. Non-effective/useless tailoring can be
harmful; therefore, it is necessary to provide mechanisms to assess the useful-
ness of customizations in a reflective way (i.e., being able to relate the impact
of customization to work practices).

Allan MacLean and colleagues [48] argue that tailorable systems alone are
not enough. They should be complemented with a tailoring culture that moti-
vates tailoring. To evolve a tailoring culture one must understand the needs and
skills of the organization’s members. There are workers, who have no interest
in the computer system per se. They just want to get work done and have no
expectation of being able to tailor the system. There are tinkerers, who enjoy
exploring a computer system but may not fully understand it. There are pro-
grammers, who understand the internals of computer systems. Programmers are
usually not accessible to ordinary workers. To shorten the separation between
workers or tinkerers and programmers, there could be handymen. Handymen
work closely with users and help with immediate needs. Moreover, handymen
can communicate user’s needs to developers for more complex tailoring.

State of the art research in understanding tailoring is mainly focused on an-
swering the questions: why is tailoring necessary? and how can it be enabled?
MacLean and Mackay take a first look at how tailoring is done as collaboration
by talking about a tailoring culture and describing patterns of sharing. Tailor-



3.3. COLLABORATION IN TAILORING 39

ing is teamwork and teamwork is defined in terms of processes, artifacts, tools
and communication. The gap in these research efforts is the recognition that
the support for tailoring should itself be tailorable (part of requirement 1 of this
thesis), and should itself be studied as both a technical and social phenomenon.
The work done by Mørch on composing application units and documenting the
design rationale partially fulfills requirement 4 (teamwork support to document
and to evaluate forces) as design rationale can document the forces that moti-
vated tailoring. However, the work done by Mørch does not support building
the comprehensive and flexible landscape of the forces that underly several tai-
loring efforts needed to cover requirement 3 (teamwork support for the definition
of the breakdown) and requirement 4 (teamwork support for the diagnosis of
the breakdown). The work done by MacLean and colleagues partially covers
requirement 1 (teamwork support for collaborative breakdown handling as a
whole) by defining a tailoring organization/culture. However, it lacks a defini-
tion of the processes, the tools, and the artifacts to support the efforts of the
tailoring organization.

3.3 Collaboration in Tailoring

In his paper ”From Tailorism to Tailorability”, Helge Kahler [41] presents an
interesting discussion regarding the role of negotiation in tailoring. He presents
the problem of finding agreed solutions in flexible and constantly adapting or-
ganizations. He argues that instead of trying to find an optimal solution, nego-
tiation should be carried out to achieve stable solutions that are agreed upon
by the participants. Important dimensions of negotiation for tailoring that need
to be considered are the initiator of tailoring, the actor, the affected persons,
the subject (i.e., target of the tailoring), the goal of tailoring, when or for how
long, and in which part of the organization the change is to be carried out.
Kahler indicates that no work has been done in covering how a group tailors a
groupware system to the group needs. He indicates that one important aspect
is moderation of interests in the groupware tailoring process.

Experimental studies about sharing of customization files, conducted by
Mackay and colleagues, demonstrate that tailoring is not an individual activity[46].
Tailoring is a an activity that involves group reflection. As such, tailoring re-
quires support to identify stakeholders and views. It requires mechanisms to
collaboratively identify, state, and re-frame problems, and to state forces, val-
ues, restrictions, and motivation. It requires mechanisms to safely attempt
different solution approaches and to state the strengths and weaknesses of each
approach.

Users would create customization files for single user systems and later share
them by e-mail. As a result of the studies, the authors recognize that not
all sharing of customization files is beneficial. In some cases, given the fact
that files were shared without any previous evaluation, sharing would cause
errors to be distributed along with the files. It was observed that people in all
job categories (except system programmers) preferred to ”ask a person” and,
only if that yielded no result, they would ”copy and experiment” (to borrow
someone else’s files and edit them). The authors give no explanation for this
behavior. One can speculate that asking for help first reduces the work of finding
adequate customizations, or that asking a trustworthy colleague ensures quality



40 CHAPTER 3. STATE OF THE ART

and usefulness in the customizations, or that talking directly to the creator
of a file reduces the work required to understand its motivation, design and
implementation.

The report of the workshop ”Tailorable Groupware: Issues, Methods and Ar-
chitectures” [52] states that individual tailoring is not enough and that support
for tailoring the ”collaboration objects” of groupware applications is important
as well. The work done by Weigang Wang and Jörg Haake with the CHIPS
[70] system is a good example of groupware that aims at tailoring the collabora-
tion facilities. CHIPS provides support for coordination of work processes and
for the creation of shared workspaces. Users can edit the process description to
change the flow of work, the flow of documents, or to change resource allocation.
A unique aspect of CHIPS is that process descriptions and shared workspaces
can be edited in synchronous collaboration. That is, the tool takes cares of
replicating changes and keeping consistency. Processes and workspaces can be
annotated. A telepointer facility and a bridge to external video conference ser-
vices complement the customization tools. In a common scenario, users edit a
process description while discussing the changes over the video conference.

Volker Wulf [78] approached the problem of conflicts of interest when tai-
loring functions of groupware systems. These conflicts arise from the diverging
interests of the activator (the user who intends to tailor a system’s function)
and the affected user who is affected by the activator’s choices. The solution
proposed by Wulf is to extend groupware systems with a ”negotiability” mecha-
nism for each tailorable groupware function to technically support negotiation.
Whenever the activator plans to change a tailorable function to an option X
of the set of available options, the affected user can agree, disagree or counter-
propose a different alternative. Upon agreement, the choice proposed by the
activator is activated. Upon disagreement, the system function takes its default
configuration. If the affected user makes a counter-proposal, negotiation contin-
ues. The negotiability mechanism can be configured with a maximum number
of negotiation loops. In case the roles of activator and affected user are fulfilled
by several individuals, additional tools, such as voting, may be needed.

The work done Katharina Just-Hahn and colleagues focuses on the provision
of negotiation support during tailoring of workflows [40, 31]. Their work aimed
at answering the questions: who can perform a given change in the workflow?,
and who needs to be involved in the negotiation of the change? They propose a
methodology, called Step-By-Step. The methodology is modeled as a workflow.
To answer the question of who can make a certain modification, the workflow
is complemented with information that indicates for each activity the types of
modifications that are possible and the conditions that must be met. The per-
sons or organizational units that need to participate in a change negotiation,
or that need to be notified after a change are similarly indicated for each ac-
tivity in the workflow. The Step-by-Step model requires that all modifications
are recorded along with authors, rational of the modification, and duration.
This information is valuable during later modifications. Step-by-Step builds on
Wulf’s model of negotiability and extends it to consider the following possibil-
ities for reaction: to accept only until withdrawal, to rank several proposals,
and to change the steps followed to negotiate. This later extension represents
tailoring of the tailoring process.

State of the art in collaborative tailoring clearly shows that tailoring in-
volves multiple collaborating stakeholders and must be supported by groupware.



3.4. SUMMARY 41

Groupware to support tailoring should enable communication (e.g., to initiate
tailoring), collaboration (e.g., to create a definition of the needs of tailoring that
considers all perspectives), co-operation and coordination, (e.g., to create alter-
native solutions), and negotiation (e.g., to decide on multiple paths of action).
The CHIPS system can be used to create a flexible process to coordinate the
tailoring activities. Moreover, the CHIPS system is itself tailorable, what makes
it a good candidate to support collaborative tailoring at the level of everyday
work and at the level of tailoring. However, the CHIPS system lacks specific
support for eachof the phases of breakdown handling, for example, it lacks sup-
port for documenting forces (needed to cover requirements 3 and 4). The work
done by Katharina Just-Hahn and colleagues supports recording the rationale of
the changes for later referencing and supports negotiation for the introduction
of changes. However, it lacks support for collaboratively exploring the causes
of the problems that motivate tailoring (requirement 4). The above mentioned
research contributions are also limited as they are only applicable to the system
being studied.

3.4 Summary

Chapter 2.3 lists seven requirements. As discussed in the previous sections,
existing related work partially covers some of these requirements. However,
there is no solution that covers them all. To provide such a complete solution
is the aim of this thesis. Requirement 1 argues for coordination support for
collaborative tailoring, which should itself be tailorable. Existing related work
that provides tailorable support for work coordination lacks of the specific data
structures needed to hold information about the breakdown handling process.
Requirement 2, the provision of support for triggering breakdown handling, im-
plies the provision of support to collaboratively report the occurrence of work
breakdowns, support to collaboratively estimate its severity, support to raise
awareness to other team members, support to aggregate closely related break-
down for their joint treatment, and support to classify breakdown according
to severity. There aren’t any groupware systems that provide this support.
Requirement 3, the provision of support for the definition of breakdowns and
for deciding on continuation, implies the provision of support to collaborative
assess the impact of the breakdown, and support for group decision about han-
dling the breakdown. Although there aren’t any systems to specifically support
these activities in the context of tailoring, this thesis draws from results from
the area of GDSS (Group Decision Support Systems) to build specific tools.
Requirement 4, the provision of support for documenting and evaluating the
forces that shape the breakdown, implies support to collaboratively document
the forces, support to assure and motivate the participation of all important
stakeholders, the possibility to consider information about forces which were
relevant in past related breakdowns, support to anchor forces on agreed repre-
sentations of teamwork, and support to collaboratively identify causes. Existing
related work only provides the possibility of documenting rationale of changes.
Requirement 5, support to create and select solutions and to plan evaluation,
implies support to collaboratively create solutions, to assure and motivate par-
ticipation of all relevant stakeholders, support to assess the effect and the side
effects of solutions, support to collaboratively select a solution for implementa-



42 CHAPTER 3. STATE OF THE ART

tion, and support for planning evaluation. Existing related work contributes,
through end-user tailoring, to more informed participation in the generation of
solutions. As for requirement 3, results from research in GDSS can be applied
to build the tools needed to collaboratively assess the impact of solutions and
to select one solution for implementation. Requirement 6, support for spawn-
ing the tailoring project, implies support to launch the tailoring project and to
update representations of teamwork when the tailoring project finishes. This
requirement is not covered by existing related work. Finally, requirement 7, the
provision of collaboration support for evaluating the result of the implemented
solution has neither been covered by existing related work.



Chapter 4

Approach

4.1 Overview

We are changing gears now —from philosophical to testing whether the philoso-
phy can be embodied in a tangible usable system. We start with a specification
for a design in this chapter, then move in the next to describe a reference im-
plementation. Experience with the reference implementation lends observable
credibility to both feasibility and value of the design.

Peter and Trudy Johnson-Lenz coined the term groupware as intentional
group processes plus software to support them [38]. In their paper titled Rhythms,
Boundaries, and Containers: Creative Dynamics of Asynchronous Group Life
[39], they review two prevailing approaches to groupware: (1) groupware as
the mechanism that makes groups work through the use of explicit forms and
procedures, and (2) groupware as a context or open space that allows groups
to self organize. They claim that computer-supported groups need groupware
that provides more than procedures and open space. They argue for tailorable
groupware capable of embodying forms to serve their changing needs and evolv-
ing purposes. They aim at a balanced combination of both approaches. Ef-
fective groupware is somewhere in the middle of these two approaches. Form
(approach 1) and context (approach 2) are part of a dynamic creative process:
form continually emerges from and evolves in response to its living context.

The approach to support collaborative tailoring of teamwork presented in
this thesis follows the philosophy proposed by Peter and Trudy Johnson-Lenz. It
consists of a method for collaborative breakdown handling, a selection of specific
groupware tools to be used for the deliberation activities defined by the method,
and guidance in the form of scaffoldings for the application of the method. The
method, the specific tools that support the method, and the scaffolding for the
application of the method, have been designed with a balance of open space and
structure that reflect what is known about collaborative tailoring of teamwork
at the time of this writing. Moreover, the method, the tools, and the scaffolding
can be tailored. The proposed support for collaborative tailoring of teamwork
is delivered as a stand-alone groupware system for collaborative tailoring. The
system can be deployed along existing groupware systems, thus extending them
with support for collaborative tailoring. However, the extent to which they can
be tailored dependens on the tailoring facilities that they provide. Figure 4.1

43



44 CHAPTER 4. APPROACH

Figure 4.1: System’s main elements

shows the main elements of the system.
The method of collaborative breakdown handling follows the structure pre-

sented during problem analysis. It consists of six phases, namely, triggering,
definition, diagnosis, design, treatment, and follow-up evaluation. Each phase
consists of several activities. For each activity the method details the expected
outcomes, suggests useful tools and artifacts, and organizes participation and
communication. Figure 4.2 provides an overview of the activities that compose
each phase.

The term ”case” is used to refer to the application of the method to handle
a particular breakdown. A case repository maintains information about the
progress of each case, and links to retrieve the relevant artifacts and tools.
When a case is initiated, the system creates a new entry in the case repository
to record activity information about the case. Similarly, all required documents
are created and initialized.

The structure of the method specifies the ordering of activities, the structure
of the required artifacts and their relation to activities, and the use of tools. It is
used by the system to create a hypermedia documenting the scaffolding for each
case, to create and initialize the documents that the method produces, and to
link the tools. The content of the hypermedia is mostly an on-line, hypermedia
version of the content of sections 4.3 to 4.8 of the thesis. It provides detailed
guidance for the users, for example, to indicate how to perform a task or how
to use deliberation tools to collaboratively obtain the required outcomes.

Some activities in collaborative breakdown handling require the use of spe-
cific groupware tools. For example, this is the case for activities that result
in the aggregation of the individual contributions from several team members
(e.g., effort estimations), activities that require negotiation and decision (e.g.,
deciding how to proceed), and activities that require communication (e.g., de-
liberation to produce a solution alternative). The thesis presents a collection
of specific groupware tools targeting activities for which there is no generic
groupware tool that applies, or where having a specific tool results in better
collaboration. An example of such a tool is the ”Breakdown Landscape” that
enables the collaborative construction and maintenance of a knowledge base
that relates breakdowns and teamwork. Tools reside and are accessed from an
independent tool server.

The scaffolding is delivered as a hypermedia document that combines the
method description, the progress information for each case, the documents for



4.1. OVERVIEW 45

Figure 4.2: Activities in each phase of the breakdown handling process



46 CHAPTER 4. APPROACH

each case, and links to the external tools. Users access the scaffolding and the
tools through a web-browser. The server processes user input and updates the
state of the cases. Changes to documents are directly uploaded to the document
repository without involving the scaffolding server.

Section 4.2 presents the details of the scaffolding server that delivers the
method, links tools and the artifacts and that helps coordinate the application
of the method. Sections 4.3 to 4.8 present the method in detail. Supporting
groupware tools are introduced as the need for them becomes clear.



4.2. GUIDANCE AND COORDINATION SUPPORT 47

4.2 Guidance and Coordination Support

To assure that team members contribute adequately in time and form to the
handling of the breakdown, in this thesis a method is suggested. The method
serves as a manual of operations and procedures. It is documented at a level of
detail that enables any newcomer to contribute fruitfully to breakdown handling.

The method is delivered electronically via the guidance and coordination
system described in Section 4.2.2. The choice of structure used to document the
method aims at a straight-forward delivery in the form of editable hypermedia.
Moreover, the chosen structure enables the creation and maintenance of the
data objects that hold information about breakdown handling cases. This is
needed to coordinate the work of the distributed team members.

The choice of editable hypermedia as the mechanism for capturing and co-
ordinating the tailoring processes is motivated by the need for flexibility (e.g.,
to allow tailoring, specially by end users) and the need to put users in control
of the tailoring process. Other alternatives for process modeling and enactment
such as Workflow Management Systems (WFMS) aim at strictly defining work
processes whose correct execution can be enforced and partly automated by a
workflow engine. They provide more support for automation expense of reduced
flexibility. Moreover, most workflow management systems require expert knowl-
edge to document processes. The approach of editable hypermedia implemented
in Scaki focuses on flexibility and simplicity however, it requires more manual
work (specially for process enactment).

The method documented in this thesis has been developed based on litera-
ture on problem solving in groups. It also reflects the results of early experiments
of collaborative tailoring. The organization of the method description and the
mechanisms chosen to store and to deliver it aim at enabling end-user tailoring.
It is expected that its usage will result in improved versions of the method.
Therefore, tailoring of the tailoring method is supported as well.

4.2.1 The Specification of the Method

The method is specified in terms of activities, artifacts, tools, and team member
participation. Object Oriented Programming has been chosen as the specifica-
tion formalism. The class diagram of Figure 4.3 shows the main elements of
the method. The diagram has been adapted from the model proposed by the
Workflow Management Coalition to specify workflows ([33], page 30).

The process of breakdown handling is decomposed in atomic activities. The
method presented in this thesis provides detailed instructions to achieve the in-
tent of each activity. When a tool is needed in order to perform an activity, the
method references the specification of the suggested tool (the ”uses” relation in
the the diagram). Activities commonly require the creation, modification, or
use of artifacts. When an activity involves an artifact, the method references
the specification of the artifact (the ”develops” relation in the diagram). Ar-
tifacts flow from the activities that create them, to activities that use and/or
modify them. Artifact flows determine dependencies among activities. There
are also synchronization dependencies among activities that do not relate to
artifact flows. Dependencies among activities are documented in the activation
conditions part of an activity. Similarly, the conditions that need to be met
to treat an activity as completed are documented (completion conditions). If



48 CHAPTER 4. APPROACH

Figure 4.3: Object model of a hypermedia scaffolding

a template for the construction of an artifact is available, the method provides
the URI (Unique Resource Identifier) to download it (the ”linkToResource” at-
tribute in the diagram). The method also provides instructions for the use of
tools. In some cases, these instructions are replaced by a reference to the user
manual of the tool. When possible, the method provides the URI that can be
used to start the tool.

Finally, the method documents participation in terms of the roles that need
to be fulfilled by team members in each of the activities. The assignment of
team members to roles is done when the method is used in a particular case.
To be eligible for participation in a given role, a team member needs to fulfill
certain requirements which are textually documented. For example, a role may
require that the participant belongs to a given shared perspective, or has certain
skills. It is possible that many team members fulfill a single role.

The method is presented in sections 4.3 to 4.8. Each section focuses on
one of the six phases of breakdown handling. The remainder of this current
section presents the system that is used to deliver the method on-line to the
distributed team members, and that supports team members in coordinating
their contributions to breakdown handling.

4.2.2 The Scaffolding Server

Breakdowns differ in complexity. In the scenario, the breakdown presented
in section 2.1.5 (Coding Conventions) encounters a problem that requires the
participation of only one perspective (developers). Moreover, participants go
through definition and diagnosis without much need for coordination or col-
laboration support. Only at the point of deciding for an alternative, do they



4.2. GUIDANCE AND COORDINATION SUPPORT 49

need to capture explicit commitment from all developers. Coordination and
process guidance support must be provided to enable the team to deviate from
the suggested process, and to use alternative tools. Team members cannot
be expected to immediately know all details about the activities, tools, and
artifacts involved in breakdown handling. Their interest and expertise focus
on the everyday work practice. Therefore, the amount of detail documented
about the breakdown handling process and related elements should be enough
to serve as a manual of operation. A groupware system to support collaborative
breakdown handling documents the chosen method and tracks the application
of the method to cases. Support for tracking the application of the method in a
case must make it possible to access related artifacts and tools, and to perform
activities outside of the planned schedule if participants consider it adequate.
The mechanism used to describe the process must be rich and simple so team
members can understand it. Moreover, it should be possible for users to col-
laboratively tailor the process description in response to breakdowns and then
have the guidelines appropriately modified.

There exists a wide range of coordination support mechanisms. There are
workflow systems that provide computer-controlled execution of formally speci-
fied processes. Traditional workflow management systems require expert knowl-
edge to document processes and impose a rigid structure in how to describe and
execute processes[33]. The need for more flexible process coordination support
motivated the creation of several flexible work coordination systems. These
systems aim, for example, at supporting emergent workflows. The CHIPS sys-
tem [70] is an example of such a flexible work coordination system. Neither
traditional workflow systems, nor the more flexible alternatives, support the
provision of detailed work guides.

In education, scaffolding [69] refers to the provision of a supporting frame-
work, for example in the form of step-by-step instructions, that students can use
to complete a complex assignment. Scaffolding support is gradually removed (or
ignored by the students) as students gain practice. This thesis uses the concept
of ”scaffolding” to characterize the groupware system that stores and delivers
the method of collaborative breakdown handling and guides a work team in the
application of the method.

Collaborative Hypermedia

Nodes and links in hypermedia have already been found useful in modeling
work processes [70, 71]. Hypermedia nodes can model activities, tools, artifacts
and people, whereas the links between the nodes can model any relation among
these elements. In addition, the popularity of hypermedia as a mechanism to
create and publish shared knowledge has grown with the advent of easy to use
collaborative hypermedia technology such as WikiWikiWebs.

WikiWikiWebs were first implemented and introduced by Ward Cunningham
as a lightweight collaborative composition system for the web, to host the work
of the Portland Patterns community. WikiWikiWebs are discussed in detail in
[45] and on-line in [75]. This section provides a short overview of the main
concepts.

A WikiWikiWeb is a server of hypermedia content rendered in HTML. A
link labeled ”edit this page” gives access, in the browser itself, to a form in which
the source code of the page is presented and can be edited. A save button under



50 CHAPTER 4. APPROACH

the form submits the changed source code to the server, that in turn returns
the newly rendered page. The source code of a page is basically plain text with
some simple markup to do formatting and to create hyperlinks. Any group of
run-together words (e.g., ScaffoldingWiki) defines a hyperlink to another page
within the same WikiWikiWeb. The run-together words represent the title of
the target page. Titles must be unique. If the target page does not yet exist,
the run-together words are displayed followed by a question mark which is a
hyperlink (e.g., ScaffoldingWiki?) 1. The user who first follows the hyperlink is
presented with a form to edit the page. Saving the form creates the new page.
Then, the run-together words become the anchor of the hyperlink that leads
to the new page. Text formating markup allows the creation of simple logical
elements such as bulleted lists, separators, and definitions.

Any number of users can simultaneously create and modify pages in the
WikiWikiWeb. The philosophy of a WikiWikiWeb is to trust users in that they
will edit responsibly. Pages are versioned on every save. All versions of a page
can be accessed and compared via a link in the page footer.

A WikiWikiWeb is implemented as a central server, accessed via the HTTP
protocol by regular web-browsers. Each page in a WikiWikiWeb has a unique
URL composed of the server’s URL and the page’s title. WikiWikiWebs are
easy to deploy and use.

Specializing WikiWikiWeb for Scaffolding Hypermedia

The idea of WikiWikiWeb can be specialized to support the delivery of scaffold-
ing. Consider the UML class diagram in Figure 4.4 as an object-oriented model
for the information contained in a scaffolding hypermedia. This model extends
the one presented in Figure 4.3 with information regarding the application of
the method in a case. The elements of the scaffolding, namely, activities, tools,
artifacts, participants, team members, and shared perspectives, map to pages
(i.e., nodes) of the hypermedia.

Each page is identified with a unique title. For activities, tools, artifacts,
shared perspectives and team members the title corresponds to the name. For
participants, the title corresponds to the role.

Properties of type Text in the diagram contain WikiWikiWeb markup. In-
cluding a reference to another scaffolding element as part of the text in a prop-
erty creates a relation between the objects. The nature of the relation is detailed
in natural language in the text that makes the reference. For example, the text
for the intent property of the activity named ”Reporting” could read ”Create
the BreakdownReport”. This implies a relation between the Reporting activity
and the BreakdownReport artifact. If a text property makes a reference to a
non-existing element, after saving the changes, the user is given the possibility
to choose the type of the new element from a list.

The relations in the UML diagram document the intended semantics of ref-
erences. References from activities to activities indicate that there is some form
of execution dependency between them. References from activities to tools doc-
ument usage. References from activities to artifacts document that the artifact
is developed or needed in the activity. References from activities to participants
document participation. References from participants to team members docu-

1In this document, underlined text represents hyperlinks



4.2. GUIDANCE AND COORDINATION SUPPORT 51

Figure 4.4: Object model of a hypermedia scaffolding



52 CHAPTER 4. APPROACH

ment involvement. References from team members to perspectives indicate that
the team members shares the perspectives.

The definition of a process starts with the creation of an empty scaffolding.
A cover page introduces the scaffolding with a title and a description of pur-
pose. Additionally, it provides an index with all the elements in the scaffolding
classified by type. A special section provides references to the starting points.
Immediately after creation, all fields in the cover page are empty. The user
can edit the description of purpose and the title. More important, the user can
introduce references to starting points. These can be either activities, tools,
artifacts or participants. However, in most cases, the user will reference the
initial activities of the process. When the changes to the cover page are saved,
the user is presented with a list to choose the adequate type of object for each
of the named starting points. Choosing from the list creates the new element
and opens it in edit mode. This action results in the scaffolding being pop-
ulated with the first group of elements. The scaffolding is populated starting
from the cover page and by further creating hyperlinks from existing elements
to new elements. Every element in the scaffolding is either accessible through
the starting points section of the cover page, and/or from a property of another
element.

Each element in the scaffolding is shown to the user following the structure
presented in Figure 4.5. The details of the element are presented within the
placeholder labeled ”type dependent content” in the figure. The ”edit” button
is used to change the interface to edit mode, which allows the user to modify
the properties of the element. In edit mode, the placeholder contains text boxes
in which to edit the properties of the element.

In presentation mode, anchors for hyperlinks that point to scaffolding ele-
ments are followed by a small icon indicating the type of the destination element.
Activities, tools, artifacts, and participants that include references to the pre-
sented element are listed in individual sections at the bottom of the page.

A section titled ”Event Log” at the end of the page is used to list important
events that occurred for the element. The system will add entries to the event log
automatically (e.g., every time an activity changes its state). Users can create
entries via the input field and the button located under the event log. They
can use this mechanism to communicate to other users important situations
regarding the element, for example, to document daily progress regarding an
activity.

The form used to edit an activity includes text fields to enter the activity’s
name, its intent, a detailed description, and the conditions required to start
and to finish the activity. In addition, there is the possibility to indicate the
status of the activity, where status is one of Inactive, InProgress, Canceled,
or Completed. The intent part of an activity provides a short overview of the
goal of the activity. Together with the name, the intent part is used to rapidly
identify activities.

The description part of an activity should provide all details needed by a
newcomer to be able to perform the activity. If an artifact is needed because it
provides relevant information for the activity, or if an artifact must be created
or updated, a reference to it must be included in the description. The text
containing the reference should make the relation to the artifact clear. The
same is true for the usage of tools and for the participation of participants.

The activation conditions part of an activity succinctly details all required



4.2. GUIDANCE AND COORDINATION SUPPORT 53

Figure 4.5: Presentation of a scaffolding’s element

aspects of the state of the case that are the precondition for the activity to
be started. These preconditions will be usually expressed in relation to other
activities (e.g., whether they were finished, or have produced significant results).
The completion conditions part of an activity documents the conditions that
must be fulfilled in order to be able to say that the activity has been completed.
For example, the completion conditions part of an activity ”Publish” could state:
”This activity is completed when the in-box tool confirms that publishing has
been successful and notifications have been sent.”

The form used to edit a tool includes text fields to enter the tool’s name,
the tool’s intended use, a detailed description of how to use the tool or a link
to the on-line user manual, and a link to install and/or activate the tool.

Artifacts are edited by providing a name, an intent, and a detailed descrip-
tion of the structure of the artifact and the rules that apply to its usage and
development. A central property of an artifact is the hyperlink reference to
the real resource. The artifact element of the scaffolding acts as a placeholder
for meta-information about the real artifact available at another location. This
level of indirection allows resources that originate in other systems accessible
through the network to be integrated into the scaffolding. In the simplest case,
the real resource is an untyped page within the hypermedia. Untyped means
that the page does not correspond to an element type of the scaffolding; thus it
is displayed and edited as a regular WikiWikiWeb page.

A participant node documents a role that need to be fulfilled. The edit form
can include a requirement that a person must fulfill in order to fit the role.
A general description of the participant contribution to breakdown handling is
provided. The exact details of what the participant needs to do are provided
as part of the description of the activities that reference the participant. The
edit form also indicates team member involvement in roles (i.e., work distribu-



54 CHAPTER 4. APPROACH

Figure 4.6: The Scaffolding server class

tion). References to the involved team members are included as references to
the corresponding team member nodes.

Participation in collaborative tailoring requires, for many activities, an as-
sociation between team members and shared perspectives (see Section 2.2.1).
The node type shared perspective is introduced to document shared perspec-
tives. Each shared perspective is identified by a name. The characterization of
a shared perspective provides hints, in natural language, for team members to
decide whether they share the perspective or not. For example, the characteri-
zation of a perspective can make reference to the role of team members in the
organization, to the skills of team members, to professional background, or to
a given work philosophy.

A team member node documents the name, contact information, and the
skills of a team member. There is only one team member node for each team
member. Additionally, the edit form for team members provides a text field to
enter references to shared perspectives (i.e., their profile). These are the shared
perspectives that the team member believes to share.

Shared perspectives are seldom referenced from nodes other than team mem-
bers. Team members are seldom referenced from nodes other than participants.
Therefore, the presentation mode of shared perspectives and team members do
not classify references in lists according to the type. Instead, incoming refer-
ences are presented as a comma-separated list of hyperlinks. The icon that
accompanies every hyperlink in the scaffolding wiki provides a hint of the type
of node to which the link points.

Access to the scaffolding pages is password protected. Access control is pro-
vided through an external authentication and session tracking service such as
the Apache Session module [54]. The session tracking service supports single
login policies through cookies. Cookies play the role of passports that fur-
ther web-pages and applications can use to grant access without contacting
the authentication service, and without asking the user again for user name
and password. All pages in any of the scaffoldings check that the passport is
present. Otherwise, the content of the page is not presented. Instead, a login
form is presented. The authentication functionality is channeled through the
authenticate method of the class ScaffoldingServer2 shown in Figure 4.6. This
method encapsulates the interaction with the authentication service and pro-
vides a single entry point for login. Figure 4.7 shows the class Passport whose
properties are locally stored in the client machine. A logout page handles re-
moving the passport.

User accounts are created by a system administrator. Team member nodes
are created together with the user account to keep the scaffolding and the user

2The ScaffoldingServer is a Facade object [26] used to describe the public behavior of the
scaffolding server



4.2. GUIDANCE AND COORDINATION SUPPORT 55

Figure 4.7: Passport object

Figure 4.8: Graphical scaffolding overview window

database used by the authentication service consistent.

Enactment of a Scaffolding

To contribute to a case, users browse the scaffolding and learn about what needs
to be done. At any time they can sign-up to be notified of changes in pages of
their interest. Before the project starts, users usually sign-up to be notified of
changes in those activities in which they participate.

To get an overview of the work that is to be done and to check what progress
has been made, users activate from the cover page the graphical overview that
opens in a separate window (see Figure 4.8). The graphical scaffolding overview
displays the elements in the scaffolding as a two-dimensional graph view. Scaf-
folding elements are represented as nodes in the graph and relations are the
edges of the graph. The name (the role, for the case of participants) of the scaf-
folding element is used to label the node. An attribute of the node (e.g., shape)
is used to indicate the type of element. Moreover, an attribute of activity nodes



56 CHAPTER 4. APPROACH

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT graph (node* link*)>
<!ELEMENT node EMPTY>
<!ATTLIST node

label CDATA #REQUIRED
url CDATA #REQUIRED
id ID #REQUIRED
type (ACTIVITY | ARTIFACT | PARTICIPANT | TOOL)

node-data CDATA #REQUIRED>
<!ELEMENT edge EMPTY>
<!ATTLIST edge

from REFID #REQUIRED
to REFID #REQUIRED>

Figure 4.9: Document Type Declaration for the result of the gener-
ateOverview method of class Scaffolding

(e.g., color) is used to indicate their state. A button labeled ”Display legend”
gives access to help on how to interpret the image. The graphical overview
also serves as a navigation control. Clicking on a node in the view, causes the
browser that launched the view to navigate to the element represented by the
clicked node. To obtain the graphical overview, the class Scaffolding is extended
with the method generateOverview. The method returns an XML represen-
tation of a graph that mirrors the scaffolding. The information contained in
the XML string follows the DTD presented in Figure 4.9. Each node contains
information about the type of scaffolding element it represents, and the URL
of the page in the scaffolding hypermedia for the element. The XML string is
fed to a new browser window containing an applet capable of laying out and
displaying the graph in 2D.

The activities in the list of starting points provide a place to start looking for
work. One of the users, the one declared as the project conductor, is responsible
for changing the status of these activities to ”in progress”. Users who have
signed-up to be notified of changes in these activities receive a notification.
Other users, who prefer a proactive way of working, periodically check the state
of the project to find out if their participation is required.

Team members identify the activities they need to contribute to by tracing
references backwards from their team member nodes, to participant nodes, to
activity nodes. Once users know where they need to contribute, they navigate
to the hypermedia nodes that document these activities to look for the details
and to do their work. Once the completion conditions of the activity are met,
they edit the activity and change the status to ”completed”. The scaffolding
hypermedia provides no support to compute dependencies between activities.
It is up to the users to decide how changes in status of activities affect other
activities.

The scaffolding hypermedia additionally provides a mechanism to query the
list of pages that changed. The result is a report that indicates for each of
the recent past days the list of pages that have been changed. This history of
changes can be used by proactive users as a guide of where to explore for news.

As a result of some activities, users need to modify artifacts. Artifacts can
be easily accessed from hyperlinks embedded in the description of the activities.
The event log of the artifacts can be used to share notes regarding the changes
made to the artifact.

If a tool is needed in order to contribute to an activity, the node describing it



4.2. GUIDANCE AND COORDINATION SUPPORT 57

✞ ☎
pub l i c URL deepCopy ( St r ing newName) {

S c a f f o l d i n g copy := new Sca f f o l d i n g (newName ) ;
f o r each Act i v i ty A in t h i s . c on s i s t sO f ( ) {

A. deepCopyTo ( copy ) ;
}
f o r each Attachment T in t h i s . ho lds ( ) {

T. copyTo ( copy ) ;
}
copy . l og Ins tant ia t i onFrom ( t h i s ) ;
t h i s . logNewInstance ( copy ) ;
r e turn copy . asURL ( ) ;

}
✡✝ ✆

Figure 4.10: Pseudocode for the deepCopy operation in the Scaffolding class.

can be easily accessed from the link embedded in the description of the activity.
Moreover, if the tool can be started from the web, the node describing it provides
the activation link.

Instantiation of a Scaffolding

When a scaffolding is used in a case, its pages are modified to contain case-
specific information. The status of the activities reflects the status of the case,
the artifacts reflect the content of the artifacts in the case, and the event logs
reflect the events that occurred in the case. A scaffolding can describe a way
of working that is valid for more than one case. Therefore, it is desired that
the experience it documents can be reused. In order to do this, an unused
version of the scaffolding needs to be maintained and duplicated every time a
case based on it starts. In this thesis, the term ”instantiation” refers to the
creation of a copy of a master scaffolding for its usage in a particular case. The
class Scaffolding in the UML diagram in Figure 4.4 is extended with a method
deepCopy as pseudocoded in Figure 4.10.

Instantiation of scaffoldings works by creating in the same server an exact
copy of a master scaffolding. The copy is accessible in a new name-space iden-
tified by a URL composed of the URL of the server followed by an identifier for
the new case (e.g., http://scaffolding.myorg.org/new-case/). All elements main-
tain their original name relative to the URL of the scaffolding. Artifacts from
external sources that were stored as attachments in the master are also copied
as attachments for the instance. However, artifacts or other on-line resources
maintained outside the scaffolding (e.g., accessible via URLs) aren’t copied. The
references in the instance and the master are to exactly the same resource.

On instantiation, an entry documenting the time of instantiation and a ref-
erence to the master scaffolding is automatically appended to an event log pre-
sented at the end of the cover page of the instance. The log entry additionally
contains a hyperlink to an untyped page where further details about the oper-
ation are provided (e.g., the list of references to external resources shared with
the master). Additionally, a log entry is appended to the event log in the cover



58 CHAPTER 4. APPROACH

Figure 4.11: A hierarchy of scaffolding elements

page of the master indicating that a new case based on the master has been
created, and containing a hyperlink to the new case. The references to the
instances from a master scaffolding serve as examples of use.

A hierarchy of scaffolding elements simplifies the definition of the copy opera-
tions. Figure 4.11 shows how the class ScaffoldingElement implements the deep-
Copy method inherited by all subclasses. The method relies on two other meth-
ods that subclasses implement or override. The pseudocode of the deepCopy
method is shown in figure 4.12.

Figure 4.13 provides pseudocode for the class Activity. The class Activity
implements the copyChildren method to propagate the copying to instances of
Participant, Artifact, and Tool. The class Artifact, Participant and Tool do not
override the method copyChildren because they do not reference further scaf-
folding elements that need to be copied. The copyTo method in class Activity
creates a new Activity in the target scaffolding and copies all attributes to it.
The classes Tool, Artifact and Participant have a similar copyTo method with
one variation. Whenever a property is found which points via an URL to an ex-
ternal resource (i.e., not an attachment or untyped page inside the scaffolding),
a note is added to the page that holds further details of the copy operation. The
note documents that an element is shared between the master and the copy.

Unlike activities, tools, and artifacts, team members and perspectives need
to be shared among all instances. If an element representing a new team mem-
ber is added, it should be usable in all scaffoldings. Similarly, perspectives,
and associations between team members and perspectives must be accessible
for referencing in all scaffoldings. Therefore, they are created as nodes in
an independent WikiWikiWeb namespace called shared. (i.e., accessible un-
der http://scaffolding.myorg.org/shared/). References to these shared elements
have the form Shared:nodeName (e.g., Shared:JohnDoe or Shared:Management).
Implementations of the copyChildren method should not be propagated to the
shared namespace.



4.2. GUIDANCE AND COORDINATION SUPPORT 59

✞ ☎
c l a s s Sca f fo ld ingElement {
void deepCopy ( S c a f f o l d i n g t a r g e t ) {

t h i s . copyTo ( t a r g e t ) ;
t h i s . copyChildrenTo ( t a r g e t ) ;

}

void copyChildrenTo ( S c a f f o l d i n g ta r g e t ) {
re turn ; / / Does nothing .

}

abs t r a c t void copyTo ( S c a f f o l d i n g t a r g e t ) ;

}
✡✝ ✆

Figure 4.12: Pseudocode for the deepCopy operation in the ScaffoldingElement
class.

✞ ☎
c l a s s Ac t i v i ty extends Sca f fo ld ingElement {
void copyTo ( S c a f f o l d i n g t a r g e t ) {

Act iv i ty copy = ta rg e t . newActivity ( t h i s . name ,
t h i s . in tent , t h i s . i n s t r u c t i o n s ,
t h i s . a c t i va t i onCond i t i ons , t h i s . eventLog ,
t h i s . complet ionCondit ions ) ;

}

void copyChildrenTo ( S c a f f o l d i n g ta r g e t ) {
f o r each Par t i c i pan t P in t h i s . r e qu i r e s ( ) {

P. deepCopyTo ( t a r g e t ) ;
}
f o r each Ar t i f a c t A in t h i s . deve lops ( ) {

A. deepCopyTo ( t a r g e t ) ;
}
f o r each Tool T in t h i s . uses ( ) {

T. deepCopyTo ( t a r g e t ) ;
}

}

}
✡✝ ✆

Figure 4.13: Pseudocode for the deepCopy operation in the Activity class.



60 CHAPTER 4. APPROACH

Tailoring Hooks

As a consequence of the need to change the method in response to level B
breakdowns, scaffolding support for breakdown handling must provide the tools
to collaboratively create, edit, and publish scaffoldings. WikiWikiWebs are by
nature a tool to collaboratively edit content. Therefore, the method becomes a
shared document that team members can edit in collaboration. The scaffolding
server provides features to lock pages, to review changes, to access previous
versions of all pages, and to notify team members on change of pages.

The scaffolding integrates tools and artifact templates through hyperlinks.
This allows coarse level tailoring by simply replacing tools and templates when
needed. If artifact templates are created as page templates within the Wiki-
WikiWeb, finer granularity tailoring (i.e. section by section) is also possible. If
artifact templates are imported from external sources, the ability to tailor them
depends on the source. Finer granularity in the tailoring of tools needs to be
provided by the tool itself.

Instantiation via deep copy as described in the previous section has the
benefit of making the copy completely independent from the master. Everything
can be tailored before and during use to match the needs of the case. For
example, the descriptions of the activities can be edited to fit the background
of the participants. As each case works on a completely independent copy of
the scaffolding, changes to instances are not propagated. In order to foster the
propagation of successful experiences, a mechanism to extract a master from
any tailored instance is required.

Extraction of Best Practices

Extracting the practice contained in a scaffolding used in a project implies
creating a master scaffolding that mirrors its structure and content, and that
can be used for further instantiation. The status of all activities in the master
should be set to inactive, all event logs should be cleared, and all modified
artifacts should be put to an initial state.

Similarly to the deepCopy operation used for instantiation, an extractMaster
operation is defined. Figure 4.14 provides pseudocode for the extractMaster
in the class Scaffolding. After extraction, an entry documenting the operation
is added to the event log of the new master scaffolding. The entry contains
a hyperlink to the project scaffolding that served as the source. A page with
additional information about the operation lists the resources that may require
manual processing, and the resources that are shared with the source scaffolding.

Figure 4.15 and Figure 4.16 specify in pseudocode the extractMasterTo op-
eration for the classes ScaffoldingElement and Activity. To extract the master
of an activity, a new activity in instantiated. By default, activities are instan-
tiated with inactive state. Moreover, the new instance is passed all attributes
of the original activity except the content of the event log, which is initialized
to an empty string. The method extractMasterTo is similarly implemented in
the classes Participant, Artifact, Tool.

Attachments, external resources (URL outside the namespace of the Wiki),
and untyped pages all pose a limitation when using the copy mechanism for ex-
tracting practice. The system has no knowledge about the structure and content
of these artifacts; therefore it is not possible to implement a extractMasterTo



4.2. GUIDANCE AND COORDINATION SUPPORT 61

✞ ☎
pub l i c URL extractMaster ( S t r ing newName) {

S c a f f o l d i n g master := new Sca f f o l d i n g (newName ) ;
f o r each Act i v i ty A in t h i s . c on s i s t sO f ( ) {

A. extractMasterTo ( master ) ;
}
f o r each Attachment T in t h i s . ho lds ( ) {

T. copyTo ( master ) ;
}
master . logExtract ionFrom ( t h i s ) ;
r e turn master . asURL ( ) ;

}
✡✝ ✆

Figure 4.14: Pseudocode for the extractMaster operation in the Scaffolding
class.

✞ ☎
c l a s s Sca f fo ld ingElement {
void extractMasterTo ( S c a f f o l d i n g masterScf ) {

t h i s . copyAsMasterTo ( masterScf ) ;
t h i s . extractChi ldrenTo ( masterScf ) ;

}

void extractChi ldrenTo ( S c a f f o l d i n g masterScf ) {
re turn ; / / Does nothing .

}

abs t r a c t void copyAsMasterTo ( S c a f f o l d i n g masterScf ) ;
}

✡✝ ✆

Figure 4.15: Pseudocode for the extractMaster operation in the ScaffoldingEle-
ment class.



62 CHAPTER 4. APPROACH

✞ ☎
c l a s s Ac t i v i t y extends Sca f fo ld ingElement {
void copyAsMasterTo ( S c a f f o l d i n g masterScf ) {

Act iv i ty copy = masterScf . newActivity ( t h i s . name ,
t h i s . in tent , t h i s . i n s t r u c t i o n s ,
t h i s . a c t i va t i onCond i t i ons , ”” ,
t h i s . complet ionCondit ions ) ;

}

void extractChi ldrenTo ( S c a f f o l d i n g masterScf ) {
f o r each Par t i c i pan t P in t h i s . r e qu i r e s ( ) {

P. extractMasterTo ( masterScf ) ;
}
f o r each Ar t i f a c t A in t h i s . deve lops ( ) {

A. extractMasterTo ( masterScf ) ;
}
f o r each Tool T in t h i s . uses ( ) {

T. extractMasterTo ( masterScf ) ;
}

}}
✡✝ ✆

Figure 4.16: Pseudocode for the extractMaster operation in the Activity class.

method that clears specific sections. Untyped pages and resources from exter-
nal sources stored as attachments are copied without any change. Artifacts or
other on-line resources maintained outside aren’t copied, but referenced. After
extraction, the user must check all copied artifacts and all shared resources to
see if the content needs to be (re)set to initial values.

4.2.3 Summary

The scaffolding approach described in this section supports the informed and
coordinated participation of team members in breakdown handling. It is appli-
cable to handle breakdowns in everyday work. Moreover, it is also applicable
to handle breakdowns that occur during breakdown handling, which this re-
quires that the method specified in the upcoming sections is also valid in such
cases. The scaffolding approach provides tailoring hooks to enable tailoring of
the process in any form, to replace tools, to tailor and replace artifacts, and to
tailor participation in the process. This represents a first step for the fulfillment
of requirement 1, namely, the provision of support for collaborative breakdown
handling at any level.



4.3. TRIGGERING BREAKDOWN HANDLING 63

Figure 4.17: Extended ScaffoldingElement hierarchy

4.3 Triggering Breakdown Handling

4.3.1 Presentation of the Method

Sections 4.3 to 4.8 presented the breakdown handling method proposed in this
thesis. The objective of these sections is twofold. They document the instruc-
tions that will be delivered to users as a manual of operations and procedures.
This manual includes instructions to perform the activities, to use the tools, to
create artifacts, and to organize participation. Additionally, they specify the
data structures that are required to store and deliver artifacts, and specify the
data structures and functionality required by the individual tools.

Each section starts with a graphical overview of the phase, covering organi-
zation of activities, the use of tools, the creation of artifacts, and participation.
One subsection is dedicated to each of the elements in the phase. The struc-
ture of each subsection varies with the type of element it describes. Subsections
present the text that corresponds to the static properties of the corresponding
element class in Figure 4.17. A static property of a scaffolding element does
not change when the scaffolding is deployed, instantiated or enacted in a case.
The event log property, the state of an activity node, and the distribution of a
participant node are examples of non-static properties.

Participant subsections are further divided into role, contribution and re-
quirements. The abstract class ScaffoldingElement defines the method appendToLog.



64 CHAPTER 4. APPROACH

This method guarantees that users can only append to the log but never remove.
Moreover, the method automatically timestamps each entry.

Activity subsections are further divided into name, intent, instructions,
activation conditions, and completion conditions. The content of the
subsection state can only be set through one of the state change methods in the
Activity class. This restriction ensures that the value matches one of the possible
states. The method start sets the content to ”InProgress”. The method cancel
sets the content to ”Canceled”. The method complete sets the content to
”Completed”. The method deactivate sets the content to ”Inactive”.

Tool subsections are further divided into name, intent and instructions.
The instructions subsection indicates how to use the tool. Moreover it also
specifies the underlying data structures and operations needed to build the tool.
Tools that are used along several breakdown handling phases, are incrementally
introduced.

Artifact subsections are further divided into name, intent and instruc-
tions. The instructions subsection additionally describes the structure of the
artifact. In the UML model presented in Section 4.2, Artifact instances had a
URL reference to the real resource (the artifact itself). The resource could be
an external document or an untyped page in the scaffolding hypermedia. To
facilitate the creation of artifact templates within the scaffolding hypermedia,
the object model is extended with the interface Resource and the abstract class
FormattedPage. ExternalResource and UntypedPage are implementations of
the Resource interface. They can be edited and shown. FormattedPage im-
plements Resource to specify two operations that templates should implement.
The two operations are used to provide a default implementation of show. The
operation getSectionHeadings returns a collection with all section headings in
the template. The operation getText returns the content of the section whose
heading matches the argument. In the following sections, when a template for
an artifact in the method is introduced, it is presented as an implementation of
the FormattedPage interface.

4.3.2 Overview of the Triggering Phase

The goal of the triggering phase is to create awareness among team members
about the existence of breakdowns that need to be handled.

Figure 4.18 provides an overview of the triggering phase. The notation in
the figure will be used in the next sections to provide an overview of a phase.
Rectangles represent activities. Hexagons represent tools. Parallelograms rep-
resent artifacts. Ovals represent participants. The arrows represent the flow of
control. Solid lines that connect activities to tools document usage. Solid lines
that connect activities to artifacts indicate that the artifact is created or needed
in the activity. Solid lines that connect activities to tools indicate that the tool
is needed to perform the activity.

The triggering phase consists of five core activities: report, weight, publish,
select, and aggregate. The key artifact in this phase is the breakdown report. It
is created during the report activity, and it is used in the other four activities.
Participation in the triggering phase is done in the roles of reporter and manager.
Two tools are suggested. The Breakdown Landscape is used to capture the
relation among forces and teamwork. The breakdown in-box holds the list of
breakdowns that wait to be handled. During the weight activity, the report is



4.3. TRIGGERING BREAKDOWN HANDLING 65

Figure 4.18: Triggering phase of breakdown handling. The artifact breakdown
report is related to all activities in this phase.

extended with a preliminary evaluation of the impact of the breakdown. The
publish activity releases the report to all team members, making them aware
of the breakdown. When team members are ready to handle a breakdown,
they explore the list of reported breakdowns in order to select one breakdown
for handling. Once a breakdown is selected, the triggering phase ends and the
definition phase starts. At any moment during the triggering phase, reporters of
related breakdowns can collaborate to create an aggregated report that covers
all related breakdowns.

4.3.3 Participant: Reporter

Contribution

The team members that experience the breakdown take the role of reporter. The
role of reporter is assigned during the report activity of the triggering phase,
and never reassigned. Reporters have the final word regarding the definition of
the problem, and the evaluation of the solution.

Requirements

Any team member can be a reporter, regardless of skills and perspectives.



66 CHAPTER 4. APPROACH

4.3.4 Participant: Moderator

Contribution

The moderator is the official speaker for the breakdown. The moderator can
always transfer the role to another team member.

The moderator is responsible for tracking the progress of the breakdown
handling process. The moderator is responsible for changing the status of ac-
tivities to InProgress, when activation conditions are met; to Completed, when
the completion conditions are met; and to Cancelled, when prescribed by the
method. The moderator takes care that breakdown handling moves forward.

Besides the general responsibilities of the moderator previously stated, the
moderator is explicitly requested to contribute to certain activities such as the
publish activity of the triggering phase.

Requirements

The team member who is the first to contribute to handling of the current
breakdown (i.e., the first reporter) additionally takes the role of moderator.

4.3.5 Activity: Report

Intent

To create a detailed report of the perceived breakdown, and initiate breakdown
handling.

Activation conditions

It is always possible to report a breakdown. Initiating a report activity implicitly
involves initiating a new breakdown handling process.

Instructions

Reporting starts with the creation of an empty breakdown report (Artifact in
Section 4.3.6) 3.

Upon creation of a report, the scaffolding system instantiates a breakdown
handling process. All artifacts in the scaffolding are initialized using the given
templates, and all roles are created but not assigned.

The team members that report add references from the reporter node to
their team member pages. If the team members’ details have not been entered
in advance4, they need to be entered at this point. Besides team member name,
contact info, and skills, it is necessary to provide references from team member
pages to at least one shared perspective node. Shared perspective nodes are
created on demand.

3When the method is deployed electronically via the scaffolding server, these cross-
references become WikiWikiWeb hyperlinks. For example, the previous reference
”. . . breakdown report (Artifact in Section 4.3.6) . . . ” becomes breakdown report, pointing to
the node BreakdownReport which holds the content presented in Section 4.3.6.

4Team member pages are created when user accounts are opened (see Section 4.2.2). How-
ever, no data other than user name is entered.



4.3. TRIGGERING BREAKDOWN HANDLING 67

Isolating the key elements of teamwork, and of the products that relate to
a breakdown, is valuable for later phases of breakdown handling. Therefore,
the reporters (Participant in Section 4.3.3) are asked to explicitly identify these
elements. The context and symptoms section of the report must explicitly indi-
cate the role of activities, tools, artifacts, and communication in the breakdown.
The BreakdownLandscapeTool (Tool in Section 4.3.7) is used to create explicit
references from the breakdown report to the relevant elements in teamwork and
the product.

Completion Conditions

This activity is completed when the reporters consider that they have filled
in the sections of the report related to context, symptoms, and all elements in
the key elements are cross referenced from the context and symptoms. The
moderator, in agreement with the other reporters, should mark the activity as
completed.

4.3.6 Artifact: Breakdown Report

Intent

The breakdown report documents the perceived problem, its perceived weight,
and its relation to teamwork. The report describes the breakdown so all team
members can be aware of it. It forms the basis for further discussion.

Instructions

The breakdown report is a document with four mandatory sections, namely, the
context, the symptoms observed by the reporters, key elements of teamwork,
and an initial indication of the importance of handling the breakdown (i.e., its
weight).

The breakdown report is created from a template provided by the scaffolding
service described in Section 4.2.2. The template contains one text area for each
of the four sections. The user enters text in the text areas according to a
predefined format. When the artifact is saved, the text fields are parsed and the
data objects in Figure 4.19 are updated. The getText method is implemented
to send the appropriate get message (e.g., getContext) that returns the text
to be shown. When the page is saved after an edit, the parse messages are sent
to transform the entered text into the underlying data objects.

The reporter documents the context and the symptoms of the breakdown
in natural language. The context answers the questions: what was the reporter
doing or attempting when the breakdown occurred? and what was the status
of work at the moment of the occurrence of the breakdown? The description of
symptoms answers the questions: what did the reported experience that inter-
rupted the normal flow of work? and what was expected instead? Symptoms
are documented in the form of a bulleted list. Consecutive text lines starting
with a hyphen become elements in the list.

The description of context and symptoms should make references to tasks,
tools, artifacts or communication forms. The Breakdown Landscape tool can
be used to create a selection of elements of teamwork that can be inserted in



68 CHAPTER 4. APPROACH

Figure 4.19: FormattedPage subclass for the breakdown report artifact

the key elements section of the report as a numbered list. The reporter can
cross reference, from the context and symptoms sections, elements of the list
of key elements using \ref{id} cross-references, where id is the identification of
the element in the Breakdown Landscape. Moreover, when the report is saved,
elements in the list that are not referenced are highlighted.

The getKeyElements method returns a Text with a numbered list con-
structed from the collection of key elements. WikiWiki formatting is used to
highlight the elements that have no references. The methods parseContext,
parseSymptoms, and parseKeyElements update the list of key elements and
reference count of the key elements from the text entered in the corresponding
fields. The implementation of getContext and getSymptoms replace \ref{id}
cross-references to cross-references using the order of the element in the num-
bered list of key elements (i.e., as in bibliographic citations).

The importance of the breakdown is indicated criteria by criteria. Each indi-
vidual contribution is provided in a separated line following the pattern criteria-
1:weight-for-criteria-1i;... criteria-n:weight-for-criteria-n #name-of-contributor.
The list of contributions ends with a line that aggregates (e.g., calculates the
mode) all individual contributions, criteria by criteria. This last line follows the
same pattern, with ”Aggregates result” as the author name. The content of
this section is prepared with the In-box Tool (see Section 4.3.13) and directly
submitted to the scaffolding server. The criteria and possible weights are de-
termined when the tool is configured. If the in-box is not used and the section
is filled in manually, the parseImportance checks that the format is correct
and updates the object model. However, this would require that the moderator



4.3. TRIGGERING BREAKDOWN HANDLING 69

manually calculates the aggregated result.

4.3.7 Tool: Breakdown Landscape

Intent

The Breakdown Landscape of an organization holds a set of graphical represen-
tations of teamwork in the form it currently takes place, and of the product.
These representations are the basis for documenting how forces in breakdowns
relate to teamwork and the product. During breakdown handling, the Break-
down Landscape can be used to embed references to elements of teamwork and
the product in documents, to document forces, and to perform queries regarding
forces, perspectives, teamwork, and breakdowns.

Instructions

The Breakdown Landscape tool implements functionality useful for all phases of
breakdown handling. The following sections present the functionality of this tool
needed for the triggering phase. Later sections complete the tool’s specification.

Diagrams of Teamwork and Product

Whittaker and colleagues [74] proposed to classify contributions to an on-line
conversation in artifacts, prose and diesis. Artifacts include data structures such
as tables, diagrams, and matrices. Prose is all textual conversation not part of an
artifact. Diesis refers to actions that reference existing materials, for example,
pointing, voting, and drawing. Whittaker and colleagues observed that artifacts
carry the content of the discussion, whereas prose and diesis are used as part
of the process of conversation in activities such as discussion, clarification and
negotiation about the content. Experiments showed that even in the presence
of a speech channel, participants continued creating artifacts. Collaborative
tailoring requires that team members engage in on-line conversations supported
by groupware tools. For example, team members participate in conversations
to identify the causes and the involved forces of a given breakdown. Artifacts
(e.g., an organizational diagram or an UML diagram of the product) can be used
to focus conversations that are part of breakdown handling. The Breakdown
Landscape tool holds the set of diagrams (i.e., artifacts) that team members use
as artifacts to focus communication.

There exists a rich spectrum of tools that can be used to create artifacts that
represent different aspects of teamwork and the product. Some of these tools
are based on standard graphical languages such as Petri nets [68], or on UML
extensions [60]. Other tools propose their own graphical language. In many
cases, the diagrams are interpreted by the tool (or by other systems) to provide
some form of work management support. This is the case of diagrams created
with graphical workflow editors that are interpreted by workflow management
systems. Using the diagrams as input for computation requires a high degree of
detail and formality on the graphical language.

There are general diagramming tools commonly used to create descriptions
of work that are to be interpreted only by humans. The languages provided may
resemble a standard, formal notation. However, these tools have lighter (if any)



70 CHAPTER 4. APPROACH

Figure 4.20: Example organizational chart

requirements for details, completion, and formality of the created diagrams.
The main goal of a diagramming editor is to provide the graphical constructs
of one or more languages, and to assist the user by simplifying the creation of
commonly needed arrangements. Microsoft’s Visio 5 is a widespread tool that
belongs to this family and that supports a variety of frequently used languages.
Some example languages supported by Visio allow the creation of diagrams to
represent office arrangements, product flows, and organizational charts. Figure
4.20 shows an example diagram of an organizational chart.

From the research arena of visual languages there are tools that allow the
definition of formal visual languages and the generation of the corresponding
visual editors. GenGed [11] is an example of this type of editors. GenGed
additionally supports the simulation of the behavior of visual models. Similarly,
the Boz system [18] allows the definition of editors for arbitrary diagramming
conventions. The Boz system additionally provides mechanisms to indicate
how diagrams are to be interpreted and represented in the form of formal data
constructs.

In a group of professionals, or in a work team informal diagramming con-
ventions frequently emerge. Diagrams are created by hand, either on paper or
by means of very generic drawing programs (e.g., using basic geometric con-
structs). The interpretation of these languages is based on agreed upon conven-
tions and shared background knowledge (see [18] for further discussion on the
use of diagramming conventions). These languages are used in scenarios with
low requirements for formalism. Details are commonly left out of the diagrams
in order to simplify them. The risk of misinterpretation associated with the lack
of formality of the diagrams and the simplification of details is reduced through
verbal clarification and agreement.

Any of the above discussed graphical editors can create the diagrams needed
by the Breakdown Landscape. However, they must be capable of exporting the

5Visio is a registered trademark of Microsoft Corp.



4.3. TRIGGERING BREAKDOWN HANDLING 71

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT teamwork-descriptor (object-representation*)>
<!ATTLIST teamwork-descriptor

id ID #REQUIRED
title CDATA #REQUIRED
image-uri CDATA #REQUIRED
reference-uri CDATA #IMPLIED>

<!ELEMENT object-representation (shape-path+)>
<!ATTLIST object-representation

object IDREF #REQUIRED>
<!ELEMENT shape-path (point+)>
<!ELEMENT point EMPTY>
<!ATTLIST point

x-coordinate CDATA #REQUIRED
y-coordinate CDATA #REQUIRED>

<!ELEMENT object EMPTY>
<!ATTLIST object

id ID #REQUIRED
name CDATA #REQUIRED
reference-uri CDATA #IMPLIED>

Figure 4.21: Document Type Declaration used by the Breakdown
Landscape tool

diagrams in a format that includes meta-information about the elements being
represented as required by the Breakdown Landscape tool.

Representations of Teamwork and Product

In a Breakdown Landscape any diagram of teamwork serves as the basic map
that is enriched with information about breakdowns. The map is interpreted as
an open space where the graphical constructs that represent important abstrac-
tions are delimited by two-dimensional areas. For example, in the organizational
chart in the left of Figure 4.20, each organizational unit is represented as a rect-
angular box which in turn occupies a rectangular area.

The information contained in a diagram of teamwork is prepared for its us-
age in the Breakdown Landscape tool as an image plus meta-information about
the image’s content. This meta-information consists of a list of the important
abstractions represented in the diagram and the area each of them occupies in
the image. Most of the previously mentioned diagramming tools are capable of
exporting the diagrams in some standard graphical format (e.g., jpeg, or gif).
In order to enable use of arbitrary diagramming tools, while at the same time
keeping the Breakdown Landscape tool simple, the meta-information about the
image’s content must be described in conformance to a well-defined convention.
An image together with the associated meta-information form a teamwork rep-
resentation.

The document type definition (DTD) specified in Figure 4.21 defines the
format used by the Breakdown Landscape tool to import representations of
teamwork or products. The XML documents created from this definition are
referred to as representation descriptors. In a descriptor, a representation is
defined with a unique identifier. The diagram is specified as an Internet URI
(Uniform Resource Identifier). The diagram must be a rasterized image (pixel
matrix, non-scalable) to ensure consistency with the areas indicated for each
of the objects in the representation. Optionally, an URI can be provided to
indicate where to find reference material for the representation (e.g., a detailed



72 CHAPTER 4. APPROACH

Figure 4.22: Initial architecture overview of the landscaping tool

textual description). Each of the objects represented in the diagram is specified
by indicating its unique identifier, an optional URI to reference material, and
the list of polygonal areas in the image that are covered by the object. Each of
these polygonal areas is described as a sequence of two-dimensional points which
are interpreted as the vertexes of a polygon. The possibility of indicating more
than one area for a single object is provided as an elementary mechanism to
specify composed objects. Unique identifiers are not necessarily cryptic values.
On the contrary, it is recommended to provide brief but meaningful strings. The
name of the object, and the title of the representation are good candidates for
identifiers if it can be ensured that they are unique.

The generation of the descriptor of a representation that conforms to the in-
dicated convention can be implemented by extending the diagram editors with
specific functionality for that purpose. MS Visio, for example, foresees the pos-
sibility of programming extensions through macros or plug-ins. Implementing
such an extension requires the ability to save the image where it can be accessed
via a URI, to identify the bounding areas for each of the objects, to extract the
properties of these objects (i.e., id and reference URI), and to generate the XML
file in conformance with the DTD.

To enable the use of editors that cannot be extended, an additional tool
that allows the specification of areas over the rasterized image generated by the
editor can be used. Such a tool would work similarly to an editor of client-side
HTML image maps ([59], chapter 13) . The disadvantage of this approach is
that the map (thus the representation descriptor) must be manually updated
every time the associated diagram changes.

Architecture

Figure 4.22 provides an overview of the initial6 architecture of the landscaping
tool. It shows the breakdown landscape tool (with gray background) with its
main components, and around it the systems that interface with the tool. The
Breakdown Landscape tool has two components, the server and the plug-in.

6Other features of the tool are discussed in later sections



4.3. TRIGGERING BREAKDOWN HANDLING 73

Figure 4.23: Landscape tool: functionality provided on the the server and on
the client

The tool is designed following the philosophy proposed earlier, which is to
provide small (core) units of data and functionality that can be used to achieve
a particular teamwork objective. The landscape (as a document) is the data
unit on which the tool is based.

Figure 4.23 specifies the tool functionality. The Facade pattern [26] is used
to simplify the specification. One Facade class specifies the operations published
by the server, and one class specifies the operations published by the client.

The importFromXML method on the server component provides functional-
ity to import new representations that were created with external editors. The
server stores the meta-information about the representations in the XML land-
scape repository. During import, a copy of the diagrams is created and stored
in the repository to make sure the diagrams remain available. If a represen-
tation has links to reference material (e.g., detailed explanations of tasks), the
reference material is made available through the organization’s HTTP servers.
If the availability of reference material changes, representations needs to be
re-imported to update the repository.

The plug-in component delivers the functionality required to explore and
use representations during breakdown handling. The plug-in is deployed by em-
bedding it in the corresponding tool nodes of the scaffolding. Thus, when team
members reach the report activity, the tool can be started from the associated
tool page. A method authenticate checks that a passport indicating that the
user has authenticated is present. A method getRepresentations on the server
returns the collection of representation objects used by the client. When the
plug-in opens, the method updateRepresentations on the plug-in retrieves the
representations from the server and updates its local state.

For the triggering phase, the landscape provides functionality to browse all
available representations and to simultaneously open several representations.
As shown in Figure 4.24, each representation is displayed in an individual tab.
There are menu actions to browse the list of available representations (corre-
sponding to the getAvailableRepresentations method) and to open them
(through the openRepresentation method). A menu action corresponding to
the browseReference method supports navigation in a web-browser to the refer-
ence material of a representation or of an individual element in a representation.



74 CHAPTER 4. APPROACH

Figure 4.24: Landscape tool: referencing elements from representations

Elements in the representations can be selected. Clicking on an element
visible in a representation adds the element to the current selection (through
the selectObject method). The selection can span multiple representations.
Elements in the list of selected objects, which can be obtained through the
getSelectedObjects method, are highlighted in all representations where they
are present. There are menu actions available to operate on the selection, for
example to clear it, to invert it, and to remove single elements by changing the
effect of mouse clicks.

Once the user has selected the elements from the existing representation that
are considered important for a breakdown report, a menu action copies a string
version of the selection to the system clipboard. The method exportSelection
returns the string that is copied to the system clipboard. Then, the content of
the clipboard is pasted in the key elements section of the report. Each element
in the list appears in a new line in the String.

The exported list ends with a HTML hyperlink that can be used to open
the landscape tool and display the selection. The hyperlink is a request to the
Landscape tool’s server, where the selected elements are passed as arguments
as in this example:

<a href=”http://svr-addr/landscape.cgi?op=browse&selected=id1+id2+id3”>

Reification of Support for Level B Work

An organization commonly works with two breakdown landscapes. One of them is
used to analyze work on level A, the other to analyze work on level B (i.e., breakdown
handling). The representations used to describe level A work are specific for each
organization. They need to be initialized on deployment and updated as needed by the



4.3. TRIGGERING BREAKDOWN HANDLING 75

Figure 4.25: Default representation for the Breakdown In-box tool

team. However, many of the representations of work on level B can be obtained from
this thesis and the proposed tools and artifacts. There is a process representation that
reflects the method, there is an organizational representation that lists and describes
the available perspectives, there is a representation of the structure of each artifact,
and there is a representation of each tool, specially detailing all tailoring hooks. To
simplify the creation and maintenance of these representations, they are generated
automatically by the tools.

The scaffolding server presented in Section 4.2.2 provides a graphical overview win-
dow that shows, in the form of a two dimensional graph, artifacts, tools, participants,
and activities. A menu action in the graphical overview window allows the overview to
be exported as a representation. The two-dimensional graph is exported as an image,
and the information about the elements in the image is exported as a data file that
complies with the DTD of Figure 4.21 in Section 4.3.7.

The scaffolding server cares for the generation of default representations for the
scaffolding. Similarly, each tool must provide functionality to export a default rep-
resentation of itself. The default representation provides an overview of the tailoring
hooks of the tool and the choices effective at the moment of the export. Figure 4.25 pro-
vides an example of a default representation for the Breakdown In-box tool presented
in Section 4.3.13. Tailoring hooks, labeled with a triangle in the figure, are grouped
in system features, aspects or components. For example, the frequency aspect of the
inbox criteria has three tailoring hooks, namely value, ordering and aggregation. In
addtition to the default representations, tools developers can attach UML use case
diagrams to the tools (if available) to be exported as representations that users can
interpret.

Tailoring Hooks

When the tool is deployed, the system administrators import an initial set of represen-
tations. These representations are mined from the diagrams used by the management
to describe the organization, and from diagrams obtained in interviews with some rep-
resentative team members. Ideally, informal drawings used in past meetings are also
used to inspire representations.

Any set of representations is valid as long as team members find it accurate.
Changes in the organization and/or its context that were not driven by the break-
down handling support system may cause a mismatch between representations and
reality. Eventually, such mismatch is perceived by team members as a level B break-
down that needs handling. Handling the breakdown should result in an updated set of
representations. The teamwork landscape allows new representations to be imported
and existing ones to be removed.



76 CHAPTER 4. APPROACH

When a new representation is created, attention must be payed to the existence
of elements of teamwork in the new representation that were already present in any
of the existing representations. An element that is present in several representations
must be identified in all of them with the same id.

4.3.8 Activity: Weight

Intent

The intent of the weight activity is to obtain an initial indication of the importance
of the breakdown that can serve to prioritize breakdowns.

Activation Conditions

The weight activity can start as soon as the report activity (Activity in Section 4.3.5)
is completed and the aggregate activity (Activity in Section 4.3.10) is completed or
has not been started.

Instructions

This activity results in an initial value for the importance of the breakdown. The
value is obtained with the help of the Breakdown In-box tool (Tool in Section 4.3.13)
and is documented in the corresponding section of the breakdown report (Artifact in
Section 4.3.6).

All team members that fulfill the role of reporter (Participant in Section 4.3.3)
of this breakdown must provide a weight. There are N criteria for weighting the
impact of a breakdown. The criteria have been defined in advance by the system
administrators in agreement with the organization’s management. For each criteria
there are bounds to its value (enumerated types, or range of integers or real numbers).
Reporters must provide a value for each criteria. The weight for a criteria indicates
how severely the breakdown impacts that criteria. The list of the contributions from
all team members is accompanied with an aggregated result. This is obtained, for
example, by averaging the contributed values for each criteria. The final choice of of
aggregation mechanism depends on the type of values that can be entered (see Section
4.3.13 for further discussion). The aggregated value needs to be updated after each
individual contribution. If the in-box tool is used (expected case), the calculation is
done automatically. Otherwise, the moderator needs to aggregate the results manually.

Completion Conditions

This activity is completed when the last reporter has contributed weights and has
indicated this fact in the event-log.

4.3.9 Activity: Publish

Intent

A breakdown report was being created and is now ready. The intent of the publish
activity is to inform other team members about the existence of a new breakdown
report.

Activation Conditions

The publish activity can be started as soon as the weight activity (Activity in Section
4.3.8) has been completed.



4.3. TRIGGERING BREAKDOWN HANDLING 77

Instructions

Only the moderator (Participant in Section 4.3.4) contributes to publish. The break-
down report (Artifact in Section 4.3.6) has been completed and other team members
need to be informed about a new breakdown being ready for selection. The moderator
sends an e-mail to all team members (possibly via a distribution list). The e-mail
must include the URL of the breakdown report, and the URL of the starting page of
the scaffolding for the breakdown.

Completion Conditions

This activity is completed when the e-mail is sent.

4.3.10 Activity: Aggregate

Intent

The intent of this activity is to combine the current report with other tightly related,
incomplete breakdown reports.

Activation Conditions

Aggregation is possible as soon as the report activity starts (Activity in Section 4.3.5),
and as long as it is in progress. Aggregation is no longer possible if the report activity
is completed.

Instructions

All team members that contribute as reporters (Participant in Section 4.3.3) should
also contribute to this activity. Their responsibility is to pay attention to all other
breakdowns in the process of being reported. As soon as they realize the existence
of another breakdown report in progress that could be tightly related, they express
it using the event-log of this activity. The comment should include the URL of the
other report, an indication of the observed similarity, and contact information of the
reporter making the comment.

The moderator (Participant in Section 4.3.4) must periodically check this activity
for changes in the event-log (or sign-up to be notified of changes). When a comment
is appended, the moderator must contact the moderator of the potentially related
breakdown in an attempt to aggregate both reports into one. The moderator must
react fast to observations of similarities because aggregation is only possible as long
as the related breakdown reports are not completed.

If moderators of the related breakdown reports (Artifact in Section 4.3.6) agree
on the value of aggregating the two reports, they proceed accordingly. They decide
which report to take as the basis, and integrate the information contained in the other
one. The report activity of the aggregated breakdown continues normally whereas the
report activity of the other breakdown is canceled, and a note is added to the event
log of the start page of its scaffolding.

When an aggregated breakdown is created, the moderator of the report taken as
the basis stays as moderator. All reporters of the canceled breakdown report are
assigned as reporters of the aggregated report.

Completion Conditions

The aggregation activity should be marked as completed as soon as the report activity
is completed.



78 CHAPTER 4. APPROACH

4.3.11 Activity: Select

Intent

The intent of the select activity is to select a breakdown for breakdown handling.

Activation Conditions

Only one breakdown handling process can go beyond the select activity (i.e., beyond
the triggering phase) at a time. Therefore, this activity can be started as soon as the
weight activity (Activity in Section 4.3.8) is finished and no other breakdown handling
effort is in progress and has started or completed the select activity.

Instructions

Selecting a breakdown for handling should consider the following two objectives: 1)
to reduce the chance that lengthy negotiation is needed to decide which breakdown
to handle first, and 2) to reach a decision that team members accept and that mo-
tivates them to contribute. To achieve these objectives, four techniques are applied
in sequence. If one fails, the next one is attempted. At any point, the team man-
ager (Participant in Section 4.3.12) can preempt the process and dictate that a given
breakdown is handled next.

First, a try is made to prioritize the breakdowns using an ordering suggested by the
breakdown in-box. This ordering is based on the weights provided in the breakdown
report (Artifact in Section 4.3.6) and a prioritization function configured in the tool.
If there is only one breakdown with priority one (i.e., top priority), this breakdown is
selected for handling. Otherwise, the next technique is attempted.

Second, the moderators (Participant in Section 4.3.4) of all top priority breakdown
reports negotiate and try to reach consensus. If they agree on a breakdown to be
handled next, the breakdown is selected for handling. Otherwise, the next technique
is used.

The third technique requires that the moderators of all top priority breakdowns
agree, and name another team member to arbitrate and propose a decision. If arbi-
tration is not possible or yields no result, the fourth technique is used.

Fourth, if none of the participative techniques succeeded to select a breakdown for
handling, a FIFO rule is used and the oldest breakdown is selected.

Some vendors of existing electronic moderation software (e.g., GroupSystems’
EasyWinWin [17]) propose ranking or voting as a mechanism to choose from sev-
eral alternatives. The Breakdown In-box tool differs from voting and ranking in that
it attempts to reach a decision through consensus and making explicit the criteria
used for the decision. Moreover, it is possible that the external member chosen as the
referee for arbitration, suggests to reach a decision using voting and/or ranking tools
(e.g., in cases where team members use arbitrary and subjective criteria and it is clear
that all team members will maintain their opposed positions).

When a breakdown is selected for handling, the triggering phase for the selected
breakdown ends. The moderator of the selected breakdown marks the activity as
completed.

Completion Conditions

The activity is completed when a breakdown from the in-box is selected for breakdown
handling.



4.3. TRIGGERING BREAKDOWN HANDLING 79

4.3.12 Participant: Manager

Contribution

The manager is a team member with the authority to veto and prescribe team action
regarding tailoring of teamwork. The method documents the situations that may
require the participation of the manager. However, by definition, the manager can
dictate alternative ways of action than the one suggested by the method.

Requirements

The manager is any team member with the required authority.

4.3.13 Tool: Breakdown In-box

Intent

The breakdown in-box serves as an organizer of breakdown reports and it provides
support for selecting breakdowns for handling.

Instructions

Organizing Breakdowns

As an organizer of breakdown reports, the breakdown in-box classifies breakdowns
reports according to three possible states: being reported, to be handled, or handled.
Figure 4.26 presents the design of the graphical user interface of the tool. Breakdown
reports are displayed in lists in one of the tabs according to status. The in-box tab
shows only completed breakdown reports for breakdowns that have not gone past the
triggering phase. The reporting tab shows all breakdowns still being written. The
handling tab lists the breakdown being handled and all breakdowns that have already
been handled. The figure shows the ’in-box’ tab.

Lists show the names of the breakdowns and summary of the weights given by
users as part of the report. Selecting a breakdown in any of the lists allows the user,
through a menu action, to navigate to the corresponding breakdown report page or to
the breakdown scaffolding in the scaffolding server.

Multiple Criteria Decision Making

The breakdown in-box is designed to work stand-alone. It can be started over the
Internet, for example, as an Applet. Figure 4.27 provides an overview of the object
model behind the tool.

The purpose of the in-box view is to help team members choose among newly re-
ported breakdowns for handling by using weights. Weights are given independently by
some team members (reporters) in relation to predefined criteria, and are aggregated
by the tool. The aggregated weights for each of the criteria are used to try to identify
the breakdown that is undoubtedly top priority.

Before deployment, the tool is configured with any number of criteria to use for
weighting. Each criteria is associated with an ordered set of possible values. The
ordering of the set indicates that X precedes Y, if a breakdown that weights X should
be handled before the breakdown that weights Y (if only this criteria was considered).
By default, the tool is configured with the criteria Frequency (with value set all the
time, daily, monthly, seldom, could recur), Severity (with value set blocks, introduces
risk, delays, conditions), and Focus (with value set critical path activity, mandatory
activity, optional activity).



80 CHAPTER 4. APPROACH

Figure 4.26: The Breakdown In-box: Breakdown Priorities

Three types of criteria can be included (different subclasses of class Criteria in the
diagram), two of them with discrete values, namely enumeration criteria and integer
criteria, and one with continous values, namely real criteria. For enumeration criteria,
all possible values must be given in an ordered set. The criteria Frequency mentioned
in the paragraph is an example of an enumeration criteria. An integer criteria can only
take integer values in a range set between a minimum value and a maximum value. A
real criteria can only take real number values also within a given range. Each criteria
is configured with a strategy (see Strategy pattern in [26]) for aggregation. Minimum
and maximum are strategies that can be used with all three types of criteria. Mode
only applies to integer and enumeration criteria. Mean and Median only apply to real
criteria.

The reporting tab provides a menu action to contribute a weight. A team member
that is expected to contribute can select a breakdown from the list to define its weight.
An input form shows the possible values for each criteria. The values the team member
considers adequate can be entered and the form submitted. As a result, the in-box
tool updates the breakdown information with the new contribution and updates the
aggregated value. Only the most recent contribution of each team member is kept.

The tool holds a set of reported breakdowns with associated contributions from
users regarding the importance of each breakdown. Users contribute their opin-
ions regarding the weight of a breakdown for each of the configured criteria. The
updateResult method in the class Breakdown creates or updates the aggregated re-
sult (an instance of Contribution), using the corresponding strategy to aggregate the
values contributed for each criteria.

The method getTopPriorityBreakdowns of class BreakdownInboxTool applies a
priority calculation algorithm to calculate the set of top priority breakdowns that
are shown in the ”First Priority” list of the user interface. If the list shows only one



4.3. TRIGGERING BREAKDOWN HANDLING 81

Figure 4.27: UML class diagram of the Breakdown In-box tool



82 CHAPTER 4. APPROACH

breakdown, this is undoubtedly the top priority breakdown that must be handled next.
If several breakdowns are top priority, the team must find an additional mechanism
to decide among them.

The priority calculation algorithm tries to optimize the weights for all criteria.
Let ci, with i between 1 and some N, be the criteria used to weight breakdowns.
Let asImportantAsi(b1, b2) be a function that returns true if the weight given for
criteria ci to breakdown b1 exceeds or is equal to the value given for the same criteria
to breakdown b2. Let moreImportantThani(b1, b2) be a function that returns true
if the weight given for criteria ci to breakdown b1 exceeds the value given for the
same criteria to breakdown b2. A breakdown bx is in the priority list, if there is no
other breakdown by such that asImportantAsi(by, bx) for all i between 1 and N, and
moreImportantThani(by, bx) for some i. Figure 4.28 provides the pseudocode for the
method getTopPriorityBreakdowns that encapsulates the algorithm7.

The data model is stored in XML files that comply with the DTD in Figure 4.29.
Files can be stored in a common file repository. Users download and lock the file,
open it with the tool, contribute, and commit the file back to the repository (methods
loadInbox and commitInbox of class BreakdownInboxTool).

An extension to the scaffolding server described in Section 4.2.2 enables the in-
tegration of the breakdown in-box. Through this extension, the in-box tool uses the
scaffolding server as a data repository instead of XML files. If the tool is configured
to work against the scaffolding server, methods loadInbox and commitInbox connect
to the server instead of working on a file. Moreover, the method authenticate checks
that a passport, indicating that the user has authenticated, is present.

To support this integration, the scaffolding server is extended to serve the URI
http://domain-name/breakdown-inbox with POST and GET requests. Figure 4.30
shows these two requests as methods of the ScaffoldingServer class. The GET request
translates to the method getInboxAsXML. The post request translates to the method
updateInboxFromXML.

Method getInboxAsXML retrieves all available breakdown reports, all contribu-
tions made to the importance section of each breakdown report, and the state of each
breakdown. The tool’s configuration (i.e., available criteria) is obtained from the scaf-
folding’s node that corresponds to the breakdown in-box tool. With this information
the server assembles the XML string that is returned.

Breakdown reports are obtained by retrieving all instances of the BreakdownRe-
port class. Each BreakdownReport instance has information about the recorded con-
tributions (i.e., references to instances of class Contribution . To determine the state
of the breakdown (REPORTING, SELECTING, HANDLING), the scaffolding server
checks the state of the select activity (see Section 4.3.11). If the state of the select
activity is Inactive, it means that the breakdown is still being reported, thus the state
of the breakdown is REPORTING. If the state of the select activity is InProgress, it
means that this breakdown is ready for selection (i.e., SELECTING). Finally, if the
state of the activity is Completed, it means that the breakdown has been selected and
is being handled or has been completed. Therefore, for the in-box tool, the state is
HANDLING.

To store and later retrieve the configuration of the in-box tool in the scaffolding,
the class InboxTool is created as a subclass of class Tool. InboxTool extends Tool
with an attribute to hold the configuration. Therefore, the scaffolding page that rep-
resents the InboxTool has a specific section to hold the configuration data. When the
page is shown, this data is hidden. When the page is edited, the configuration data
is displayed in XML text and can be changed. When the page is saved, the method

7To simplify the pseudocode, the method dominates has been implemented in class Break-
downInboxTool. However, it is a Contribution’s responsibility to know if it dominates another
contribution, therefore it should be a method in class Contribution.



4.3. TRIGGERING BREAKDOWN HANDLING 83

✞ ☎

pub l i c Co l l e c t i o n getTopPriorityBreakdowns ( ) {
Co l l e c t i o n top = new Co l l e c t i on ( ) ;
f o r each Breakdown b1 in breakdowns do
{

dominated = f a l s e ;
f o r each Breakdown b2 in breakdowns do
{

i f ( dominates (b2 , b1 )
dominated = true ;

}
i f ( ! dominated )

top . add ( b1 ) ;
}
re turn top ;

}

pr i va t e boolean dominates (Breakdown b1 , b2 ) {
betterInOne = f a l s e ;
asGoodInAll = true ;
howMany = b1 . g e tRe su l tC r i t e r i a ( ) . getLenght ( ) ;
f o r index in 1 to howMany do
{

c1 = b1 . ge tResu l t ( ) . g e tC r i t e r i a ( index ) ;
c2 = b2 . ge tResu l t ( ) . g e tC r i t e r i a ( index ) ;
betterInOne := betterInOne or ( c1 > c2 ) ) ;
asGoodInAll := asGoodInAll and ( c1 >= c2 ) ] ;

}
re turn betterInOne and asGoodInAll ;

}
✡✝ ✆

Figure 4.28: Pseudocode for the getTopPriorityBreakdowns method in the
BreakdownInboxTool class.



84 CHAPTER 4. APPROACH

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT breakdown-inbox (criteria* breakdown* )>
<!ATTLIST breakdown-inbox

id ID #REQUIRED
description CDATA #IMPLIED
uri CDATA #REQUIRED>

<!ELEMENT criteria EMPTY>
<!ATTLIST criteria

object ID #REQUIRED
name CDATA #REQUIRED
aggregation (MEA | MED | MOD | MAX | MIN)
type (INT | REAL | ENUM)
enum-values CDATA #IMPLIED
ordering (UP | DOWN)>

<!ELEMENT breakdown (contribution* result) >
<!ATTLIST breakdown

id ID #REQUIRED
state (REPORTING | SELECTING | HANDLING) #REQUIRED
scaffolding-uri CDATA #REQUIRED
report-uri CDATA #REQUIRED>

<!ELEMENT contribution (weight+)>
<!ATTLIST contribution

contributor CDATA #REQUIRED>
<!ELEMENT result (weight+)>
<!ELEMENT weight EMPTY>
<!ATTLIST weight

criteria REFID #REQUIRED
value CDATA #IMPLIED>

Figure 4.29: Document Type Declaration used by the breakdown in-box tool

Figure 4.30: Extensions to the scaffolding server to integrate the breakdown
in-box tool



4.3. TRIGGERING BREAKDOWN HANDLING 85

Figure 4.31: Class InboxTool stores the tool’s configuration

parseConfiguration parses the configuration data and updates the corresponding ob-
jects. The method getConfigurationAsXml returns the tool’s configuration as XML.

The method updateInboxFromXML takes as an argument the XML string submitted
from the tool to the server and updates information stored in the scaffolding. The
XML file is parsed. All new or changed contributions of weight are reflected in the
corresponding breakdown report artifacts of the scaffolding’s object model.

Tailoring Hooks

A common recurrent breakdown with the use of the breakdown in-box is the inability
to decide based on the priority list. This happens if the priority list too often has
several elements instead of one. The choice of criteria, values for the criteria, and
mechanism used to aggregate values from independent participants impact the results
of the priority calculation algorithm shown on page 83.

Each organization may need a different configuration, which could be obtained by
careful experimentation before deployment as the result of handling level B break-
downs. For example, using too many criteria for weighting increases the possibility
that several breakdowns end in the priority list. Whereas, using too few criteria re-
duces the contribution of the tool as an objective, multi-criteria decision tool (e.g.,
having only one criteria results in simple ranking).

The tool can be configured with the set of criteria to use, the values allowed for
each criteria, and the ordering. The mechanism used to aggregate contributions can



86 CHAPTER 4. APPROACH

be configured for each criteria to one of mean, median, mode, maximum, or minimum.
The configuration is provided in XML files or, alternatively, as XML text in the node
of the scaffolding that corresponds to the tool. To tailor the tool, the corresponding
XML needs to be edited. This work is usually done by expert users or administrators.
The extensions to the scaffolding that allow the integration of the in-box tool infer
the state of breakdowns by looking at the state of an activity named ”Select” in the
scaffolding. To provide flexibility in naming activities, the extensions to the scaffolding
server have a corresponding configuration file that indicates alternative activity names.

4.3.14 Summary

Requirement 2 in Section 2.3.2 argued for teamwork support for triggering break-
down, which is covered by the activities, tools, artifacts and participation described
in this section. The breakdown report documents the breakdown as it is perceived
by those who encounter it. An initial picture of severity is created by the collabo-
rating reporters, which can be used, together with the breakdown in-box, to choose
a breakdown for handling. Several mechanisms for selection are suggested to keep
the effort as low as possible. During breakdown report, breakdowns can be aggre-
gated in an attempt to concentrate forces and avoid tackling the same problem more
than once. E-mail notifications about new breakdowns assure that the breakdown
observed by some team members is known to everyone in the team. To react to level
B breakdowns, both tools presented in this section provide tailoring hooks for their
most important features. Activities, artifacts, use of tools, and participation in this
phase have been stated independently of the work level. Therefore, support for trig-
gering applies both to breakdowns in everyday work (as a level B capability) and to
breakdowns that occur during tailoring (as a level C capability).



4.4. DEFINING THE BREAKDOWN 87

Figure 4.32: Definition phase of breakdown handling

4.4 Defining the Breakdown

4.4.1 Overview of the Definition Phase

The goal of the definition phase is to decide whether to handle the breakdown, ignore
it, or postpone handling. This decision is taken on the grounds of a jointly constructed
understanding of the relevance of the breakdown and of the effort required to handle
it.

Figure 4.32 provides an overview of the definition phase. Breakdown definition in-
volves six activities: inviting, estimating effort, evaluating relevance, deciding, aban-
doning, and collecting support. The box labeled ”XOR” at the right of the figure
indicates that, at that point, an exclusive choice between alternative continuation
paths is made. In this example the decision is made between continuing with the next
phase (diagnosis), abandoning, or collecting support. The moderator sets a deadline
when each of the activities should come to an end. All team members can contribute
in this phase.

4.4.2 Activity: Invite

Intent

The intent of this activity is to invite an initial set of team member to contribute to
breakdown handling.

Activation Conditions

This activity can be started as soon as the select activity (Activity in Section 4.3.11)
is completed and a breakdown is selected for handling.



88 CHAPTER 4. APPROACH

Figure 4.33: Presentation of a participant node including accept/reject buttons
for invitations

Instructions

Participation is key to successful breakdown handling. However, there is no tool or
method that can assure fruitful participation. It is up to team members to contribute,
and it is up to the organization’s managers to motivate participation. This activity,
and the tools that are used to perform it, aim at building an initial set of participants
with representatives from all shared perspectives that have a clear stake in handling
the breakdown.

The moderator (Participant in Section 4.3.4) can use the Breakdown Landscape
(Tool in Section 4.3.7) to query for all shared perspectives that contributed a force
that involves an object in the key elements section of the breakdown report (i.e., these
perspectives have a stake in handling the breakdown). Team members that belong to
any of these perspectives are invited to contribute.

To invite, a hyperlink reference is included in the contributor node (a node of
type Participant) (see Section 4.4.3) pointing to the node that provides the details of
each invited team member (a TeamMember node). Next time team members explore
the scaffolding for changes, they will see they have been assigned for participation as
contributors of a new scaffolding. Only one scaffolding node is used for the contributor,
which references all team members that contribute. The contributor node provides the
means to accept or reject the invitation.

Team members can reject an invitation if they are unable to perform the work (e.g.,
if they currently do not have time to make serious contributions). Figure 4.33 presents
an example of a participant node (taken from the Reporter participant presented in
Section 4.3.3). A section labeled ”Invitations” in the node lists all invited participants
as hyperlinks to their team member nodes. For the team member Guillaume Pontier,
the current user, two buttons are available (accept and reject). He has not responded



4.4. DEFINING THE BREAKDOWN 89

to the invitation yet. The identity of the current user is retrieved from the passport.
For the other users, the list indicates whether they have accepted, rejected or have not
responded yet.

The moderator, team members and possibly the management need to negotiate
to assure that at least one team member from each involved perspective accepts to
contribute. If this requirement is not met, it is up to the management to decide
whether to wait, to proceed and accept the responsibility of potentially uninformed
or unfair decisions, or to directly abandon the case. To postpone the case is not an
alternative. To postpone is an informed decision that requires participation from all
perspectives.

Completion Conditions

This activity is completed when at least one team member from each of the perspectives
with a stake in handling the breakdown has accepted the invitation. Alternatively,
this activity can be completed if the management decides to proceed with the case or
to abandon it.

4.4.3 Participant: Contributor

Contribution

The contributor is the central role of breakdown handling. The contributor helps
identify the forces that define the breakdown, helps find solution alternatives, and
helps evaluate the status of forces before and after a solution has been applied.

Team members participate as contributors, usually after they are invited to do
so. However, they can request an invitation from the moderator if they believe they
have something valuable to contribute. Team members that have been invited to
contribute must stay aware of the progress of breakdown handling, and must contribute
when needed. Contributors that are unable to fulfill their responsibilities can ask the
moderator to be removed from the case.

A contributor node references (via hyperlinks) the pages of all team members that
fulfill the role. To distinguish among team members that have been invited, team
members that accepted participation, and team members that rejected the invitation,
the class Participant in the hierarchy of scaffolding elements is extended as seen in the
class diagram in Figure 4.34. The hyperlinks references to the team member pages
are stored in three different collections namely, urlsOfInvitedMembers, urlsOfMember-
sWhoAccepted, and urlsOfMembersWhoRejected. Two methods, accept and reject

in class Participant (provided in the user interface of the Participant node as a button
associated to the selection of the list), allow team members to accept or reject the
invitation.

Team Member Nodes

In Section 4.2.2 all nodes in the scaffolding hypermedia are presented. The Team-
Member node (introduced on page 54) is used to record the data of a team member.
A section labeled ”References to this element” presents the comma-separated list of
incoming links to the node. As later discussed in Section 4.2.2 (on page 58) Team-
Member nodes are unique and shared among all scaffoldings. They are located in
a special name-space called shared. To learn what work has been assigned to them,
team members visit their team member nodes. There, they look for incoming links
from Participant nodes and navigate to these nodes to learn about the role they play.
With time, team members will become participants in several breakdowns. The list
of incoming links to their participant node will grow (e.g., there will be several in-
coming references from Participant nodes with role ”Contributor”). The section of



90 CHAPTER 4. APPROACH

Figure 4.34: Extensions to Participant class to handle invitations

Figure 4.35: Extensions to the TeamMember class to simplify the use of incom-
ing references



4.4. DEFINING THE BREAKDOWN 91

incoming references is split in several sections, one for each scaffolding (i.e., one for
each breakdown). The method getReferringScaffoldings in class TeamMember (see
Figure 4.35) retrieves the list of all scaffoldings with references to the team member
node. The method getReferenceList builds the comma-separated list of incoming
references for a given scaffolding.

Team members can leave the company. If they participated in breakdown handling,
their team member nodes stay in the scaffolding server as part of the breakdown-
handling history of the organization. It is important, before the participation of a
team member is required, that only team members that still belong to the company
are considered. The attribute active of the class TeamMember is true for team
members that still belong to the organization.

Requirements

Only team members whose team member page has already been associated with a
shared perspective can act as contributors.

4.4.4 Artifact: Effort Estimate

Intent

The Effort Estimate artifact collects the opinion of several perspectives regarding the
time needed for handling the breakdown.

Instructions

For each activity in the process of breakdown handling, the effort estimate document
presents an estimate of the time that team members will have to dedicate to breakdown
handling if breakdown handling is pursued. These estimates are one of the arguments
used to decide if the breakdown is handled, postponed, or ignored.

For each activity in the phases of diagnosis, design, treatment, and follow-up eval-
uation the document provides an optimistic estimate, a pessimistic, and a probable
estimate. In the best case, the estimates are obtained from records of past break-
down handling. If no applicable records are available, the document is based on team
members’ best guesses.

The document presents a table with one activity per row and with its three values.
One row for each phase presents the subtotal for the phase. A final row presents the
totals.

The document is dynamically updated with the Co-Estimation Tool. The tool
results are embedded as a plug-in that continuously checks for changes in the data
(the details of this mechanism are presented in Section 4.4.7). Once the estimation is
completed, the plug-in can be replaced by a plain text summary of the results. This
artifact does not require a specially-formated page but can easily be created from an
untyped page.

4.4.5 Activity: Estimate Effort

Intent

The intent of this activity is to produce, from multiple perspectives, an estimate of
the effort of handling the breakdown.



92 CHAPTER 4. APPROACH

Activation Conditions

This activity can be started as soon the activity invite (Activity in Section 4.4.2) is
completed, or as soon as the activity collect support (Activity in Section 4.4.14) is
completed.

Instructions

Effort estimation involves the creation of the effort estimate document (Artifact in
Section 4.4.4). The document is prepared by the moderator and reviewed by all
participants who decide to contribute. Effort estimates are indicated in work days.

The moderator (Participant in Section 4.3.4) first initializes the effort estimate
document with data obtained from past experiences. If no past experience applies,
the document is initially empty. The Breakdown Landscape (Tool in Section 4.3.7)
is used to search for all past breakdowns that involve any of the objects in the key
elements section of the breakdown report. The moderator decides how to interpret the
result of the search. If several breakdowns are found, then only those that match best
(e.g., cover all elements in the key set) with the one being estimated are considered.
The moderator looks up the effort logs from all considered breakdown handling cases.
The minimum value for each activity from all effort logs is taken as the minimun
estimate. The maximum value is taken as the maximum estimate. Depending on the
similarity of the considered reports, the moderator can decide to set the probable value
to the average from all effort logs, the middle between minimum and the maximum,
or to the most similar breakdown report. In any case, a note must be appended to
the effort estimate that explains the origin of the data.

To complete and validate the estimation of required effort, the moderator, contrib-
utors (Participant in Section 4.4.3), and the manager (Participant in Section 4.3.12),
can contribute by means of the Co-Estimation Tool (Tool in Section 4.4.6). Contribu-
tions from participants are aggregated together with the initial values.

Completion Conditions

Until the deadline set by the moderator, participants are allowed to contribute esti-
mates.

4.4.6 Tool: Co-Estimation Tool

Intent

The intent of the Co-Estimation Tool is to create an effort estimate document for the
breakdown.

Instructions

The Co-Estimation Tool is a simple deliberation tool. It uses the generic architecture
for loosely coupled deliberation tools documented in the following section (Section
4.4.7). Team members enter and submit effort estimates in a spreadsheet-like user
interface. The tool aggregates the contributions from all team members in a result
estimate. At any point in time, users can see a preliminary result estimate.

First, the estimate form must be configured (usually by the moderator). The con-
figuration indicates the activities to estimate (rows), the values to provide (columns),
and the operation used to aggregate the individual estimates in each column (one of
mean, median, mode, maximum, or minimum).

A default configuration is delivered with the tool in an XML file. The default
configuration reflects the breakdown handling process documented in this thesis. If



4.4. DEFINING THE BREAKDOWN 93

Figure 4.36: Configuration class for the Co-Estimation Tool

the process is changed, the configuration file needs to be updated accordingly. In
the default configuration, all minimum values are aggregated by taking the smallest
contribution. All maximum values are aggregated by taking the largest contribution.
All probable values are aggregated by taking the most frequent contribution. Empty
cells are ignored.

Figure 4.36 presents the Configuration class whose instances hold the tool’s config-
uration data. The labels for the columns are stored in a collection. The labels for the
rows are stored in a hash table that organizes rows in groups (e.g., activities grouped
in phases). The operation used to aggregate values is configured applying the strategy
design pattern as done for the breakdown in-box tool specified on page 79. Further
configuration options are discussed in the following section where the tailoring hooks
are discussed.

Figure 4.37 presents the classes that form the data model of the tool. The result, an
instance of class Estimate, references one ValueEstimate instance for each configured
cell (i.e., each row/column value). The method getSubTotal in class Estimate adds
the total estimation for a given column, or for a given column and a given row group.
A subclass of Estimate, the ContributedEstimate, represents a user’s contributions.
A ContributedEstimate indicates whether the user wants to be notified of changes. It
has a rationale for the complete contribution and it identifies the contributing user.
Moreover, in contrast to ValueEstimates, the ContributedEstimate references instances
of ContributedValueEstimates, each of which can have an explanation of rationale.

Figure 4.38 outlines the user interface of the Co-Estimation Tool. The users enter
estimates in the cells. The totals are automatically calculated. The users can explain
the overall rationale behind the estimate in the text box at the bottom of the window.
Additionally, a menu action over each cell allows the user to explain the rationale
behind an individual estimate. Cells with rationale comments are indicated with a
mark (e.g., a colored triangle in the upper left corner). A menu action ”Submit”
submits the contribution of the team member. If the check-box ”Keep me informed”
is marked upon submission, the tool will notify the user when the results change as a
consequence of a new contribution.

Another menu action ”Show results” loads the preliminary results (i.e., considering
all contributions already received by the tool) in the table. Double clicking on a cell
opens the details dialog that contains the list of all existing contributions for the cell,
ordered by value. For each contribution, the dialog shows the value and the rationale
of the contribution. The tool can be configured to show the identity of the contributor.



94 CHAPTER 4. APPROACH

Figure 4.37: Classes representing contributions and results of estimates

Figure 4.38: Simplified GUI design for Co-Estimation



4.4. DEFINING THE BREAKDOWN 95

Figure 4.39: Class diagram including key classes of a loosely coupled deliberation
tool

Tailoring Hooks

The tool can be configured to allow re-submits. If that is the case, a user can submit
a new contribution that will replace any previously given one. The view-results dialog
can be disabled for users other than the moderator. Rows, columns, and the aggre-
gation function can be configured. The tool can be configured to keep contributions
anonymous.

4.4.7 Generic Architecture for Loosely Coupled Deliber-
ation Tools

Tools similar to the Co-estimation have already been used for work moderation (e.g.,
[15]) and collaborative learning (e.g., [73]). These tools provide stand-alone support
for an atomic deliberation activity, such as voting, ranking, opinion poll, and meeting
coordination (e.g., Meet-o-matic [35]). The operation of these tools can be charac-
terized by the following five stages: setup, session initiation, contribution, finaliza-
tion, and extraction of result. They consist of a central server, and a remote client.
Figure 4.39 presents the key classes in a loosely coupled deliberation tools. Class
GenericDeliberationToolBroker is a Facade that encapsulates the behavior available
on the server. Similarly, class GenericDeliberationToolClient is a Facade that en-
capsulates the behavior on the client. Both classes are abstract. To instantiate the
architecture, concrete subclasses are derived.

During setup, the tool is configured with all required parameters such as the num-
ber of allowed votes per user. The broker’s method loadConfiguration reads the tool
configuration from an XML file. The method retrieveConfiguration on the client
retrieves the configuration from the server when clients connect.

The method createNewSession on the server, creates a new session and returns a
session identifier. During session initiation, data structures are created and initialized
to hold information that identifies the session and to store the users’ contributions.
When the client starts, a session id is passed to the start method to indicate the
session that the tool will work in. Moreover, during start, the authenticate method is
called to check that a passport (see page 55) is present and to retrieve the user’s data
from it.



96 CHAPTER 4. APPROACH

Figure 4.40: General client-server architecture for stand-alone, deliberation tools

During the contribution phase, users asynchronously submit their contributions.
The method submit on the client assembles the contribution and sends it to the broker.
Contributions are represented with concrete subclasses of abstract class Contribution.
Each contribution holds the id of the session the tool is working with, and the user
name of the contributing user. The recordContribution method on the broker stores
the contribution. Contributions are stored in the data structures of the corresponding
session.

During finalization, the method finalize calculates final results and the session
is closed for contributions. The method exportResults in the client exports the final
results to external format (e.g., a textual summary) for publication or as input for
other tools. The result is represented with a concrete subclass of the abstract subclass
Result. A session id identifies the session to which the tool’s result belongs.

A synergy effect can be triggered showing users the preliminary results calcu-
lated from all contributions received so far. A tool’s configuration option indicates
whether preliminary results can be calculated and displayed or not. The method
getPreliminaryResult in the client retrieves the result from the server and shows
it to the user. Additionally, a tool can display the details of individual contribu-
tions. This option can also be configured. The client’s method getAllContributions

retrieves all contributions from the broker and shows them to the user.

Figure 4.40 presents a general client-server architecture for stand-alone, loosely
coupled deliberation tools. Configuration data is passed on to the tool broker in
XML format. Similarly, initial data, for example the elements to rank, is provided.
The broker stores the configuration and initial data in an XML repository for later
retrieval. As part of the configuration, the broker receives a session identifier. The
identifier is used to match the data stored in the repository with the contributions
from users.

Users activate the client component of the tool with the session identifier. The



4.4. DEFINING THE BREAKDOWN 97

client provides the session identifier to the broker to retrieve the session’s data. When
the user submits a contribution, it is sent to the broker labeled with the session
identifier. The calculation subsystem in the broker updates the preliminary result
with the new contribution. Then the broker stores the updated preliminary result and
the individual contribution in the repository.

The operation of some tools requires that contributions do not overlap in time.
That is, a user can only activate the tool if no other user is still working with it.
This is the case of tools where the contribution of a user must take into account all
previous contributions. The synchronization subsystem controls access. In its most
simple form, the subsystem maintains a lock for the use of the tool.

These tools are conceived principally for asynchronous work. To help coordinate
contributions and to achieve a synergy effect among users, an awareness subsystem
can be included in the broker. The awareness subsystem takes care of notifying users
of changes in the data (see method triggerNotifications in the broker’s class), and
of publishing information about tool usage (e.g., a user is currently contributing, most
of the people have already contributed, etc.). The Co-Estimation Tool specified in
the previous section does not provide synchronous usage awareness but only e-mail
notifications on change.

Integrating Deliberation Tools in the Scaffolding

The setup of a deliberation is performed by the moderator before the activity that
uses the tool is enabled. The tool node in the scaffolding that corresponds to the
tool already includes an embedded call to the client component. The call uses the
breakdown name as the session identifier.

The first time the tool is activated (normally by the moderator), it provides menu
actions to pass configuration data and initial data to the broker. The moderator can
enter the XML data directly or can provide an URI where the XML data can be found.
The configuration data can usually be copied from the node that describes the tool.
Some tools may replace the XML data with a simple to use configuration window or
with a configuration wizard.

Embedding Deliberation Results in Scaffolding Artifacts

The exportResults method of a generic tool can be used to create a summary of
the results in an external format such as plain text. This external format is needed
if the results are to be incorporated into a scaffolding artifact (e.g., a report). This
mechanism to document results of deliberation is simple. Moreover, it does not depend
on the tool server being always available to provide the results.

There are activities that depend on partial results being always available as part
of an artifact. The need to manually export results and update the corresponding
artifacts represents a burden for the usability of the tool. This is the case for the
estimate effort activity. The effort estimate artifact (see Section 4.4.4) must always
reflect the preliminary result of the estimation activity. In cases like this, a special
type of generic deliberation tool client can be used. The embedded deliberation result
(see facade class GenericEmbeddedDeliverationResult in Figure 4.41) is a limited de-
liberation client that only implements functionality to retrieve the preliminary results
from the server.

A GenericEmbeddedDeliverationResult must be implemented with a technology
that allows seamless integration with web pages and network connectivity (e.g., Java
applets). Moreover, embedding results this way implies that the tool server and the
data that corresponds to the result’s session must stay available. In most cases, the
embedded result is replaced by a static (exported) result once the activity is completed
and no further changes are expected.



98 CHAPTER 4. APPROACH

Figure 4.41: Generic class to embed deliberation results in scaffolding artifacts

4.4.8 Tool: Breakdown Landscape (continuation)

Section 4.3.7 specified the Breakdown Landscape tool matching the requirements of
the triggering phase as well. This section extends the specification of the tool to
cover the requirements of the definition phase. The Breakdown Landscape helps iden-
tify important stakeholders during the invite activity, and helps finding relevant past
breakdowns during the effort estimation. Later sections present further features of the
tool.

Section 2.2 defined the term shared perspective. The identification of shared per-
spectives is central to coordinate participation in breakdown handling as discussed in
Section 2.3. Forces, as defined in Section 2.3.4, are a mechanism to structure com-
munication during breakdown diagnosis and evaluation. They are used to express the
reach and impact of the breakdown, and to explore and argue about solution alter-
natives. When a solution is implemented, forces document decisions that must be
contemplated in future tailoring actions. The Breakdown Landscape tool enables the
construction, maintenance, and use of a knowledge base (i.e., the Breakdown Land-
scape) that relates teamwork representations, perspectives and the forces documented
during breakdown handling.

The Breakdown Landscape

The Breakdown Landscape holds information from all handled breakdowns and all
breakdowns being handled. Each breakdown is identified with a case name identical
to the name given to the instance of the scaffolding created for the breakdown (see
Section 4.2.2). For each breakdown that is handled in the organization, a list of forces
is provided as part of the diagnosis and another list of forces is given as part of the
implemented solution. Each of the forces is associated with the perspective that first
documented it.

During diagnosis, team members identify all the forces that they consider impor-
tant for understanding the breakdown and motivating the exploration. These forces
may have existed in the landscape before the breakdown occurred, or may have been
first documented during diagnosis as systems of forces, as arguments, or as contextual
facts. Moreover, as part of the diagnosis, team members evaluate the state of forces
and update the landscape. During the design phase, team members document the
forces that contribute to the operation of the solution. This list is not necessarily
identical to the list of forces identified during the diagnosis phase.

Forces involve objects of teamwork. If an object is involved in a force, it can be
influenced by changes in the state of the force (resolved/unresolved). For example, a
tool may stop working effectively as a consequence of a related force being unresolved.
Moreover, changes to teamwork that affect the object can influence the state of the
force. When stating a force, team members explicitly indicate teamwork objects as
being involved in the force.

Representations (introduced in Section 4.3.7 with the initial description of this



4.4. DEFINING THE BREAKDOWN 99

Figure 4.42: UML diagram for the object model of the Breakdown Landscape

tool) define an understanding about teamwork that is shared by team members (at
least by those who share a perspective). Representations define a shared vocabulary
that can be used to state forces. The elements in the vocabulary are the teamwork
objects present in the representations. A teamwork object that is used to state a force
(e.g., as the subject or as an object in the statement) is defined as being involved
in the force. Force 5 in Section 2.1.5 of the breakdown Coding Conventions of the
scenario explicitly references a characteristic of a tool (CVS), thus involving the tool
in the breakdown. Section 4.5.2 provides further details of how forces are identified
and documented.

A solution of a breakdown proposes changes to teamwork and documents how these
changes affect the forces in the breakdown. Changes to teamwork affect teamwork
objects. This creates a binding between the forces that the solution is trying to
resolve (and which are not yet resolved) and the teamwork objects that are changed
by a solution. The teamwork objects affected by a change indicated by the solution are,
by definition, involved in all forces that change their state when the solution becomes
effective. Section 4.7.5 provides further details of how the Breakdown Landscape is
updated in response to changes.

The class diagram in Figure 4.42 models the resulting knowledge network connect-
ing teamwork objects in the diagrams, breakdowns, forces, and perspectives.

A landscape can consist of several representations of teamwork, each of them de-
scribing teamwork from a different point of view (e.g., a workflow diagram or an
organizational chart). Within a landscape, all representations and all teamwork ob-
jects included in these representations must have different identifiers (IDs). Moreover,
an object that is included in more than one representation (e.g., a role that appears in
both the organizational chart and the workflow diagram) must have the same identifier
across all of them.

Exploring the Landscape

During the definition phase, the Breakdown Landscape is used to identify important
stake holders and related breakdowns handled in the past. For this purpose, the
landscaping tool provides the possibility of querying and exploring the landscape in
graphical or textual form. Both modes can be configured with views to present only
information that fulfills a condition provided by the user as a query. The graphical



100 CHAPTER 4. APPROACH

Figure 4.43: Class diagram for the landscape tool plug-in

mode serves the purpose of providing an overview of the arrangement of breakdowns,
forces, and perspectives in relation to the objects of teamwork. Graphical views are
useful during the diagnosis phase; therefore they are discussed later. The textual mode
serves the purpose of providing detailed information, for example to be included in
any of the documents that are created during breakdown handling. Textual views
are sufficient for the queries used during the breakdown definition phase. The next
section presents the queries that are used during definition and specifies the tool’s
functionality for textual views.

The Breakdown Landscape tool was partially specified in Section 4.3.7 as a pair
of facade objects. The facade object LandscapeToolServer represented the server side
component, and the facade object LandscapeToolPlugin represented the client side
component. To support exploration and queries, the class LandscapeToolPlugin is
extended with new methods as shown in Figure 4.43. For clarity, the methods discussed
in Section 4.3.7 have been left out of the diagram. Only methods that deal with queries
and views are specified.

The data of LandscapeToolPlugin is an instance of the class Landscape presented in
Figure 4.42. Through the Landscape, the tool has access to all available representations
and to the data available from all reported breakdowns. Representations are retrieved
from the server through the method updateRepresentationsFromServer. Breakdowns
and all the related objects from the model are retrieved from the server through the
method updateBreakdownsFromServer.

Queries

The Breakdown Landscape tool provides a set of predefined query templates to produce
the most commonly used views. The activities proposed in this thesis have been
analyzed for needed queries. As a result, the following three queries have been included
as predefined queries.

• Given a teamwork object, return all perspectives that contributed at least one
force that involves the object. This query can be used to infer perspectives that



4.4. DEFINING THE BREAKDOWN 101

are good candidates to participate in the handling of a breakdown for which
some key objects are known. This is valuable, for example, for the inviting
activity of the definition phase.

• Given a perspective, return all teamwork objects that are involved in a force
contributed by that perspective. This query can be used to determine the areas
of teamwork known to a perspective. Such information can complement the
description of the shared perspective.

• Given a breakdown, return all breakdowns that deal with objects (i.e., that have
forces in the diagnosis or the solution that involve objects) involved in forces
in the diagnosis of the given breakdown. This query provides a connection to,
potentially, related past problems. It is useful as the basis for effort estimates
for similar problems.

A query (an instance of class Query) is run on the landscape to yield a collection of
teamwork objects. The body (xQuery) of the query is written in the W3C’ s XQuery
language [14], to be run against the landscape treated as an XML document defined
by the DTD presented in Figure 4.55 on page 119. The result of the query must yield
an XML document that is also compliant with the mentioned DTD. The resulting
XML string is converted again into a collection of objects. The resulting collection of
objects can be displayed on a textual or graphical view.

The above mentioned predefined queries are part of the tool’s configuration. They
are retrieved from the server on startup. Users (possibly with help from advance users)
can create custom queries with the plug-in’s method createCustomQuery. However,
these queries are not part of the tool’s configuration but are private to the user. To
extend the set of predefined queries, the configuration files on the server must be
modified by the administrators.

Textual Views

The method openTextualView in the plug-in opens a textual view (an instance of
TextualView) for a given query (either a predefined query or a custom query). The
result of the query is presented in the form of an expandable tree of elements. Objects
are represented by expandable nodes, labeled with the type of the object. Expanding
the node of a given object results in the display of the properties and relations of the
object in the next level of the tree. Primitive values (i.e., numbers, and strings) are
displayed as tree leaves that cannot be expanded. Collection attributes and references
to other objects in the domain are represented as expandable nodes.

A view consists of a query and a set of display filters. A display filter indicates
that for a given class of teamwork objects, the properties that must be hidden. The
refresh method on the view causes the query to be run (run method of class Query).
The result of the query, a collection of objects, is stored as an attribute of the view.

The textual view is constructed using standard HTML 2.0 constructs. This allows
text to be selected and copied to other documents if the results of queries need to
be used for the creation of other artifacts. The method getHtmlSource returns the
HTML source code for the view. The source code is then rendered in an HTML viewer.

Tailoring Hooks (Continuation)

The HTML version of the graphical and textual views is constructed by processing
XML data with XSL transformations. The transformations control the structure and
style of the resulting HTML. New transformations can be provided to process the
XML data in order to produce HTML-based views targeting specific requirements in
content and look.

Queries and views are a central element of the landscaping tool. Users are able
to define custom queries that are saved locally for each user. Users can share xQuery



102 CHAPTER 4. APPROACH

expressions, for example via e-mail. However, to make queries available to all users, the
configuration files on the server must be edited. This is usually done by administrators

4.4.9 Activity: Evaluate Relevance

Intent

The intent of this activity is to assess the impact of not handling the breakdown.

Activation Conditions

This activity can be started as soon as the activity invite (Activity in Section 4.4.2)
is completed, or as soon as the activity collect support (Activity in Section 4.4.14) is
completed.

Instructions

Contributors (Participant in Section 4.4.3) contribute consequences, probability esti-
mates, and cost estimates by means of the Co-evaluating tool (Tool in Section 4.4.11)
until the deadline set by the moderator. The tool aggregates the contributions and
updates the Relevance Evaluation document (Artifact in Section 4.4.10).

Completion Conditions

This activity is marked as completed on the deadline set by the moderator.

4.4.10 Artifact: Relevance Evaluation

Intent

The intent of the relevance evaluation document is to provide an overview of the
possible causes of not handling the breakdown that team members can identify.

Instructions

The relevance of a breakdown is defined as the potential damage it can cause to the
organization if it is not handled. Team members use the relevance evaluation document
as an argument to decide whether to handle the breakdown or not.

The relevance evaluation document compiles a list of potential consequences of
leaving the breakdown unresolved. The document resembles a risk estimation docu-
ment.

The information in the document is organized around the four variables of software
development Scope/Time/Cost/Quality [12]. The Scope section lists all consequences
that relate to a limitation to reach the desired scope of the product of work. An
example of a scope consequence is ”It won’t be possible to distill a tool framework
from this tool development project”. The Time section lists all consequences that are
related to delays in the work schedules. An example consequence in this section is
”Framework development and tool development can no longer run in parallel, thus
delivery delays can be expected”. The Costs section lists all consequences that are
better described as a monetary cost. An example consequence for this section is
”Integration effort needs to be doubled, thus increasing costs.” The section Quality
lists all consequences that directly impact the quality of the result. An example for
this section is ”The probability of error in the final product is high.”

The description of each consequence must include some indicator of the associated
cost. Depending on the type of consequence, the cost can be expressed with the list



4.4. DEFINING THE BREAKDOWN 103

of elements that can not be delivered, with an estimate of the expected delays, with
an estimate of the expected cost increment, or with some indication of the expected
quality failures. For each of the consequences, the document also shows the number
of users that believe it can occur. This number is used to sort the lists.

The document is dynamically updated with the Co-evaluation Tool. The tool
results are embedded as a plug-in that continuously checks for changes in the data.
Once the estimation is completed, the plug-in can be replaced by a plain text summary
of the results. This artifact does not require a specially formated page but can be easily
created from an untyped page.

4.4.11 Tool: Co-Evaluation Tool

Intent

The intent of the Co-evaluation tool is to help users build an agreed picture of the
potential consequences of not handling the breakdown.

Instructions

The Co-Evaluation Tool is a simple deliberation tool based on the generic architec-
ture specified in Section 4.4.7. Team members enter and submit what they consider
to be potential consequences of leaving the breakdown unhandled, and/or vote for
consequences contributed by other users. The tool compiles a list of all contributed
consequences and votes. At any point in time, users can see the results.

Figure 4.44 outlines the user interface of the Co-Evaluation Tool. When the tool
opens, the lists are filled with the consequences previously contributed by other users.
Each tab pane shows one list of consequences for one of the fours variables Scope/-
Time/Cost/Quality. The users can select an element in the list and cast or clear a
vote. Items that the user votes are marked with a checkmark. The user can add a
new consequence. New consequences are marked with a pencil icon.

The data model of the tool can be seen in Figure 4.45. A consequence (class
Consequence) consists of a description, an indication of its potential cost in plain text,
and the category the consequence belongs to (one of Scope/Time/Cost/Quality).

Users read through all the lists and issue votes on those consequences that they find
probable. Additionally, they contribute new consequences. When their contribution is
ready, they can submit with a menu action. On submit, all votes and new consequences
are sent as a single contribution. If the checkbox ”Keep me informed” is marked upon
submission, the tool will notify the user when the results change as a consequence
of a new contribution. To model contributions, a class CoEvaluationContribution is
derived from the generic Contribution class presented in Section 4.4.7.

The result (a RelevanceEvaluation result derived from the generic Result class
presented in Section 4.4.7) is directly built from the set of all contributed consequences
and votes. The method getConsequences returns the collection of all contributed
consequences. The method getVoteCount in class Consequence returns the count of
all issued votes for the consequence. The action ”Show results” opens a window similar
to that in Figure 4.44 to show the result. The lists now have an extra column that
shows the number of votes received by each consequence. The lists are sorted by
descending number of votes.

Tailoring Hooks

The view results dialog can be disabled for users other than the moderator. The tool
can be configured to keep contributions anonymous.



104 CHAPTER 4. APPROACH

Figure 4.44: Simplified GUI design for Co-Evaluation



4.4. DEFINING THE BREAKDOWN 105

Figure 4.45: Classes representing contributions and results of relevance evalua-
tions

4.4.12 Activity: Decide

Intent

The intent of this activity is to decide wether to handle the breakdown, postpone
handling, or ignore the breakdown.

Activation Conditions

This activity can be started as soon the activity invite (Activity in Section 4.4.2) is
completed, or as soon as the activity collect support (Activity in Section 4.4.14) is
completed.

Instructions

Deciding on breakdown handling is done through an opinion poll. A Voting Tool (Tool
in Section 4.4.13) provides the required functionality. Until the deadline set by the
moderator, contributors (Participant in Section 4.4.3) can select one of three options:
continue handling, postpone handling, or ignore the breakdown. The tool displays
the status of the poll in a pie chart (e.g., the distribution of votes). Opinions can be
changed at any time before the deadline.

On the deadline, the moderator (Participant in Section 4.3.4) freezes the effort
estimation and the relevance evaluation. No further contributions can be made. The
choice agreed to by a simple majority8 (i.e., the choice with more than 50% of the
votes) is taken as the group decision. If no choice is agreed to by a simple majority,
breakdown handling is postponed.

As previously mentioned, team members are expected to base their choice on the
results documented in the effort assessment (Artifact in Section 4.4.4) and the relevant
evaluation (Artifact in Section 4.4.10). However, these documents are continuously
evolving until the deadline. The goal of this approach is to reduce to the minimum

8Simple majority is the most common requirement in voting for a measure to pass, espe-
cially in deliberative bodies and small organizations.



106 CHAPTER 4. APPROACH

the effort of gathering arguments to reach consensus about decisions. In some way,
the decision method is a combination of polling and auction that has the additional
effect of motivating participation. A participant can use the partial result of the
poll as an indicator of how others think about the issue. The effort estimate and
the relevance evaluation are the tools for the participant to try to drive the group’s
decision. In this way, a negative partial result (from the point of view of some team
member) would motivate contributions to the effort and relevance documents. A
similar motivating effect is found in governmental elections where candidates try to
approach non-favorable results of opinion polls with new proposals (and eventually
attacks on other candidates). However, in contrast to governmental elections, for the
case of breakdown handling, maintaining campaign effort to a minimum is desired.

A consequence of conducting effort estimation, relevance evaluation, and decision
making in parallel is that participants need to be kept informed about the latest
developments. For this reason, each of the tools used can be set to provide notifications
of changes.

Completion Conditions

This activity ends on the deadline set by the moderator.

4.4.13 Tool: Voting Tool

Intent

The intent of the voting tool is to capture the support of team members for one of
several choices. The available choices are configured in advance.

Instructions

A voting tool can be implemented as a simple deliberation tool based on the generic
architecture specified in Section 4.4.7. Moreover, implementations of stand-alone vot-
ing tools fulfilling the requirements of the decide activity can already be found on the
Internet (e.g., polls in Yahoo groups [3]).

4.4.14 Activity: Collect Support

Intent

The intent of this activity is to collect support of team members to resume handling
of a postponed breakdown.

Activation Conditions

This activity can be started when the activity decide (Activity in Section 4.4.12) is
completed and the result of the decision is to postpone breakdown handling.

Instructions

If the decision is to postpone handling (either because the group explicitly decided
it or because it was not possible to reach consensus), the case is put on hold. The
moderator (Participant in Section 4.3.4) is responsible for collecting signatures in
favor of resuming breakdown handling exceeding 50% of the number of total votes
emitted during the decision activity. As a consequence of team members leaving the
organization, the number of team members may be less than found at the time voting
took place. This could complicate being able to collect support. To cope with this



4.4. DEFINING THE BREAKDOWN 107

issue, the 50% of signatures is calculated over the number of votes originally emitted
minus the number of team members that left the organization since the voting.

Completion Conditions

This activity is completed when the required number of supporting team members is
reached.

4.4.15 Activity: Abandon

Intent

The intent of this activity is to clean up and store the case of a breakdown that will
not be handled.

Activation Conditions

If the result of the decide activity (Activity in Section 4.4.12) is to ignore the break-
down, the case is closed, and the process of breakdown handling is abandoned.

Instructions

In the event that breakdown handling is abandoned, the moderator (Participant in
Section 4.3.4) closes all documents in the case for writing. An abandoned case docu-
ments a breakdown that the group does not consider worth pursuing (neither now, nor
in the near future). In contrast, a postponed case deals with a breakdown for which
the group indicated that the conditions for handling do not yet exist, but could exist
in the near future. Nothing stops a team member from reporting an abandoned case
again.

Completion Conditions

This activity is completed when the moderator has closed all documents in the case
for writing.

4.4.16 Summary

Requirement 3 in Section 2.3.4 argued for teamwork support to define the breakdown
and decide on handling it. The Effort Estimate document and the Relevance Evalu-
ation document define the impact and cost of the breakdown. They are created with
tools that allow all team members to contribute. These documents are the basis for
a decision. The mechanisms used to develop the documents and to make the decision
aim at minimizing the effort required for this phase. Only team members that seem
to have important contributions to make are invited. At the end of this phase, the
team has decided, on the basis of data contributed by the team, how to proceed.



108 CHAPTER 4. APPROACH

Figure 4.46: Diagnosis phase of breakdown handling

4.5 Conducting the Diagnosis of the Breakdown

4.5.1 Overview of the Diagnosis Phase

The goal of the diagnosis phase is to document the forces that contribute to the oc-
currence and resolution of the breakdown. The main outcome of this phase is the
breakdown diagnosis, a document with the forces that define the breakdown and their
associated weights. The breakdown diagnosis is the team’s agreed understanding of
the problem. During the design phase, several groups of team members will develop
solution alternatives. The breakdown diagnosis is the basis for their work. There-
fore, after the diagnosis phase is completed, no further changes should be made to
the breakdown diagnosis. Experience showed (see Section 6) that during the design
phase, team members improve their understanding of the problem. It is also known
that attempts to solve wicked problems may result in a re-framing of the problem itself
(Schön [63] refers to this phenomenon as reflection in action). This improved under-
standing results in new forces that any solution should consider, and therefore should
be incorporated in the breakdown diagnosis so all teams designing solutions take them
into account. If the breakdown diagnosis needs to be changed after the diagnosis phase
has been completed, all activities in the phase need to be reconsidered.

Figure 4.46 provides an overview of the diagnosis phase. This phase consists of five
activities, namely, contribution of forces, calling for contributors, weighting of forces,
testing of forces, reviewing diagnosis, and logging effort. In addition to the breakdown
diagnosis, the diagnosis phase results in an updated Breakdown Landscape and an
effort log for the phase.

4.5.2 Activity: Contribute Forces

Intent

The intent of this activity is to discover and document the forces that make up the
breakdown.



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 109

Activation Conditions

This activity can be started when the activity decide (Activity in Section 4.4.12) of the
definition phase is completed, and the decision is to proceed with breakdown handling.

Instructions

Identifying and documenting the forces that make-up the breakdown is the central
component of collaborative breakdown handling. In this activity, contributors (Par-
ticipant in Section 4.4.3) contribute to a shared picture of the problem. This picture
is a part of the breakdown diagnosis (Artifact in Section 4.5.4).

By means of the Breakdown Landscape tool (Tool in Section 4.3.7) participants
can explore the existing forces and select those that are relevant for this case and
add them to the diagnosis. If team members recognize the existence of new, undocu-
mented forces, these can be added. The contributions of team members are not bound
to their identity but to their perspectives. That is, team members, in the name of
perspectives, contribute with forces that refer to teamwork objects found in any of the
representations available in the landscape.

If the teamwork objects that are relevant for a force are not present in any of
the available representations, a new representation can be created and added to the
landscape. As importing is part of the tool’s server-side functionality (see Section 4.3.7
for details about creating and importing representations) team members may require
assistance from the system administrators to import new representations.

The Breakdown Landscape tool handles asynchronous work. Users can sign up
to be notified when contributions are made. Notifications contain a summary of the
changes. Being aware of changes is important for the moderator who needs to keep
the list of participants up to date as part of the calling for contributors activity. More-
over, as contributions occur asynchronously, awareness about updates is important to
produce a synergy whereby team members inspire one another.

The set of available teamwork representations is dynamic because new represen-
tations can be added on demand. Each representation can be seen as one way to
describe teamwork (or a part of teamwork). Changes to the available representations
need to be notified to users. Representations can be added without consensus. As a
consequence, there may be situations in which users disagree about the correctness of
a representation (e.g., the representation does not match how work is really done). If
disagreement cannot be resolved, it becomes a problem in the use of the representa-
tions as a tool to collaborate for breakdown handling. It becomes a breakdown during
breakdown handling (i.e., a level B breakdown). Breakdown handling of the level A
breakdown is interrupted until the level B breakdown is resolved, resulting in a tailored
set of agreed representations.

Past experiences can help understand the breakdown. Team members can use
the Breakdown Landscape tool to perform queries that retrieve information from re-
lated past breakdowns. Graphical views are specially useful to get an overview of
all breakdowns, perspectives, or forces that relate to some part of teamwork (i.e., to
elements in a representation). In this way, the Breakdown Landscape can be used to
point team members to relevant past breakdowns (either solved, postponed, or failed
breakdowns). Further information about these breakdowns can be obtained from the
scaffoldings that correspond to each case.

A default limit for the duration of this task is given when the scaffolding for
breakdown handling is deployed. This limit depends on the organization, for example,
on the time team members can spend in tailoring activities. The duration of this
activity is configured in the master scaffolding and propagated (copied) to all instances.
It can be changed on-demand by the moderator of a given case, in a scaffolding instance
that corresponds to that case.



110 CHAPTER 4. APPROACH

Figure 4.47: Breakdown landscape’s client-side object model

To complete the activity, the moderator starts the Breakdown Landscape and
performs a query for all forces in the diagnosis of the breakdown. The result, a textual
view, is copied to the breakdown diagnosis artifact of the scaffolding. After this activity
has been completed, no further forces should be added.

Completion Conditions

This activity is completed when the time limit is reached. However, the moderator
can mark the activity as completed before the deadline with the agreement of all team
members.

4.5.3 Tool: Breakdown Landscape (Continuation)

Section 4.3.7 specified the functionality of the Breakdown Landscape tool required for
the triggering phase. Section 4.4.8 specified the functionality required for the definition
phase.This section extends the tool specification with the functionality required for the
diagnosis phase.

Documenting Forces

When the Breakdown Landscape is first deployed, it only contains the initial teamwork
representations and shared perspectives. During the diagnosis of a breakdown, forces
are documented (i.e., added to the landscape). Figure 4.48 depicts the main features
of the tool’s window that allows the definition of new forces. Figure 4.47 shows how
the facade class LandscapeToolPlugin is extended to provide this functionality.

The textual description (”statement”) entered in the upper part of the windows
shown in Figure 4.48 is the central part of a force (this is the only property documented
for the forces found in the scenario). The statement must be concise. It is not necessary
to explain or argument for what is stated.

The user can indicate whether the force is a fact, an argument, or a system of
forces (selecting the corresponding GUI radio button). In the case of contributing a
system of forces, the user is able to add constituent forces by selecting them from the
ones that have already been defined. The method getAllForces of the plug-in returns
all available forces. These are shown in a separate window (not shown in the figure)



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 111

Figure 4.48: GUI design for the ”Force editor”



112 CHAPTER 4. APPROACH

Figure 4.49: UML diagram for the object model of the Breakdown Landscape

and can be selected. The constituent forces of a system of forces can be seen in the
list-box labeled ”Constituent forces” in the figure. Constituent forces are additionally
marked according to their type. An icon with a person on it indicates that the force is
an argument. An icon with a formula on it (square root of x) indicates that the force
is a fact. An icon with gears on it (not shown in the figure) indicates that the force is
a system of forces. These icons are used in all windows that present a list of forces.

Figure 4.49 extends the object model of the Breakdown Landscape presented in
Figure 4.42 on page 99 to model the different types of forces. The pattern Composite
[26] (documented as the UML stereotype Composite) is used to model systems of
forces.

Forces can only be added to the landscape if the user indicates at least one team-
work object that is involved in the force. The user can select from a collection of all
defined teamwork objects and add them to the list for the force. The functionality that
allows browsing representations and selecting teamwork objects has been described in
Section 4.3.7. Involved objects are displayed in the list labeled ”Involved teamwork
objects” in the figure. A system of forces involves all objects that are involved in any
of the constituent forces. It is not possible to remove them from the list of involved
objects. They are marked by a lock icon. However, it is possible to indicate additional
ones.

Finally, the user can sign the force by choosing the perspective that best represents
the contribution from the combo box widget labeled ”Perspective” in the figure. By
accepting the changes (”Accept” button) the new force is added to the landscape
(method addForce of the plug-in class).

Forces are added to the Breakdown Landscape as a result of the diagnosis or
solution of a breakdown. A menu action ”Start new breakdown”, corresponding
to the addNewBreadown method of the tool’s facade class, adds a breakdown object
to the landscape. New breakdowns are usually created by the moderator as part



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 113

of the initialization of tools. To add new forces, team members must first set the
working breakdown via the ”Set working breakdown” menu that corresponds to the
setWorkingBreakdown method of the facade class.

It is possible, with a window similar to the one in Figure 4.48, to edit and delete
forces. Editing and deleting forces is only allowed for team members that belong to
the perspective that contributed the force.

Provisions for On-line Collaboration

The Breakdown Landscape is conceived for asynchronous, document-based collabo-
ration. Users retrieve the latest version of the landscape from a common document
repository (via the update method of the plug-in class) and work locally on their per-
sonal computers. After making changes to the landscape, the user needs to upload
the changed landscape back to the common repository (via the commit method of the
plug-in class).

While a user A makes changes to the current version of the landscape, other users
can retrieve the current version of the landscape from the repository, change it, and
upload it to the repository. As a consequence, user A continues working (unaware of
the actions of the others) on an out-of-date version. If user A is allowed to upload the
changed out-of-date version of the landscape to the repository, the changes introduced
by the other users would get lost. In order to avoid this type of conflict, users that
have the intention to introduce changes to the landscape must first acquire a lock on it
(via the lock method of the plug-in class). Only one editor lock is granted at a time.

Section 4.3.7 described how the method authenticate authenticates and makes
the information contained in the user’s passport available for the plug-in. This in-
formation, in particular the user name, is used to update, to commit, and to acquire
locks.

The Breakdown Landscape tool allows team members to request notifications
whenever a lock is granted for the landscape, and whenever a lock on the landscape is
released. Moreover, the identity of the user who has the lock on the landscape is known
to the tool. Team members can query this information (via the getEditor method)
and can get in contact with the editor in case they consider that synchronous collabo-
ration is necessary. Moreover, the tool can send out notifications every time the data
file is committed. The notification contains a summary of the changes. The method
requestNotifications is used to change the user’s preference regarding notifications.

The Breakdown Landscape tool does not provide support for synchronous collab-
oration. In case that several users have the intention to synchronously modify the
landscape, they can share the landscaping tool through any of the currently available
application sharing systems (e.g., MS Netmeeting). If users wish to deliberate about
the landscape, they can use the results of queries as the focus of on-line, anchored
conversations [20].

Queries (Continuation)

Landscape queries that are useful during breakdown definition are presented in Section
4.4.8. The following queries have been found useful for breakdown diagnosis.

• Given a breakdown, return all the forces that are, at most, at a distance d from
objects in a given set (e.g., the set of key elements in the breakdown report,
or the set of teamwork objects changed by the solution). Forces that involve
objects in the set are at distance zero. If a force F is at distance d, other forces
that involve an object that is also involved in F are, at most, at distance d+1.
This query is useful if team members prefer to first focus diagnosis on the key
objects indicated in the breakdown report, and then incrementally enlarge the
scope of diagnosis. As a heuristic, the scope can be enlarged until the resulting



114 CHAPTER 4. APPROACH

Figure 4.50: Example of a rectangular selection in a representation based on an
organizational chart

set of forces for a distance d equals that of distance d+1. This query is also
useful to limit the effort of testing the impact of solutions while these are still
under development.

• Given a two-dimensional area of a representation (eventually the complete rep-
resentation), return all teamwork objects in the area, plus all forces that involve
any of these objects, plus the perspectives that documented these forces. This
query can be used to explore distributions of forces on a particular area of
teamwork. For example, it may be of interest to find all forces and contributing
perspectives regarding a given part of the organization in a teamwork represen-
tation based on an organizational chart. Figure 4.50 depicts this example. The
rectangle with double-line corners represents the selected area of interest.

• Given a two-dimensional area on a representation (eventually the complete rep-
resentation), return all breakdowns with forces involving teamwork objects in
that area. This query provides an overview of the distributions and frequency
of problems (breakdowns) in relation to aspects of teamwork. Moreover, it pro-
vides pointers to past breakdowns which could provide useful insight about a
problem.

Graphical Views

Textual views (see Section 4.4.8) are used to display the result of queries as an HTML-
based expandable tree. Textual views can be easily pasted into scaffolding artifacts.
Graphical views aim at displaying the results of complex queries that involve the
graphical component of representations (i.e., the diagrams).

Section 4.3.7 presents the details of the use of teamwork representations to con-
struct the Breakdown Landscape. A teamwork representation is constructed on top
of a diagram of teamwork (e.g., the organizational chart in Figure 4.50). Teamwork
elements in the representation occupy a two-dimensional area in the diagram (e.g.,
each organizational unit in Figure 4.50 occupies a rectangular area).

A graphical view of the result of a query is created by showing, on top of the
diagrams of the available teamwork representations, the areas occupied by each of
the teamwork objects involved in the result. Figure 4.51 shows a graphical view for
the result of a query. In this case, each one of the three representations available



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 115

Figure 4.51: Example of a graphical view of the result of a query.

is shown in a tab. The selected tab corresponds to the representation based on the
organizational chart. The area of three teamwork objects in the organizational chart
is delimited with a dashed rectangle. It means that the three objects are involved in
the result of the query.

Forces, perspectives, and breakdowns in the result of a query are represented by
drawing and labeling the areas occupied by one or more related teamwork objects. To
represent a force, the area of the teamwork objects it involves are drawn and labeled
with a reference to the force. In the figure, the area occupied by the organizational unit
”Configuration Management” is marked and labeled ”F1, F2” to indicate the presence
of forces ”F1” and ”F2” in the result. To represent a perspective, the areas of all objects
involved in any of the forces contributed by the perspective are drawn and labeled with
a reference perspective. The label ”P1” under ”Configuration Management” indicates
the presence of perspective ”P1” in the result. To represent a breakdown, the objects
to be drawn and labeled after the breakdown are all those involved in a force that was
found relevant for the diagnosis, or that are involved in a force that was affected by the
solution. Other elements in the result of the query are not visually represented (i.e.,
objects of the classes Diagnosis and Solution). A teamwork object can be contained
in more than one representation. Therefore, the graphical view can be composed of
several images (i.e., several tabs).

The user can set the color to be used to draw areas in order to better match the
colors already in use in the underlying image. All areas of all objects are drawn in the
same color.

Users commonly draw teamwork representations so they can fit on a printed page
or on a single screen. This results in drawings that do not leave much empty space for
extra annotations such as labels. For this reason, the label that represents an element



116 CHAPTER 4. APPROACH

Figure 4.52: Legend window for the graphical view of Figure 4.51

in the result of a query is constructed by joining an upper case letter to indicate
the type of element and a number automatically generated for the view. The letter
”F” is used as the prefix for forces, the letter ”P” is used for perspectives, and the
letter ”B” is used for breakdowns. The numbers that follow the prefix are in the
range between 1 and the amount of elements of the given class in the result query.
The legend window shown in Figure 4.52 explains the association between labels and
elements. The numbers are newly generated for each view (instead of using some
numeric value that is persistently associated to each element) to avoid introducing
these cryptic labels into the vocabulary of the organization.

A teamwork object can be used to represent more than one element of the same
type in the result of the query (this is the case of ”Configuration Management” in
the example in Figure 4.51). For example, an object may be involved in more than
one force. In this case, the label of the object is constructed as a comma-separated
list of the otherwise single-element labels. Moreover, a teamwork object can be used
to represent elements from different types, for example, if a query results in forces
and in the perspectives that documented these forces. In this case, two labels are
generated. One label for one type of elements, located in the upper boundary of the
corresponding areas and the other label for the other type of objects, located in the
lower boundary of the corresponding areas. In case of a query that results in three
types of objects (i.e., forces, perspectives, and breakdowns) to be represented by labels,
the user configures the view to indicate what type is represented in the upper label,
what type is represented in the lower label, and what type is left out of the view.

The legend window lets the user select an element. The label of the selected
element is highlighted in the teamwork representation. Moreover, the legend window
provides a mechanism to indicate single elements to be left out of the view, or to specify



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 117

Figure 4.53: Architecture overview of the landscaping tool

colors for their labels. This functionality aims at helping the user find elements in the
image, and further focuses communication. The graphical view provides functionality
to export the image and the legend in HTML format so that the result of the query
can be used in other documents or as the focus of on-line communication.

The Organizational Memory

The Breakdown Landscape pictures the organization as the interplay of forces, perspec-
tives and representations of teamwork and the product (i.e., diagrams plus meta-data).
The resulting picture is a dynamic one. It changes when the tool is used to document
forces and when teamwork is changed as the result of implementing a solution to a
breakdown. The picture that was used to create a breakdown report, is potentially
different from the picture obtained when handling of the reported breakdown finishes.

As discussed in Section 2.3, artifacts that result from handling breakdowns are
useful for handling future breakdowns. Some of these artifacts need to be interpreted
in the context in which they were produced (e.g., effort logs). The Breakdown Land-
scape is an important part of such context. The Breakdown Landscape tool provides
functionality to tag versions for later retrieval (method tag of the plug-in class in
Figure 4.47) and to retrieve versions with given tags or revision numbers9. Method
checkoutRevisionReadOnly retrieves a given revision of the Breakdown Landscape
document. Method checkoutTagReadOnly retrieves the revision that corresponds to
a given tag. The landscape tool can normally be used to explore and query revisions.
However, changes can only be made (e.g., add new forces) when working with the lat-
est version (i.e., after an update). Revision numbers are also used to label the results
of queries. The history of all revisions of the Breakdown Landscape provides a form
of organizational memory, where each revision captures the team’s understanding of
teamwork at a particular point in time.

Architecture

Figure 4.53 provides an overview of the architecture of the Breakdown Landscape tool.
It shows the landscaping tool (with gray background) with its main components, and,
around it, the systems that interface with the tool.

9Every time the Breakdown Landscape is modified and saved, a new revision number is
automatically assigned



118 CHAPTER 4. APPROACH

Figure 4.54: Summary of operations available on the landscape repository.

The tool is designed following the philosophy proposed in the introduction of the
approach section, which is to provide small (core) units of data and functionality that
can be used to achieve a particular teamwork objective. The landscape (as a document)
is the data unit on which the tool is based. The tool itself provides functionality to
edit and dynamically explore the landscape. There are other systems around the
landscaping system (data plus tool) that provide or borrow services.

The XML landscape repository is used to store the landscape. The repository
provides a subset of the basic functionality available in most version control systems
(VCS). The UML diagram shown in Figure 4.54 presents a summary of the avail-
able operations. The method update is used to retrieve the last version of the land-
scape available on the server. The method commit uploads the changes made to the
landscape in the client to the server. A new revision is automatically created. The
methods checkoutTagRO and checkoutRevisionRO retrieve, in read-only mode, the
revision in the server that corresponds to a given tag or revision number. Methods
lock and unlock allow managing a lock on the landscape. The methods edit and
unedit allow managing an edit lock on the landscape. Before modifying the landscape
(i.e., adding new forces) users must acquire an edit lock. The method getEditor re-
turns the name of the user that holds the edit lock on the landscape. The method
requestNotifications registers a users preferences for lock, edit, and change noti-
fications. The repository stores user preferences and sends e-mail notifications when
events occur. Method listRevisionsAndTags returns the list of all available revisions
numbers and tags available for the landscape.

The repository is additionally used as the mechanism to make the landscape data
available to other applications. In order to allow interoperation with other applica-
tions, the landscape is stored in XML format, following the DTD shown in Figure
4.55.

The Breakdown Landscape tool is deployed via web-browser plug-in technology
allowing a seamless integration (through embedded calls) with the organization’s in-
tranet. Graphical and textual views can be exported in conformance with the HTML
2.0 standard, which additionally allows integration of these views in other documents.
HTML is generated by processing the XML data of the view with Extensible Stylesheet
Language Transformations (XSLT).

The organization’s intranet (or any http-server) is used to host reference material
about representations, teamwork objects, breakdowns, and perspectives. Reference
material is included in the landscape in the form of URIs. The Breakdown Landscape
tool can retrieve these documents and present them to the user in an external web-



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 119

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT landscape (perspective*, object*, fact-or-argument*,

system-of-forces*, teamwork-representation*, breakdown*)>
<!ATTLIST landscape
title CDATA #REQUIRED

reference-uri CDATA #IMPLIED>
<!ELEMENT perspective EMPTY>
<!ATTLIST perspective

id ID #REQUIRED
name CDATA #REQUIRED
reference-uri CDATA #IMPLIED>

<!ELEMENT object EMPTY>
<!ATTLIST object

id ID #REQUIRED
name CDATA #REQUIRED
reference-uri CDATA #IMPLIED>

<!ELEMENT fact-or-argument EMPTY>
<!ATTLIST fact-or-argument

id ID #REQUIRED
type (fact | argument) #REQUIRED
statement CDATA #REQUIRED
identified-by IDREF #REQUIRED
involved-objects IDREFS #REQUIRED>

<!ELEMENT system-of-forces EMPTY>
<!ATTLIST system-of-forces

id ID #REQUIRED
statement CDATA #REQUIRED
identified-by IDREF #REQUIRED
constituent-forces IDREFS #REQUIRED
additionally-involved-objects IDREFS #REQUIRED>

<!ELEMENT teamwork-representation (object-representation*)>
<!ATTLIST teamwork-representation

id ID #REQUIRED
title CDATA #REQUIRED
image-uri CDATA #REQUIRED
reference-uri CDATA #IMPLIED>

<!ELEMENT object-representation (shape-path+)>
<!ATTLIST object-representation

object IDREF #REQUIRED>
<!ELEMENT shape-path (point+)>
<!ELEMENT point EMPTY>
<!ATTLIST point

x-coordinate CDATA #REQUIRED
y-coordinate CDATA #REQUIRED>

<!ELEMENT breakdown (diagnosis, solution)>
<!ATTLIST breakdown

title CDATA #REQUIRED
reference-uri CDATA #IMPLIED>

<!ELEMENT diagnosis EMPTY>
<!ATTLIST diagnosis

reference-uri CDATA #IMPLIED
facts IDREFS #IMPLIED
arguments IDREFS #IMPLIED
systems-of-forces IDREFS #IMPLIED>

<!ELEMENT solution EMPTY>
<!ATTLIST solution

reference-uri CDATA #IMPLIED
facts IDREFS #IMPLIED
arguments IDREFS #IMPLIED
systems-of-forces IDREFS #IMPLIED>

Figure 4.55: DTD used by the landscaping tool



120 CHAPTER 4. APPROACH

browser. Moreover, the same mechanism serves the purpose of storing and retrieving
the diagrams corresponding to the teamwork representations in a landscape.

As explained in Section 4.3.7, external diagramming tools are used to create team-
work representations. The images corresponding to the representations are made avail-
able through the organization’s intranet. The representation descriptors are directly
imported by the landscaping tool.

Tailoring Hooks (continuation)

The functionality that the Breakdown Landscape tool needs from the repository, spec-
ified as an interface in Figure 4.54, can be found in existing VCS. As seen on Figure
4.56 the Breakdown Landscape tool server relies on an implementation of the Landsca-
peRepository interface that adequately provides the repository functionality. There
can potentially be one implementation of the repository interface for each existing
VCS (e.g., CVS, Starteam, and Source Safe). A configuration file provides the name
of the class that should be used as an implementation. In this way, the organiza-
tion can choose the VCS that best fits its needs. A repository implementation plays
three roles. First, it acts as a proxy (Proxy pattern [26]) of the external object/server
providing the version control functionality. Second, it adapts (Adapter pattern [26])
the protocol provided by the external object to the protocol expected by the land-
scape server. Third, it decorates (Decorator pattern [26]) the external object with
functionality required by the interface that the external object does not provide. For
example, CVS does not provide support for e-mail notifications on locks, therefore the
CVSRepositoryImplementation needs to store notification preferences and manage no-
tifications. This form of customization aims at simplifying the integration of the tool
with the existing organization’s infrastructure. Moreover, the version control system
of an organization is a software likely to be subject to change. Being able to adapt
the landscaping tool to work with other VCS additionally contributes to tailorability.

4.5.4 Artifact: Breakdown Diagnosis

Intent

The intent of this artifact is to document the forces that define the breakdown.

Instructions

The document presents information about the forces that team members find rele-
vant for the breakdown in three separate sections. Figure 4.57 presents the class
BreakdownDiagnosis that serves as the template for the artifact. The document is
created and extended with the Breakdown Landscape tool, the Co-Scale tool and the
Cause Finder tool.

The first section presents the results of the contribute forces activity (i.e., all doc-
umented forces). The content of the section is obtained with a Breakdown Landscape
tool query that returns all forces in the diagnosis of the breakdown including con-
tributing perspectives and involved objects. The query is opened as a textual view
and directly copied to the diagnosis document.

The second section presents the result of the weight forces activity. For each
perspective that identified forces, a subsection presents the identified forces in an
ordered list of importance. Forces are ordered based on weights of relative importance
provided by the members of each perspective. The content of this section is obtained
with the export results menu option of the Co-Scale tool.

The third section presents the results of the identify causes activity, that is, the
lists of all the forces that team members found unresolved. These forces are the cause



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 121

Figure 4.56: Implementing the landscape repository with existing VCS.

Figure 4.57: FormattedPage subclass for the breakdown diagnosis artifact



122 CHAPTER 4. APPROACH

of the breakdown. The content of this section is obtained with the export results menu
option of the Cause Finder tool.

The breakdown diagnosis document is important for the design and evaluation
phases.

4.5.5 Activity: Call for Contributors

Intent

The intent of this activity is to identify further team members whose participation can
be useful and to invite them to contribute.

Activation Conditions

This activity can be started when the activity decide (Activity in Section 4.4.12) of the
definition phase is completed, and the decision is to proceed with breakdown handling.

Instructions

This aims at applying the insight about the reach of the breakdown gained during
contribution of forces to maintain a list of contributors. It occurs in parallel to the
contribution of forces. Newly invited team members are advised to take part in con-
tributing forces.

As for the activity invite of the definition phase, the Breakdown Landscape (Tool
in Section 4.3.7) can be used to query for perspectives that could make a contribution
and whose members have not yet been invited. When a force is documented it may
involve additional objects that are not on the key objects set of the breakdown report
(these objects were already used to invited people during the definition phase). These
additional objects can also be used to query the landscape for potential participants.
The moderator (Participant in Section 4.3.4) must stay alert for changes in the set of
involved objects to keep the contributors list up to date.

Completion Conditions

This activity finishes when the contribute forces activity (Activity in Section 4.5.2) is
completed (as the Breakdown Landscape cannot be of further help).

4.5.6 Activity: Weight Forces

Intent

The intent of this activity is to augment the list of forces with an indication of the
relative importance that each force has for the perspective that identified it.

Activation Conditions

This activity can be started when the activity contribute forces (Activity in Section
4.5.2) and the activity call for contributors forces (Activity in Section 4.5.5) are com-
pleted.

Instructions

Weighting is performed with the Co-Scale tool (Tool in Section 4.5.7). The tool al-
lows each of the contributors (Participant in Section 4.4.3) to line up all the forces



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 123

Figure 4.58: Class diagram for the CoScale broker and client objects

contributed by the perspective the participants belongs to according to a scale of im-
portance. The contributions from all participants in a perspective are aggregated. The
moderator sets a deadline for the duration of this activity. The deadline is based on
records from past experiences (if available).

Completion Conditions

This activity is completed on the deadline set by the moderator. The moderator can
decide to reschedule the deadline, for example, to finish earlier if it is clear that no more
contributions can be obtained, or to finish later if having more time would contribute
to obtaining a more representative result.

4.5.7 Tool: Co-Scale

Intent

The Co-Scale tool is used by team members of a perspective to create an ordering of
the forces of their interest according to importance.

Instructions

The Co-Scale tool is a simple deliberation tool similar to the ones already described.
It uses the generic architecture for loosely coupled deliberation tools documented in
section 4.4.7. Figure 4.58 shows the concrete broker and client classes that specialize
the abstract classes provided by the generic architecture.

Part of the tool’s configuration is the list of forces documented for the breakdown
being diagnosed and information about participation of team members in perspectives.
Contributors weight forces and the tool aggregates the weights.

Forces are presented in lists. Contributors individually assign each force a weight
in a range of values previously configured. A greater weight means that the force is
of greater importance. When negotiating solutions, the team members’ intention is
to solve forces starting with those of higher importance. The collection of allowed



124 CHAPTER 4. APPROACH

Figure 4.59: Configuration class for the CoScale tool

weight values, obtained from the configuration object shown in Figure 4.59, is sorted
by importance. The first value means ”most important” and the last value means
”least important”.

The list of forces to weight (the forces documented for the breakdown being treated)
needs to be obtained from the Breakdown Landscape tool (see Section 4.5.3). This
list needs to be loaded as part of the configuration of the CoScale tool together with
the remaining configuration options such as allowing resubmits and keeping contri-
butions anonymous. Forces are maintained as part of the configuration object. The
method loadConfiguration inherited from GenericDeliverationToolBroker loads the
configuration options form an XML file located in the broker. The CoScaleBroker class
overrides the loadConfiguration method to additionally retrieve the last version of
the landscape XML file from the landscape repository. Information about forces is
obtained from the XML file.

The XML file obtained from the Breakdown Landscape tool contains informa-
tion about all forces documented for all existing breakdowns (past or currently being
handled). Each breakdown in the landscape is identified with a case name (attribute
caseName of the Breakdown class). To build the configuration object, the tool’s broker
needs to filter out all forces from breakdowns other that the current one. When the
session of the CoScale tool is created, for example, when the new instance of the scaf-
folding is created for the case corresponding to the current breakdown, the case name
is passed as an argument to the createSession method of the broker. This method
extends the createSession inherited from the superclass. The broker maintains an
association between the session name and the case name, and uses it to correctly
assemble the configuration.

Team members only weight the forces that were added to the breakdown diagnosis
by a perspective which they belong to. The tool presents the forces contributed by
each perspective to which the participant belongs in a separated tab pane as shown
in Figure 4.60. The list of perspectives for the participant using the CoScale client
needs to be loaded in the tool’s configuration. This part of the configuration is specific
for each user. The CoScale client class overrides the method retrieveConfiguration

to additionally pass the username to the server. In this way, the server can assemble
a specific configuration for this user. The name of the user is retrieved from the
authentication passport in the inherited authenticate method.

The associations between team members and perspectives that the CoScale broker
loads in the configuration object need to be retrieved from the scaffolding server (see



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 125

Figure 4.60: Simplified GUI design for Co-Scale

Section 4.2.2). The shared name-space of the scaffolding server contains the nodes that
represent team members and shared perspectives. The scaffolding server is extended
to serve HTTP GET requests to the URI http://domain-name/shared/xmlDump. The
result is an XML file containing all team members, all shared perspectives, and the
associations between them.

Each of the tabs presented to the user is divided into two sections. The upper
section shows all forces contributed by the perspective that still need to be weighted.
The lower section shows, in a first level, the allowed weights obtained from the config-
uration object (in the picture Must, Should, and Can). Under each weight value, in a
second level of the list, the list shows all forces that have been given that weight. Users
can drag elements from one section to the other to assign or reset weights (method
weight of the CoScaleClient class). An icon (a person for arguments, gears for sys-
tems, and the square root of X for facts) indicate the type of force (in the figure there
are only arguments).

Double clicking on a force opens the details dialog (method showForceDetails).
The details dialog shows all details of the force (i.e., full text, contributing perspective,
and involved objects).

A menu option ”Submit” submits the contribution of the user. The submit action
is enabled only when all forces from all perspectives have been weighted. Figure 4.61
shows the CoScaleContribution class that specializes the class Contribution provided
by the generic framework. The contributions groups the forces according to the weights
that were assigned.

The broker keeps record of all contributions. The method getResult in class



126 CHAPTER 4. APPROACH

Figure 4.61: Configuration and result objects for the CoScale tool.

CoScaleBroker aggregates the contributions force by force in a CoScaleResult. The
aggregated weight of a force is calculated by taking the most frequent weight given
(i.e., the mode). If this value is not unique, the greater (most important) of the most
frequent values is taken.

A menu option ”View result” opens a separate window with a list similar to that
in the lower section of the main window. The list is now built from the preliminary
aggregated result. The weights shown in the list represent the aggregation of the
contributions from all team members that already submitted. Double click on a force
gives access to the dialog window that displays the details of the force and to a diagram
where all contributions are shown as dots over an axis. The diagram can be used to
get an idea of how dispersed the contributions were.

When the activity finishes, the tool can export the results for integration into a
scaffolding artifact such as the breakdown diagnosis. A menu option ”Export result”
requests that the result of the tool be store in an HTML file.

Tailoring Hooks

The small subset of functionality provided by the Co-Scale tool can be tailored by
changing the ordered set of values used for weighting. Some factors must be considered
when exploring alternatives of value sets. The size or cardinality of the set directly
impacts the experience of weighting and the results. If the set is too large, users may
have problems choosing a value. If the set is too small, the resulting lists may be of no
use for decision making. The vocabulary used to construct the values must be chosen
with care. The difference between weights should be clear and leave no space for
ambiguity (numeral values have this characteristic). Moreover, the vocabulary should
make it easy to choose a value (domain terminology has this characteristic). Further
guidelines can be found in the literature on survey design (e.g., [22]).

The tool can be configured to allow re-submits. If that is the case, a user can submit
a new contribution that will replace any previously given one. The view results dialog
can be disabled for users other than the moderator.



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 127

4.5.8 Activity: Identify Causes

Intent

The intent of this activity is to identify, from the forces that have been reported, those
that are perceived by team members as the cause of the breakdown.

Activation Conditions

This activity can be started when the activity weight (Activity in Section 4.3.8) is
completed.

Instructions

The final activity of the diagnosis phase is to identify the forces that team members
perceive as the cause of the breakdown. The moderator sets a deadline for the duration
of this activity. The deadline is based on records from past experiences (if available).

Identification of causes is done with the Cause Finder tool (Tool in Section 4.5.9).
The tool allows contributors (Participant in Section 4.4.3) to indicate the forces that
they see as the cause of the breakdown. Based on the individual contributions from
team members, the tool builds an aggregated result.

To identify causes, forces need to be observed in relation to the information con-
tained in the breakdown report (Artifact in Section 4.3.6). First, the team member
must carefully read and analyze the breakdown report (symptoms, context and im-
pact). Then the team member reads through the lists of facts and arguments. If a
contextual fact is seen as a possible cause of the breakdown, it is marked as unresolved.
Then, each force of type argument in the list is considered. As discussed in Section
2.3.4, an argument associates a choice for a tailoring hook with the impact with re-
spect to a common value of selecting this choice instead of other possible choices. If
the choice that is effective at the moment of the breakdown is seen as a possible cause,
the force is marked as unresolved. The state of systems of forces is automatically de-
rived from the state of constituent forces (it is resolved if and only if all its constituent
forces are resolved).

A team member that evaluates a force as unresolved must also provide a short
argument for this decision. During the design phase arguments are used as hints to
explore the possible alternatives. During the evaluation, the argument is used as a
reminder of the criteria used when the force was first tested.

The aggregated result is exported from the Cause Finder tool and included in the
corresponding section of the breakdown diagnosis artifact.

Completion Conditions

This activity is completed on the deadline set by the moderator. The moderator
can reschedule the deadline, for example to finish earlier if it is clear that no more
contributions can be obtained, or to finish later if having more time would contribute
to obtaining a more representative result.

4.5.9 Tool: Cause Finder

Intent

The intent of the Cause Finder tool is to obtain a list of the forces that team members
consider to be the cause of the breakdown.



128 CHAPTER 4. APPROACH

Figure 4.62: Class diagram for the Cause Finder broker and client objects

Instructions

The Cause Finder tool is a simple deliberation tool. Team members independently
and asynchronously mark forces as causes of the breakdown (thus, as unresolved) and
submit the list of causes. The contributions of all team members are aggregated in a
result that is later taken as the team’s evaluation of possible causes of the breakdown.

The Cause Finder uses the generic architecture for loosely coupled deliberation
tools documented in section 4.4.7. Figure 4.62 shows the concrete broker and client
classes that specialize the abstract classes provided by the generic architecture.

The tool takes as as part of its configuration the list of forces documented for the
breakdown being diagnosed. As for the Co-Scale tool, the list of forces needs to be
obtained from the Breakdown Landscape tool. This list needs to be loaded as part
of the configuration. The CauseFinderBroker class overrides the loadConfiguration

method to retrieve the last version of the landscape XML file form the landscape
repository. Information about forces is obtained from the XML file. Figure 4.63 shows
the configuration class for the Cause Finder.

Figure 4.64 depicts the user interface for the Cause Finder tool. Facts, arguments,
and systems of forces are listed in separated tab panes. Forces that the user indicated
as unresolved are marked with an X icon. Double clicking on a fact or argument opens
the details dialog. The dialog shows all details of the force, and allows the user to
change its state. If the user sets the state to unresolved, a text box to provide a reason
is enabled. In this field, the user must explain why this force should be considered a
cause of the breakdown. Providing a reason is mandatory. The method unresolve of
the client class adds a force to the list of unresolved forces in the user’s contribution
(i.e., causes). The method clear removes a force form the list.

A menu option ”Submit” submits the contribution of the user. To calculate the
result, contributions are aggregated force by force . If any user has found a force
to be a cause, then the force is included as a cause in the aggregated result. The
notes provided by users as arguments are appended to a list (attribute reasons of
class AggregatedCause). Figure 4.65 shows the contribution and result classes for the
Cause Finder tool.



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 129

Figure 4.63: Configuration class for the Cause Finder tool

Figure 4.64: GUI design for the of Cause Finder tool



130 CHAPTER 4. APPROACH

Figure 4.65: Configuration and result objects for the Cause Finder tool.

A menu option ”View result” opens a separate window with the three tab panes.
The states of forces are taken from the aggregated result. Double clicking on a force
gives access to the dialog window that displays the details of the force, the number of
users that see the force as unresolved, and the list of notes arguing for the unresolved
states. Selecting a menu option ”Export result” saves the result of the tool in an
HTML file.

Tailoring Hooks

The tool can be configured to allow re-submits. If that is the case, a user can submit
a new contribution that will replace any previously given one. In the default case, it
is enough that one user sees the force as unresolved to get the force as a cause in the
result. An integer threshold value can be set to configure the number of users that
must find a force as unresolved to make it be unresolved in the result. Finally, the
view results dialog can be disabled for users other than the moderator.

4.5.10 Activity: Review Diagnosis

Intent

A breakdown diagnosis has been completed. Allow the inclusion of newly discovered
forces or weights, assuring that the resulting diagnosis still reflects the team’s agreed
understanding of the problem.

Activation Conditions

The review activity must be started if the request diagnosis review activity of the
design phase (Activity in Section 4.6.9) was conducted and resulted in a decision to
review the diagnosis.



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 131

Instructions

As previously said, the breakdown diagnosis is the team’s agreed understanding of the
problem. It is the basis for the work of teams developing solution alternatives. After
the diagnosis phase is completed, no further changes should be made to the breakdown
diagnosis. In the event that changes are required, all team members need to be given
the opportunity to review their contributions and make further contributions.

When this activity starts, the moderator (Participant in Section 4.3.4) changes
the state of activities contributing forces and calling for contributors to InProgress,
and the state of activities weight forces, identify causes and log effort to Inactive. All
activities are executed once again. Existing contributions (e.g., forces from the latest
execution of the phase) are maintained.

Completion Conditions

This activity can be marked as completed when all other activities in the phase have
been completed.

4.5.11 Activity: Log effort

Intent

The intent of this activity is to document the effort spent in a phase.

Activation Conditions

This activity can be started as soon as the activity identify causes (Activity in Section
4.5.8) is completed and the activity Review Diagnosis (Activity in Section 4.5.10) is
completed or has not been started.

Instructions

In the definition phase, team members estimate the effort of doing diagnosis, design,
treatment, and follow-up evaluation. Based on this estimate and on an estimate of the
relevance of the breakdown, they decide whether handling a breakdown is worthwhile.
To estimate effort, the moderator (Participant in Section 4.3.4) and the contributors
(Participant in Section 4.4.3) benefit from any records of effort spent in previous
cases. In order to provide that information it must first be collected. This is the
goal of effort logging. During effort logging, each participant is asked to report in the
effort log artifact (Artifact in Section 4.5.12) the time spent (in work hours) for each
of the activities in the current phase. Participants log effort at the end of the phases
of diagnosis, design, treatment, and follow-up evaluation.

The effort log is better interpreted in conjunction with the participants list and
the document of the breakdown forces. For example, it can be used to infer how much
effort in a phase relates to the aspects of teamwork that the case is dealing with and
to the perspectives that are involved. However, this cannot be taken as a statistical
proof. In the best case, one could try to infer trends in the complexity of cases that
deal with a specific aspect of team work or that involve a given perspective (or a given
number of perspectives).

Completion Conditions

The moderator should try to keep the effort log as complete as possible. The moderator
decides when to mark this activity as completed. In the best case, this activity is
complete when every member that participated has reported effort.



132 CHAPTER 4. APPROACH

Figure 4.66: Part of the table showing effort totals

4.5.12 Artifact: Effort Log

Intent

The intent of this artifact is to document the effort spent by team members in diagnosis,
design, treatment, and follow-up evaluation of the breakdown.

Instructions

The effort logs consists of two sections. The first section presents the total reported
efforts, activity by activity and phase by phase. The second section provides links to
all individual reports created by team members.

Total reported efforts are presented in a table like the one partly shown in Figure
4.66. The first column lists the phases, the second column lists the activities, and the
third column presents the totals.

To create and maintain the effort log artifact, one could define a specific delib-
eration tool based on the generic architecture already presented. However, the logic
underlying the effort log is very limited. Each team member works on a separated
piece of data (the individual effort log). There is no need for locking or notifications
of changes, and there is no complex aggregation logic. Moreover, the individual effort
log data can be easily edited as an HTML form without the need of a specific appli-
cation. The effort log artifact can be created as a specialization of the FormattedPage
class of the scaffolding server. Individual effort reports are also specializations of the
FormattedPage class. This approach is depicted in the class diagram in Figure 4.67.

The method getTableOfTotals of class EffortLog generates the HTML code that
is used to build the table previously described. It relies on the methods
calculatePhaseEffort, calculateActivityEffort, and calculateTotalEffort. These
methods retrieve all individual effort reports linked from the effort log and calculate
the totals. The edit button that is present in all scaffolding pages is disabled for
the effort log artifact because its content is calculated dynamically from the linked
individual reports.



4.5. CONDUCTING THE DIAGNOSIS OF THE BREAKDOWN 133

Figure 4.67: FormattedPage subclasses for the effort log artifact

The second section of the effort log presents links to all individual reports. Addi-
tionally, there is a button to append a new individual report. The method
appendIndividualReport creates an instance of IndividualReport and links it. The
method retrieves the name of the current user from the authentication passport (ac-
cessible, for example, through HTML scripting). The initialize method of the Indi-
vidualReport class creates and initializes the placeholders to report the effort of each
activity. The edit button of the IndividualReport presents an HTML form (rendered
in method getEditForm) with an entry field for each value to be provided.

4.5.13 Summary

Requirement 4 in Section 2.3.4 argued for teamwork support to document and evaluate
the forces that shape the breakdown. The Breakdown Landscape tool allows team
members from several perspectives to collaboratively identify and record the forces
that shape the problem. The moderator uses the Breakdown Landscape to identify
contributors that must be invited to contribute, and to assure that diagnosis considers
the opinion of all important stakeholders. The Co-Scale tool allows team members to
collaborate in the construction of a prioritization of forces. Finally, the Cause Finder
tool allows team members to collaboratively find unresolved forces that seem to cause
the breakdown. The breakdown diagnosis artifact records the team’s understanding
about the forces, priorities, and causes of the breakdown.



134 CHAPTER 4. APPROACH

Figure 4.68: Design phase of breakdown handling

4.6 Designing Solutions

4.6.1 Overview of the Design Phase

The design phase aims at the generation of proposals of alternatives for teamwork and
the selection of one of them as the best candidate to resolve the breakdown. Figure
4.68 provides an overview of the design phase. The six activities that define this phase
are: develop alternatives, recruit, select candidates, choose solution, log effort, and
request diagnosis review. The moderator sets deadlines for the completion of each of
the activities.

4.6.2 Activity: Develop Alternatives

Intent

The intent of this activity is to produce several solution alternatives.

Activation Conditions

This activity can be started as soon as the activity Log Effort (Activity in Section
4.5.11) of the diagnosis phase is completed.

Instructions

In this activity, team members collaborate to design a solution for the breakdown.
Collaborative design is itself an area of research within CSCW (see, for example,
the work done by Arias and colleagues [9, 8, 10, 7]). For the scope of this thesis, the
development of alternatives is seen as an atomic activity that results in several solution



4.6. DESIGNING SOLUTIONS 135

alternatives. The focus of this section is on what needs to be done specifically to
assemble a teamwork alternative document (Artifact in Section 4.6.3). Team members
working on this activity can additionally benefit from a bibliography on team creativity
techniques (e.g., [24, 6]) for the creation of alternatives.

The breakdown diagnosis (Artifact in Section 4.5.4) is used to inspire alternatives
that have the potential of resolving the breakdown. There is no limit to the number
of alternatives that can be proposed. However, team members should only propose
a new alternative when there is no hope to contribute to any of the existing ones to
make it follow the desired direction. A proposal that integrates contributions from
many perspectives has more chances to correctly satisfy the forces.

A teamwork alternative is created by contributors (Participant in Section 4.4.3) in
asynchronous collaboration. All members participating in the proposal can contribute
to the teamwork alternative document. The editor (Participant in Section 4.6.5) dis-
tributes responsibility for the different parts of the document. When all contributions
are ready, the editor edits the document and may request changes or corrections. On-
line forums can be used to host design discussions. On-line discussions that require
focusing on a common artifact (e.g., a representation of teamwork) can be supported
with chat tools that support referencing drawings from chat messages (e.g., [20]). Ar-
gumentation tools such as gIBIS [21] can be used to organize design conversations and
capture early design deliberations.

The exploration of the space of possible alternatives of solutions is guided by the
forces that need to be solved. A solution is built from many interdependent decisions.
A decision (e.g., a choice of a tool) that aims at solving a group of forces (among all
the forces that need to be solved) may limit the the possible decisions to solve another
group of forces. The explored part of the solution space shaped by the decisions
taken at each point by team members can be described with a decision tree [55] like
the one shown in Figure 4.69. The root of the tree represents the starting point of
the exploration. Team members may decide to first tackle forces X, Y, and Z by
taking a decision A (e.g., adopt tool N). As a result of this decision, they have a new
(hopefully smaller) set of forces to solve and, therefore, a new set of alternative paths
to follow. They are represented by the node labeled 1 in the figure. As an alternative
to decision A, they could have taken decision C. Decision C could be a different way
to tackle the same groups of forces as decision A, or could tackle a different set of
forces. The decisions that lead from the root to a leaf (where all forces have been
solved) form a solution. How to collaborate to explore the solution space (i.e., how to
do collaborative/cooperative problem solving) is outside the scope of this thesis (see
[77] for a discussion on cooperative problem solving from the point of view of artificial
intelligence). However, it can be expected that the team’s decisions are based on
some utility function that lets them choose among alternative paths and eventually
among alternative solutions. Such a utility function likely involves minimizing the
cost, maximizing the number of high priority forces that are solved, and minimizing
the side effects.

A decision mainly aims at solving a force or group of forces from the set of forces
identified as causes in the breakdown diagnosis. Additionally, the decision can consider
new forces not stated in the breakdown diagnosis. For example, Force 11 in the
breakdown presented on page 16 was found during design. It states ”Refactoring is a
good opportunity to reformat code to make it compliant to a particular style”. These
forces must be documented as design forces in the teamwork alternative document
(Artifact in Section 4.6.3). They are documented with the Breakdown Landscape tool
and copied to the document from a textual view.

During the design, team members may need to see the impact that a decision
may have using the Breakdown Landscape (Tool in Section 4.3.7). As the Break-
down Landscape describes teamwork in its current form, it cannot be modified for
exploratory purposes. The moderator creates a branch in the breakdown repository



136 CHAPTER 4. APPROACH

Figure 4.69: Decision tree

of the Breakdown Landscape and names it after the solution being designed. Team
members can launch the Breakdown Landscape tool and retrieve the last revision of
the branch that the moderator prepared for them. They can modify the branched
landscape to represent the solution being designed. They can remove and contribute
forces, create and import new representations, and perform queries.

Solutions take time to show impact. The pace in which the results of the suggested
changes will be perceived depends on the extent of the changes and the nature of the
breakdown. During the preparation of an alternative, the proposing group agrees on a
period to wait after changes have been made and before a follow-up evaluation can be
done in order to examine the impact of the changes. A follow-up plan is created and
documented with the teamwork alternative document. The follow-up plan consists of
a collection of evaluation activities and the date when they should take place. The
choice of evaluation activities depends on the problem being solved and the proposed
solution. These activities aim at confirming the effect promised by the solution and
assuring that no unexpected side effects appear. In cases where deciding is a subjective
issue that depends on the perception of team members, it may be enough to open a
dedicated forum for a limited period of time to give team members the opportunity
to report their observations. During this period, team members read the breakdown
report and the teamwork alternative artifact. If they consider that something is wrong
with the solution, they can contribute to the forum. A ballot (with some voting tool)
can serve to formally decide on the effect of the solution (either solved, failed, or more
time is needed). It is possible that for some problems, specific objective evaluations
activities need to be designed such as a formal performance evaluation of some area
of teamwork.

Completion Conditions

This activity must be completed by the deadline set by the moderator. The moderator
can decide to finish it early if all proposals are ready, or to extend it.

4.6.3 Artifact: Teamwork Alternatives

Intent

The intent of this artifact is to capture a solution alternative.



4.6. DESIGNING SOLUTIONS 137

Figure 4.70: FormattedPage subclass for the teamwork alternative artifact

Instructions

A solution alternative artifact captures a proposal for a solution to the breakdown
created by a group of team members.

As explained in Section 4.2.2 an artifact node in the scaffolding server is a place-
holder for meta-data about the artifact (e.g., for usage instructions). Additionally,
the artifact node has a hyperlink to the real resource that holds the concrete artifact’s
data. The class diagram in Figure 4.17 on page 63 shows that a real resource can be
one of ExternalResource, FormattedPage, and UntypedPage. Figure 4.70 shows how
the class FormattedPage of the scaffolding server is specialized to model one concrete
teamwork alternative resource.

During the design phase, several teamwork alternatives can be prepared in parallel
by team members. Each of these alternatives requires an independent real resource for
the teamwork alternatives artifact. When a group of team members decides to start
working on a teamwork alternative, the moderator creates a copy of the initial real
resource (through the method copyNamed of the TeamworkAlternative class), and adds
a link to it from the artifact’s node. As a result, the teamwork alternatives node in the



138 CHAPTER 4. APPROACH

scaffolding will have links to several real resources. Each alternative is identified by a
name. Moreover, each alternative has hyperlinks to the nodes of the team members
who contribute to the alternative and to the team member who works as editor.

A solution alternative is expected to resolve the forces that were identified as
causes in the breakdown diagnosis. Moreover, a solution may require that new forces
are introduced which were not considered during design. A section of the teamwork
alternative lists all design forces. A solution alternative resolves the forces identified
as causes. Ideally, it should not turn unresolved any other force that was previously
solved (e.g., by previous breakdown handling) in the organization’s Breakdown Land-
scape. In reality, team members often reach compromise solutions that solve important
breakdowns in detriment of less important breakdowns previously solved. During de-
sign, team members must try to identify side effects of solutions and document them
in a section of the document.

During design, team members may need to temporarily document design forces
using the Breakdown Landscape. These forces can be persistently added to the orga-
nization’s Breakdown Landscape if the alternative is selected and implemented. To
let team members document design forces, a branch of the Breakdown Landscape is
created. A branch of the landscape is a copy that can be used independently from the
main version of the XML file that holds the data of the Breakdown Landscape tool in
the landscape repository. The branch name needed to retrieve the landscape data is
stored as part of the alternative document.

The summary section of a breakdown alternative shortly describes the proposed
solution. The core of the alternative are the decisions (e.g., actions or changes to
teamwork) that the contributors suggest. Each decision aims at solving a particular
force or system of forces. A section of the document explains each decision, the forces
it aims to solve, and its expected effect on these forces. The text describing each
decision and the forces it solves are copied from a textual view (result of a query) of
the Breakdown Landscape tool.

For each evaluation activity suggested by the contributing team members, the
teamwork alternative artifact includes a description and a suggested date when the
action should be carried out. To complete the description of a solution alternative,
team members must provide an estimate of the cost of implementing it (in a mone-
tary unit). As an option, the designers of the alternative can provide guidelines and
suggestions for its implementation.

4.6.4 Tool: Breakdown Landscape (continuation)

During design, team members conduct exploratory modifications of the Breakdown
Landscape. These modifications should not affect the main organization’s Breakdown
Landscape but should be done on an isolated copy. The LandscapeRepository class
presented in Figure 4.54 on page 118 needs to be extended with a method branch.
The arguments of this method are the name of the new branch (the main branch is
named HEAD following the convention used by the CVS version control system) and
the existing branch and revision number that should be taken as the base for the copy.
Figure 4.71 provides an overview of the relation between branches and revisions. It
shows the main (HEAD) branch with its four available revisions. Revision 4 is the
latest (i.e., current) revision. Revision 2 was used as the base for a new branch called
BR1. Branch BR1 was modified and saved twice, first as revision 2 and then as revision
3. Moreover, the figure shows that revision 2 of branch BR1 was used as the base for
a new branch BR2.

Besides the forces that were introduced in the landscape during the diagnosis
phase, there are also the design forces. During exploration, design forces need to be
added to the landscape branch used by the team. The object model of the Breakdown
Landscape tool is extended as shown in Figure 4.72 to consider design forces with an



4.6. DESIGNING SOLUTIONS 139

Figure 4.71: Relation between branches and revisions

additional relation (introduces) between class Solution and class Force. Section 4.5.3
presented the force editor window of the Breakdown Landscape. It allows forces to
be added. The force editor is extended with two radio buttons (labeled ”Diagnosis
force” and ”Solution force”) as shown in Figure 4.73 to indicate the type of force being
added.

Each decision the team makes is included in the Breakdown Landscape. This is
done with the solution editor window shown in Figure 4.74. The solution editor also
provides an input field to indicate the name of the solution being documented. This
name can later be used to find the teamwork alternative artifact in the scaffolding.
Decisions can be added. For each decision, the contributors provide the summary
(same text as in the teamwork alternative artifact) and the list of controlled forces.
Forces are selected from all forces documented in the Breakdown Landscape. The
details of each decision are only documented in the teamwork alternative artifact.

4.6.5 Participant: Editor

Contribution

An alternative is developed by a group of participants. One of them is designated as
the editor. The editor is responsible for coordinating the effort of the proposing group
and for editing the final version of the teamwork alternative document.

Requirements

In cases where the designation of the editor is not straight forward, it can be resolved
by voting (simple majority) among the volunteering candidates or the project manager
can appoint an editor.

4.6.6 Activity: Recruit

Intent

The intent of this activity is to recruit team members that do not yet contribute but
their contribution may be of help.

Activation Conditions

This activity can be started as soon as the activity identify causes (Activity in Section
4.5.8) of the diagnosis phase is completed.



140 CHAPTER 4. APPROACH

Figure 4.72: UML diagram for the object model of the Breakdown Landscape



4.6. DESIGNING SOLUTIONS 141

Figure 4.73: GUI design for the ”Force editor”



142 CHAPTER 4. APPROACH

Figure 4.74: GUI design for the ”Solution editor”



4.6. DESIGNING SOLUTIONS 143

Instructions

Any team member can decide to start the creation of a solution alternative. It is
recommended that at least one team member from each perspective that contributed
forces to the breakdown diagnosis participates in the design of the alternative.

When a solution is designed, it may involve objects of teamwork that were not
involved in the breakdown report or in the forces that were identified in the diagnosis.
These objects can result in identifying team members whose participation may be of
help and who are not yet contributing. The editor (Participant in Section 4.6.5) of
a teamwork alternative (Artifact in Section 4.6.3) must periodically check with the
Breakdown Landscape (Tool in Section 4.3.7) if the objects that are affected by the
solution lead to perspectives that are not yet involved. If this is the case, at least one
team member of these perspectives should be convinced to contribute.

Completion Conditions

This activity is completed when the activity develop alternatives is completed.

4.6.7 Activity: Select Candidates

Intent

The intent of this activity is to select those alternatives that clearly outperform the
other available alternatives.

Activation Conditions

This activity can be started when the activities develop alternatives (Activity in Sec-
tion 4.6.2) and recruit (Activity in Section 4.6.6) are completed.

Instructions

As a result of the develop alternatives activity, several teamwork alternatives (Arti-
fact in Section 4.6.3) may be produced. The mechanism presented in section 2.3.5 to
find non-dominated alternatives is used to select the best candidates. The moderator
(Participant in Section 4.3.4) compares all alternatives according to the set of resolved
forces, the cost, and side effects. Let fResolved() be a function that returns the set of
forces from the breakdown diagnosis that an alternative resolves. An alternative ”A”
is better than an alternative ”B” with respect to fResolved(), if fResolved(B) is strictly
included in fResolved(A). ”A” is as good as ”B”, if fResolved(A) equals fResolved(B).
Let estimatedCost() be a function that returns the cost estimated by the team for the
implementation of a given alternative. An alternative ”A” is better than an alternative
”B” with respect to estimatedCost(), if estimatedCost(A) is strictly less than estimat-
edCost(B) minus the ”largest insignificant difference” (a threshold value agreed by the
moderator and the manager to indicate that differences in cost below that threshold
are not significant enough to qualify one alternative as cheaper or more expensive
than the other). Let knownSideEffects() be a function that returns 0 if there are
no known side effects for the alternative, 1 otherwise. An alternative ”A” is better
than an alternative ”B” with respect to knownSideEffects(), if knownSideEffects(A)
is strictly less than knownSideEffects(B). An alternative ”A” is a non-dominated al-
ternative (therefore a candidate) if there is no alternative ”B” such that ”B” is as
good as ”A” regarding knownSideEffects(), fResolved(), and estimatedCost(), and it
is better than ”A” regarding at least one of them.



144 CHAPTER 4. APPROACH

Completion Conditions

This activity is completed when the moderator has obtained the set of candidates.

4.6.8 Activity: Choose Solution

Intent

The intent of this activity is to select one alternative for its implementation.

Activation Conditions

This activity can be started when the activity select candidates (Activity in Section
4.6.2) is completed.

Instructions

If the select candidates activity yields only one candidate, that candidate is chosen for
implementation. If it yields several candidates, contributors (Participant in Section
4.4.3) select one by voting. The alternative (Artifact in Section 4.6.3) with more votes
is chosen. All team members can cast one vote. Team members can change their votes
anytime until the deadline set by the moderator. Voting is done with a Voting Tool
(Tool in Section 4.4.13).

A discussion forum is provided for each alternative. The forum allows team mem-
bers who did not participate in the development of the alternative to ask questions to
those who did, and make comments regarding their opinions on the impact and cost
of implementing the alternative. Team members can change their votes in order to
give these discussions the potential to influence the results of the voting.

Completion Conditions

This activity is completed on the deadline set by the moderator.

4.6.9 Activity: Request Diagnosis Review

Intent

The intent of this activity is to decide about conducting a review of the diagnosis of
the breakdown.

Activation Conditions

This activity is started if one of the editors requests the moderator to start a review
of the diagnosis of the breakdown.

Instructions

The moderator and the editors discuss the request and agree how to proceed. If
necessary, the moderator can configure a voting tool to decide on the issue.

If the decision is to conduct a review of the diagnosis, the moderator changes the
state of all activities in the diagnosis phase to Inactive.

Completion Conditions

This activity is completed when a decision is made.



4.6. DESIGNING SOLUTIONS 145

4.6.10 Summary

Requirement 5 in Section 2.3.5 argued for teamwork support to design alternatives,
plan follow-up evaluation, and select an alternative for its implementation. The Break-
down Landscape tool and the breakdown diagnosis document are used by teams to
explore alternatives. As alternatives evolve, the Breakdown Landscape can be used to
find other relevant contributors. When proposals are published, all team members can
discuss them in on-line forums and make-up their minds as they vote for one. Solution
alternatives are created and selected in collaboration.



146 CHAPTER 4. APPROACH

Figure 4.75: Treatment phase of breakdown handling

4.7 Treating the Breakdown

4.7.1 Overview of the Treatment Phase

The phase of treatment has the goal of implementing the changes to teamwork that
are required to make it conform to the solution alternative selected during evaluation.
Figure 4.75 depicts the phase of treatment. It consists of four activities, namely
delegate execution, tailor, document change, and log effort. The treatment itself (i.e.,
implementing the selected alternative) is done in the tailor activity.

Support for executing the planned changes to teamwork is outside the scope of
this thesis. It involves many other technical issues such as tailorability of the affected
systems and artifacts, and non technical issues such as planning and executing changes
without disrupting the functioning of the system. Moreover, executing the changes
may require the participation of external experts (e.g., software experts). The focus
of this thesis is on supporting the tasks that can be performed (and may be better
performed) by the team members.

The approach taken here to support collaborative breakdown handling is to view
application of changes as an externally executed task. A detailed request for changes is
delegated to an external group that has the capability to perform the changes. When
changes are in place, control returns to the team.

4.7.2 Activity: Delegate Execution

Intent

The intent of this activity is to delegate the execution of the selected alternative to a
tailoring team.



4.7. TREATING THE BREAKDOWN 147

Activation Conditions

This activity can be started as soon as the activity Log Effort of the design phase is
completed.

Instructions

To delegate execution, the moderator (Participant in Section 4.3.4), or someone des-
ignated by the moderator negotiates with a group of implementors (e.g., developers,
advance users, handymen) the implementation of the designated changes. The team-
work alternative artifact (Artifact in Section 4.6.3) is passed on to the team of imple-
mentors as the requirement specification. During the phase of treatment, the editor
(Participant in Section 4.6.5) of the chosen alternative acts as the domain expert.

Completion Conditions

This activity is completed when the team of implementers agrees to implement the
requested changes.

4.7.3 Activity: Tailor

Intent

The intent of this activity is to implement the selected alternative.

Activation Conditions

This activity can be started as soon as the delegate execution (Activity in Section
4.7.2) is completed.

Instructions

The team of implementers implements the requested changes as good as possible.
In case of doubt, they can ask the editor for clarifications. When the changes are
finished, the implementers return to the moderator (Participant in Section 4.3.4) with
the tailoring report (Artifact in Section 4.7.4). Additionally, the moderator discusses
with the implementers and the editor (Participant in Section 4.6.5) of the implemented
alternative if changes to the follow-up evaluation schedule are needed. If that is the
case, the moderator updates the plan for evaluation.

During implementation, the team of implementers can introduce additional forces.
For example, to implement the use of CVS as the revision control system, a force is
introduced: ”source code changes are no longer anonymous, but the author can be
identified.” These forces are documented as solution forces (that relate to control
decisions found during implementation) together with any design forces that could
have been introduced during design. These forces are documented in the branch of
the Breakdown Landscape (Tool in Section 4.3.7) used by the design team.

Completion Conditions

This activity is completed when the moderator accepts the changes implemented by
the implementers and has confirmed/updated the schedule the follow-up evaluation.



148 CHAPTER 4. APPROACH

Figure 4.76: FormattedPage subclass for the tailoring report artifact

4.7.4 Artifact: Tailoring Report

Intent

The intent of the tailoring report is to document the results of the work done by the
implementers when trying to implement the chosen solution.

Instructions

The tailoring report artifact provides a summary of the results of the implementation
of the solution. Any deviations from the requested changes and what the implementers
were able to implement are also documented. As in the teamwork alternative docu-
ment, any newly introduced forces are documented. Figure 4.76 shows how the class
FormattedPage of the scaffolding server is specialized to model one concrete tailoring
report resource.

4.7.5 Activity: Document Change

Intent

The intent of this activity is to update the representations of teamwork and of the
product to reflect the implemented changes.

Activation Conditions

This activity can be started as soon as the tailor (Activity in Section 4.7.3) activity is
completed.



4.7. TREATING THE BREAKDOWN 149

Instructions

The moderator (Participant in Section 4.3.4), assisted by the editor (Participant in
Section 4.6.5), has the task of updating the representations of teamwork and the Break-
down Landscape tool (Tool in Section 4.3.7) to document the changes documented in
the tailoring report (Artifact in Section 4.7.4) and to reflect the new situation. If all
design and implementation changes in the representations and the forces were correctly
documented in a branch of the Breakdown Landscape, all that needs to be done is to
merge the alternative’s branch with the HEAD branch.

If the diagrams included in the proposal were created with teamwork editors, and
if the changes were implemented in total compliance with the request, updating the
representations of teamwork can be as easy as replacing the existing diagrams by those
included in the proposal.

During the diagnosis and evaluation phase, new systems of forces and factual forces
were identified. The evaluation phase resulted in a solution proposal that considered
these forces and possibly introduced control decisions for some of the uncontrolled
systems. These forces are documented in the Breakdown Landscape tool.

Completion Conditions

This activity is completed when all changes have been documented in the teamwork
representations and the Breakdown Landscape.

4.7.6 Tool: Breakdown Landscape (Continuation)

Updating Teamwork

When the organization implements changes in the forms of teamwork, these changes
need to be reflected in the representations using the corresponding editors. A change in
teamwork may need to be reflected in many representations. Given that these changes
occur outside the landscaping tool, they must be imported. Importing a representation
that already exists results in an update. The update is based on the unique identifiers
of representations and objects.

Changes in teamwork may result in the introduction of new objects or in the re-
moval of existing ones. References from forces to any removed object (i.e., dangling
references) are consequently deleted. Moreover, after each import, a report is gener-
ated. The report (a text file) lists all objects that were imported without problems,
all objects that were removed without problems, all objects that were removed and
caused forces to have dangling references, all forces with dangling references, and all
forces that reference an object that changed (e.g., an existing object that now appears
in a new presentation). The report can be reviewed to see if any forces have become
obsolete or need to be corrected. The landscaping tool provides no other support to
deal with conflicts generated by imports.

During design and treatment, new forces are introduced (solution forces). Changes
in representations and forces are first performed on a branch of the Breakdown Land-
scape. The team members that modify the landscape are responsible for keeping it
consistent (e.g., update forces with dangling references). In section 4.3.7, importing
representations is described as a server-side operation. However, as it needs to work
on a landscape branch, it must be implemented as a client (plug-in) side operation.
After the solution has been implemented, the moderator takes the XML file of the
Breakdown Landscape data that corresponds to the last revision of the branch and
commits it to the HEAD (main) branch. In this way, the changes become visible in
the organization’s Breakdown Landscape.



150 CHAPTER 4. APPROACH

4.7.7 Activity: Log effort

Intent

The intent of this activity is to document the effort spent in this phase.

Activation Conditions

This activity can be started as soon as the document change (Activity in Section 4.7.5)
activity is completed.

Instructions

The editor (Participant in Section 4.6.5) and the moderator (Participant in Section
4.3.4) indicate in the effort log (Artifact in Section 4.5.12) the time they spent during
this phase. Moreover, the moderator also indicate in the effort log the effort that the
implementors reported in the tailoring report.

Completion Conditions

This activity is complete when the effort log is updated.

4.7.8 Summary

The activities proposed in this section tackle requirement 6 that deals with the provi-
sion of support to spawn the tailoring project and resume breakdown handling when
the tailoring project is completed. The teamwork editors and the Breakdown Land-
scape are used to document the changes that were implemented.



4.8. EVALUATING THE SOLUTION 151

Figure 4.77: Evaluation phase of breakdown handling

4.8 Evaluating the Solution

4.8.1 Overview of the Evaluation Phase

The evaluation phase has the purpose of evaluating whether the changes had the
desired effect on the forces. Figure 4.77 depicts this phase.

4.8.2 Activity: Evaluate

Intent

The intent of this activity is to evaluate the state of resolution of the forces involved
in the breakdown.

Activation Conditions

This activity is started on the dates scheduled in the teamwork alternative artifact.

Instructions

On the dates indicated for each of the evaluation activities indicated in the team-
work alternative artifact of the implemented solution, the moderator sets the state of
this activity to InProgress. Contributors (Participant in Section 4.4.3) collaborate to
perform the evaluation activity as indicated in the teamwork alternative artifact (Arti-
fact in Section 4.6.3). The results of the evaluations are documented in the evaluation
report artifact (Artifact in Section 4.8.3).

After the last planned evaluation activity is completed, the moderator and the
editor infer the overall result of the evaluation. In principle, the evaluation succeeds
only if all individual evaluation activities succeeded. However, how the results of the
individual activities add up to the overall results depends on the planned activities.



152 CHAPTER 4. APPROACH

Figure 4.78: FormattedPage subclass for the evaluation report artifact

4.8.3 Artifact: Evaluation Report

Intent

The evaluation report documents the results of the evaluation activities.

Instructions

The content of the evaluation report tightly depends on the evaluation activities that
are performed. In all cases, the first section of the report indicates whether the team
concluded that the breakdown was solved (i.e., success) or that the breakdown was not
solved (i.e., failure). Additionally, one section for each evaluation activity indicates
the result and provides observations that team members consider important to record.
Figure 4.78 shows how the class FormattedPage of the scaffolding server is specialized
to model one concrete evaluation report resource.

4.8.4 Activity: Close or Reschedule

Intent

The intent of this activity is to decide how to react in response to the results of
evaluation.

Activation Conditions

This activity takes place when the evaluate activity (Activity in Section 4.8.2) is
completed.

Instructions

In the case of a successful evaluation, the moderator (Participant in Section 4.3.4)
closes the case. In the case of a failed evaluation, the moderator (in discussion with the
editor of the chosen proposal) can decide to give the solution more time to take effect
and consequently re-schedule some or all of the evaluation activities. Alternatively,
they can decide to close the case as it is. If the forces that stay unresolved are of



4.8. EVALUATING THE SOLUTION 153

importance, closing the case will eventually cause a breakdown and a new breakdown
handling case would start.

A solution introduces changes to teamwork and, potentially, new forces. If the
solution fails to solve the breakdown, keeping all these changes and forces represents
unnecessary cost. However, it may not be possible to undo them (e.g., the team has
appropriated a newly introduced tool and refuses to abandon it). This unnecessary
change and forces will eventually cause a breakdown and a new breakdown handling
case would start, under new circumstances. To handle the new breakdown, a solution
may be to undo all changes and go back to a previous, problematic situation. Other
solutions may try to work from taking the changes as part of the new situation.

When the case is closed, the effort of the last phase is documented and all docu-
ments are frozen. The result of the case is also documented in the Breakdown Land-
scape (a boolean flag in the Breakdown object). Documenting the result of breakdown
handling in the landscape makes it possible to query, for example, for all forces that
were introduced and are still in effect due to a failed solution.

Completion Conditions

This activity is completed when the case is closed. If evaluation is rescheduled, the
state of this activity is set to Inactive.

4.8.5 Summary

This section discusses the provision of support for collaboratively evaluating the result
of implementing the chosen solution. Thus, requirement 7 is covered.



154 CHAPTER 4. APPROACH



Chapter 5

Implementation

The prototypes of the tools were implemented as the need for them arose during usage
experiences. Prototypes were implemented as specified in the approach chapter. This
chapter discusses some aspects of the implementation that deviate from the specifica-
tion (for practical reasons) or that may be of special interest to the reader.

5.1 Implementation Architecture

Figure 5.1 summarizes the architecture of the implemented prototype. The scaffolding
server (Scaki Server) stores the hypermedia content (e.g., specification and state of the
scaffoldings) in an XML-based repository. A file repository is used to store files such as
scaffolding artifacts and the plug-ins of tools. The content of the scaffolding is served
to regular web-browsers via HTTP. The Scaffolding Overview component is imple-
mented as a Squeaklet (Applet like application implemented with Squeak Smalltalk).
It retrieves XML data from the Scaki Server via HTTP. The clients of the deliberation
tools (Breakdown In-box, Co-Scale tool, Co-Estimation Tool, and Cause Finder tool)
are implemented as Visualworks Smalltalk plug-ins. They exchange data with their
corresponding brokers in the form of serialized objects over TCP/IP connections. The
Breakdown In-box and the Co-Scale tool additionally retrieve data, in the form of se-
rialized objects over a TCP/IP connection, from the Scaki Server. The same method
is used by the Co-Scale tool to retrieve data from the Breakdown Landscape Server.
The Breakdown Landscape Server uses an external CVS executable to store and re-
trieve XML files from its file repository. Serialized objects over a TCP/IP connection
is also the communication mechanism between the Breakdown Landscape Server and
its Client.

5.2 Scaki: the Scaffolding Server

Swiki [65], an implementation of WikiWikiWeb written in Squeak Smalltalk, has been
chosen for the implementation of the prototypical scaffolding server (called Scaki).
Swiki provides a simple way of publishing on-line, it provides full text search, has an
extensible object model, uses XML storage, provides basic support for asynchronous
collaborative document editing (e.g., locks, revisions, change tracking, notifications,
security), and provides basic document storage (useful to deliver applications and
attach external documents).

Swiki includes markup elements to create headings, tables, and HTML links that
point to anchors inside pages. Additionally, Swiki allows the definition of page tem-
plates. Each template defines how pages are seen in edit and in presentation mode.

155



156 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Overview of the implemented architecture



5.3. BREAKDOWN LANDSCAPE 157

The richness of the editing and presentation facilities of Swiki simplified the creation of
the edit and presentation pages of the different types of scaffolding elements (especially
artifacts). Each of the types of elements in the scaffolding is defined as a template in
the Swiki.

Swiki has functionality to calculate, for a page, all incoming references. Originally,
the incoming references are listed at the bottom of each page. This functionality was
extended, based on a filter that considers the type of the referencing page, to create
the lists that appear at the bottom of every element’s page. Figure 5.2 presents, as an
example, the activity weight of the diagnosis phase in show mode. The first icon in the
list of icons to the upper-right (i.e., cross with arrow heads) is a hyperlink to activate
the overview window. The other icons are the regular Swiki actions, namely, show,
edit, attachments, versions, top, changes, search, and help. After each hyperlink (e.g.,
Contribute forces), there is an image label indicating the type of the target page (AR
means artifact, AC means activity, TO means tool, and PA means participant).

Extensions to the Swiki server can be programmed in a tool provided for this
purpose. Extensions are stored in text files that are read by the server on startup.
This approach makes extending the Swiki with ad-hoc functionality possible. This
programming facility was used to implement the clone operation, the extensions to
the calculation of incoming references, displaying anchors with an icon indicating the
type of the target node, and the automatic creation of entries in the event logs.

Squeak Smalltalk provides a graph layout package based on its Morphic 1 frame-
work [29]. The graphical overview was implemented as a Squeak applet (Squeaklet)
running in an independent browser window. The Swiki server was extended (also using
the programming facilities of Swiki) to dynamically generate the web-page containing
the applet. An HTTP request is sent from the applet to the server to retrieve an XML
representation of the scaffolding. Figure 5.3 shows the graphical overview. A button
labeled refresh, located in a movable inner window, causes a reload of the scaffolding
data from the server. The graph layout framework used to create the 2D image pro-
vides functionality for automatic layout. A check box located in the movable window
activates or deactivates the automatic layout. Graph nodes can be moved with the
mouse pointer. The prototype shows each node as a circle. Different types of elements
are drawn using different icons inside circles. The label of activities is extended with
an uppercase letter between parentheses indicating the state of the activity.

5.3 Breakdown Landscape

The prototype of the Breakdown Landscape tool specified in sections 4.3.7, 4.4.8, 4.5.3,
4.6.4, and 4.7.6 was incrementally implemented in Visualworks Smalltalk. Smalltalk
enables fast prototyping and graphical construction of user interfaces. Moreover, ap-
plications can be run stand-alone or within the Visualworks web-browser plug-in. The
object model was implemented as specified by the UML class diagram presented in
Figure 4.72 on page 140. XML marshalling and unmarshalling was done with the
XMLObjectMarshallers Framework delivered with Visualworks.

Smalltalk provides a flexible set of collection querying methods. The methods col-
lect, select, reject, detect, that are applicable to most types of collections, can be used
to query the object model of the Breakdown Landscape. Visualworks implementation
of closures [27] supports the addition of new queries at runtime using Smalltalk syntax.
A query is specified as a two-argument block. The first argument is the landscape ob-
ject. The second argument is a dictionary of parameter-name/parameter-value pairs.
Advanced users have access to a query editor for defining new queries. Figure 5.4

1Morphic is a direct-manipulation User Interface (UI) construction kit. It replaces the
original Model View Controller graphics toolkit of Smalltalk-80.



158 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Example of an activity in show mode



5.3. BREAKDOWN LANDSCAPE 159

Figure 5.3: Scaffolding overview running as a Squeaklet in a web-browser win-
dow.



160 CHAPTER 5. IMPLEMENTATION

Figure 5.4: Breakdown Landscape - Query editor window

show the query editor window. There are four available types of parameters: String,
Number, Objects, and Area.

To execute a query, the user must provide values for all required parameters in
the query runner window (see Figure 5.5). There are two ways to assign values to
parameters: immediately and from buffers. Users normally give immediate values for
parameters of type String and Number. Immediate values are directly entered in the
query runner window (e.g., the keywords parameter in Figure 5.5). Numbered buffers
are used to hold selections of objects in representations, areas in representations, or
results of queries. If a query requires an area or object parameter, the value is passed
through one of the available buffers (in the figure, the parameter problemArea takes
its value from buffer two).

The Breakdown Landscape server was also implemented in Visualworks Smalltalk,
using a CVS back-end for the repository. The CVSRepositoryImplementation (see
class diagram in Figure 4.54 on page 118) was built as a proxy and wrapper for
the external CVS executable. As both the server and the client are implemented in
Smalltalk, communication among them is done by means of serialized objects using
the Visualworks Binary Object Storage Framework (BOSS). The client connects via
TCP/IP to a known port of the server. Requests are encapsulated as serialized objects
(Command pattern [26]) and sent to the server. If the client requests the Breakdown
Landscape data, the server loads the XML from the repository, parses it to Smalltalk
objects, and sends the serialized breakdown landscape back to the client.

The server maintains the list of all users that requested notification on changes to



5.4. LIGHTWEIGHT FRAMEWORK FOR LOOSELY COUPLED DELIBERATION TOOL161

Figure 5.5: Breakdown Landscape - Query runner window

the landscape. After serving a commit request (delegating the corresponding commit
command to the external CVS executable), the server iterates the collection of inter-
ested users and sends e-mail notifications (via SMTP). This approach, although fast
to implement, has the drawback of not being aware of changes introduced in the XML
files in the CVS repository by other applications.

5.4 Lightweight Framework for Loosely Coupled
Deliberation Tool

Visualworks Smalltalk was also chosen for the implementation of the prototype of the
generic architecture for loosely coupled deliberation tools (see Section 4.4.7) and the
prototype tools. The architecture was implemented as an object-oriented framework.
To build an application, developers must subclass GenericDeliberationToolClient and
GenericDeliberationToolBroker. An inherited method submit on the client class en-
capsulates connecting to the tool broker and delivering a contribution as a serialized
object. Similarly, the inherited method getResult encapsulated connecting to the
server and retrieving the aggregated result as a serialized object. Communication
between the client and the broker occurs as sending and receiving serialized objects
through TCP/IP.

On the server, a single Visualworks virtual machine and image can serve several
tools. Each instance of a subclass of GenericDeliberationToolClient (e.g., CoEvalua-
tionToolClient) is configured to listen on a different port. The prototype implemen-
tation of the framework cannot share brokers among different sessions (i.e., different
instances of the same tool cannot serve different sessions). Each instance (session) of
a tool must run on a different port. Clients are delivered via the Visualworks plug-in
architecture (currently only available on Windows). Information about session id and
the Internet address and port where the broker is listening is passed in an argument
to the HTML EMBED tag.

5.4.1 Breakdown In-box

The prototype of the Breakdown In-box specified in Section 4.3.13 was implemented
as a special case of a deliberation tool. The In-box tool requires information stored
as part of the scaffolding server, namely, the list of all breakdowns and their state.



162 CHAPTER 5. IMPLEMENTATION

Figure 5.6: Breakdown in-box - a special case of a deliberation tool

Additionally, the in-box maintains a prioritized list of breakdowns that wait for han-
dling. This list is constructed from the contributions of all team members. Figure 5.6
provides an overview of the implemented architecture. When users start the client, it
connects to the server to retrieve the configuration (method retrieveConfiguration).
In response, the BreakdownInboxBroker connects to the scaffolding server to retrieve
the list of breakdowns and their state. The scaffolding server was extended to listen on
a TCP/IP port for this requests. Communication takes place via serialized objects 2.
Once the BreakdownInboxBroker received the list of breakdowns from the scaffolding
server, it builds (method assembleConfiguration) the object model required by the
client (breakdowns, plus contributions, plus aggregated result) and returns it to the
client.

5.4.2 CoScale Tool

The CoScale tool, similar to the Breakdown In-box, requires data from other tools. The
CoScale tool presents the list of forces documented for a breakdown. Team members
contribute weights for these forces. In consequence, the CoScale tool needs data from
the Breakdown Landscape and information about team members in the organization
and the shared perspectives to which they belong. To obtain the required initial
data, the CoScaleBroker connects over TCP/IP to the scaffolding server (to the same
TCP/IP port used by the BreakdownInboxBroker) and retrieves serialized objects for
team members and shared perspectives. To obtain the list of forces for the breakdown,
the CoScaleBroker connects to the Breakdown Landscape server over TCP/IP (in
the same way that the Breakdown Landscape client did) to retrieve the breakdown
landscape.

2The scaffolding server, implemented in Squeak Smalltalk is not compatible with the Vi-
sualworks serialization mechanism used for the Breakdown Landscape (BOSS). Therefore,
serialization was done with XML



Chapter 6

Usage Experience

The method and tools described in the approach are the result of an iterative ex-
ploration. The supporting effect of many of the principles (e.g., rank breakdowns,
state forces first) and technology (e.g., cooperative hypermedia, lightweight architec-
ture for deliberation tools) was evaluated as the approach was taking shape. Section
6.1 describes early experiences that serve as indicators of the usefulness of parts of the
approach. Section 6.2 describes how the complete approach was applied to handle a
work breakdown (breakdown on level A). Section 6.3 describes how the approach was
applied to handle a tailoring breakdown (breakdown on level B). Section 6.4 provides
a summary of observations.

Conclusions from usage experiences were collected in interviews with the team
members who participated from the use cases. Interviewed team members were re-
quested to comment, at least, on three aspects of the experiences: a) perceived dif-
ferences between tailoring teamwork with the approach proposed here and tailoring
teamwork as it was done previously; b) capabilities introduced by the approach which
were not available before; c) problems introduced by the approach; d) sources of com-
plexity in the approach.

6.1 Early Experiences

In 2002-2003, a group of team members of the Concert division of the Fraunhofer IPSI
initiated a breakdown handling initiative (at that time it was seen as an improvement
group) called M42. This group would meet periodically to discuss about teamwork
problems and potential solutions. The key principles driving the work of the team
were: identify problems, explicitly state expectations, identify key variables, evaluate
alternatives, recommend course of action, plan assessment, be prepared to change
again, and record decisions.

The Concert division is a multidisciplinary team of researchers. In Concert,
psychologists, pedagogues, and computer scientists do research and development on
CSCW and CSCL. Concert heavily relies on groupware systems to support the work
of their team members. The M42 group established a mechanism to report teamwork
breakdowns and to handle them. A cooperative hypermedia (a Swiki) was used to
publish the principles of the group and to store breakdown reports and breakdown
handling data.

Breakdown reporting was done with a breakdown report form (implemented as
a Swiki form). The form had the following sections. Each section provided a set
of questions and fill-in-the-blanks templates to help team members provide helpful
information.

163



164 CHAPTER 6. USAGE EXPERIENCE

Time frame: Indicates when the breakdown was first observed and documents any
deadline for its resolution.

Motivation: Describes a scenario that helped team members identify the problem.

Impact: Provides an initial assessment of the impact of the problem.

Participants: Identifies the participants (stakeholders) in the problem and their in-
terests/requirements/expectations (i.e., forces)

Team members contributed to the problem reports (and later to solutions) when
they had time. The group met periodically to discuss problems, prioritize them, and
initiate handling. When handling of a problem started, an invitation to contribute was
sent to all team members. The invitation included a link to the problem report. Team
members who had observed the problem contributed from their perspective. The most
commonly found perspectives were developer, manager, tester, evaluator (researcher
in charge of evaluating the result of products with real users), and user. Each meeting
was moderated following a predefined agenda.

A Swiki page acted as the meeting agenda and location for documenting results.
After a time of proposing and discussing solution alternatives, the group issued a rec-
ommendation for action. The recommendation (created form a template form) had
hyperlinks to the problems report and associated meetings. It had a detailed descrip-
tion of the action to be taken. The details clearly stated how each of the stakeholders
were affected. The recommendation had additional implementation suggestions and a
date when the results should be evaluated.

As the handling of the problems progressed, participation changed. Psychologists
and pedagogues were very active during the definition phase, and less active during de-
sign and implementation of solutions (as this activity was more the arena of computer
scientists).

In the time the M42 group was active, a handful of problems were reported and
successfully solved. The lessons learned from this experience are: the problem re-
port form, the meeting moderation form, and the recommendation form are valuable
resources to focus collaboration and make it productive. An explicit mechanism to
handle breakdown (e.g., how meetings are organized) minimizes the effort needed to
collaborate in breakdown handling. Keeping a record of past actions and the rationale
behind them helps avoiding that, while solving new problems, the solutions created
for past problems stop working.

In the E-Qualification Framework project [2, 34] of Fraunhofer-Gesellschaft (2000-
2002), a portal for the development and delivery of training material was built. An
electronic process guide (EPG) was a critical component of the portal. The EPG
delivers all instructions for activities in hypermedia format. Moreover, it also provides
details for the selection of team members to fulfill roles and provides access to artifact
templates. The XCHIPS [70] system was used to build an overview of the process, to
maintain the state of running projects, and to provide access to artifacts. The lesson
learned from the E-Qualification Framework project is that the tight integration of
detailed instructions in the form of hypermedia with information about the state and
artifacts of running projects successfully enables collaboration. The integration of the
XCHIPS system and the EPG was inflexible (as these two systems were developed
independently with sometimes diverging goals). This motivated the development of
the scaffolding hypermedia server specified in Section 4.2.2.

In the ConcertStudeo project [73], a framework was developed to embed small
interactions (e.g., voting, ranking, brainstorming) within learning material. Each
interaction had a server side component and a client side component (running on
lightweight devices). Interactions were integrated as applets or plug-ins in the learn-
ing material delivered as HTML. The architecture was used to build a set of simple
interactions which were evaluated with the purpose of evaluating its potential. The
ConcertStudeo project demonstrated the feasibility of building a generic architecture



6.2. A COMMUNICATION BREAKDOWN: COUNTERPRODUCTIVE PRIDE165

Figure 6.1: Organizational chart

for deliberation tools and of using such tools to support planned collaboration. The
architecture presented in section 4.4.7 extends the resulting architecture built in the
ConcertStudeo project to provide further tailoring possibilities and to better imple-
ment the setup-initiation-contribution-finalization model.

6.2 A Communication Breakdown: Counterpro-
ductive Pride

LIFIA is a research and development lab in the National University of La Plata, in
Argentina. The lab is organized in two departments, research and technology transfer.
The later aims at transferring research results to industry. The lab has approximately
130 team members. Most researchers have offices at the University campus (two differ-
ent buildings). Technology transfer members are distributed among several locations
(three locations in La Plata City, two locations in Buenos Aires city, one location in
Portugal, and one location in Chile). Most transference members started as researchers
or research assistants. Knowledge is LIFIA’s key asset.

In September 2004, the lab’s directors and the human resources manager expressed
interest in applying the breakdown handling approach to a peer learning (peer help)
breakdown identified by several team members. Previous attempts to solve the break-
down delivered apparently promising solutions that nonetheless failed. This section
reports on the experience of handling the breakdown.

To handle the breakdown, the prototype of the scaffolding server with the method
description was deployed on one of the labs server. The shared name space was initial-
ized with the perspectives that were found critical for the resolution of the breakdown,
namely developers, project managers, lab directors, continuous training managers, and
human resources. The breakdown involved team members from two projects in two
different locations (this section refers to them as Project A and Project B). To keep the
experience controllable, only project managers and developers from these two projects
were initially given team member pages in the shared name-space. In case of need,
other projects would join.

The Breakdown Landscape was initialized with representations of an organizational
chart with enough detail to serve as the focus of the present breakdown (Figure 6.1),
and with a description of the most common way to handle technical difficulties (Figure
6.2). This way of handling difficulties was not formulated as an explicit practice but
implicitly embedded in the organization’s culture.



166 CHAPTER 6. USAGE EXPERIENCE

Figure 6.2: Common way to handle technical difficulties

6.2.1 Triggering

The team members that initiated the discussion about the problem (three developers,
two from project A and one from project B) participated as reporters. The author
of this thesis acted as the moderator. Moreover, a number of e-mails that team
members exchanged in the past regarding the problem were scrutinized to find further
information to include in the report.

The breakdown was labeled ”Counterproductive Pride”. The context section of the
breakdown report is reproduced in the next paragraph. It uses the \ref{id} notation
to introduce references to elements in the diagrams in Figures 6.1 and Figure 6.2.

We developers (\ref{Developers-Proj-A}, \ref{Developers-Proj-B},
\ref{Developers-Proj-C}) are often confronted with technical challenges
(\ref{Perform-Technical-Task}) we still don’t have the answer for. The
latest example was when they had to implement a persistence back-end
for our Object-Oriented C++ insurance application. In such a situation
we first try to solve it without help (\ref{Try-harder}). You can call this
pride or simply trying to avoid bothering others. If that does not work,
we search the Internet (\ref{Look-it-up}). If that does not work, we ask
our team mates (\ref{Ask-team-mate}). If nobody has the answer, we
give it another try and think harder. Working this way is not bad per
se. However, it turns out to be frustrating (for you, your boss, and your
colleagues) if you learn after a while that another team in the lab had a
similar problem and had already found a solution. That is in fact what
happened when we learned, after a week of worthless effort, that the team
working on Project A (\ref{Developers-Proj-A}) had already implemented
a persistence back-end.

The symptoms section of the breakdown diagnosis states:

• The clearest symptom of this problem is realizing that you have spent time looking



6.2. A COMMUNICATION BREAKDOWN: COUNTERPRODUCTIVE PRIDE167

for an answer that someone else already had.

• Lone rangers (e.g., lonely developers that like working without asking anyone for
help) are a good indicator for an early diagnosis of this problem.

Reporters initially had difficulties in referencing elements in the representations.
The chosen representations and the text of the report were not compatible. With
the help of the moderator, they tuned the report to focus on the available represen-
tations. Moreover, they suggested the introduction of ”developers” as a part of the
organizational diagrams that was not present in the initial version.

There were no other breakdowns in sight (and no plans to extends the experiment).
Therefore, the moderator decided to skip weighting. The definition phase started.

6.2.2 Definition

As this is the first breakdown handled with the approach, no forces had been doc-
umented in the Breakdown Landscape as yet. Therefore, the Breakdown Landscape
was of no help to find perspectives that contributed forces involving any of the objects
referenced in the report. The moderator added a hyperlink from the ”Contributor”
node to the team member node of each team members sharing the ”Developers” per-
spective. All developers agreed to contribute. Moreover, the project managers from
both projects asked to be invited. The moderator added links from the ”Contributor”
node to their team member pages.

During the definition phase, team members simultaneously estimated the effort
of handling the breakdown and assessed the cost (consequences) of not handling the
breakdown. Based on this information, they could decide whether or not to handle the
breakdown. There were no records in the system of past breakdown handling efforts.
However, the moderator asked those in the lab who were involved in previous attempts
to solve the problem for an estimation of the effort spent. Based on their estimations,
the moderator set the effort to 8 work days.

Developers had already decided to handle the breakdown and voted in favor of
handling it. Managers also had interest in handling the breakdown. As there was no
need to provide arguments to convince a simple majority of voters to vote in favor of
handling the breakdown, there were no contributions to the relevance evaluation. The
decision to handle the breakdown was unanimous. The diagnosis phase started.

In later discussion about the diagnosis phase, the managers realized that devel-
opers outnumbered them and that it would have been futile to vote against handling
(assuming they were against handling). Deciding on breakdown handling (see Section
4.4.12) is done through simple majority voting. They considered this a problem and
reported it as a level B breakdown called ”Unfair Voting” (see Section 6.3).

This breakdown was an exceptional case. Firstly, because there was no record from
past breakdowns in the Breakdown Landscape. Secondly, because team members were
clear about their interest in handling the breakdown using the approach. The flexibility
of the hypermedia scaffolding approach allowed the moderator to slightly deviate from
the suggested method (e.g., skip weighting) to proceed much faster.

6.2.3 Diagnosis

Developers and managers contributed forces. Developers found it easier than managers
because developers had experience writing design patterns. Several iterations were
required for the first group of forces to be usefully stated. Then this initial set served
as a parameter and example for further forces to be documented.

First, developers and managers documented forces. Although the Breakdown
Landscape had no data to support identifying other important stakeholders, the re-
ported forces suggested that top management perspective, and human resources per-
spective could provide important insight about the problem. These perspectives were



168 CHAPTER 6. USAGE EXPERIENCE

added to the scaffolding server and their members invited. These newly invited mem-
bers also contributed forces.

After a deadline of three days set by the moderator to contribute forces, team
members proceeded to weight the forces contributed by their perspectives. The fol-
lowing list corresponds to the content of the second section of the breakdown diagnosis
artifact (weighted list of forces). The (F) in front of a force indicates the force was
documented as a fact. The (A) indicates that the force was documented as an argu-
ment. The list that follows each force contains the teamwork objects objects involved
in the force. Forces marked with a star (*) were identified as causes during the identify
causes activities. Causes are listed in a section of the diagnosis artifact. For space
reasons and to avoid redundancy, they are marked a in weighted list of forces.

Forces contributed by developers
Must forces

(*) (F) In everyday work, it is common to find technical problems that require
skills we haven’t yet acquired. Objects: Developers-Proj-A; Developers-Proj-B;
Developers-Proj-C.

(A) Asking a colleague reduces the effort of searching for a solution, understanding
it, and evaluating its effectiveness (trust). Objects: Ask-team-mate.

(*) (F) When you have nobody to ask and need to learn something yourself, it is
hard to find the right material to learn from. Objects: Try-harder.

(F) There are common questions that come up over and over again. Specially for
newcomers. Objects: Developers-Proj-A; Developers-Proj-B; Developers-Proj-
C.

(F) When you are on fire1, you need help immediately. There is no time to wait for
others to have time to help you. Objects: Developers-Proj-A; Developers-Proj-
B; Developers-Proj-C; Ask-team-mate.

Should forces

(F) There may be nobody in our project team to ask for help. Objects: Ask-team-
mate.

(F) We do not have time for reading or learning about other stuff than what we use.
We do not have time to stay up to date with technology. Objects: Try-harder.

(A) When you are on fire you have no time for helping others. Unless, you recog-
nize that helping has higher priority (e.g., relates to a high priority problem).
Objects: Ask-team-mate.

Can forces

(F) Even if we find the one who knows, we still need to ask for help. We can look as
dummies. Our inquiry can bother our colleagues. Objects: Ask-team-mate.

Forces contributed by the human resources perspective
Must forces

(*) (F) There is a small core of skills that all workers have. Besides that, each worker
has a particular area of expertise and interest beyond his/her formation in the
team. Objects: Developers-Proj-A; Developers-Proj-B; Developers-Proj-C.

(F) It is hard to find workers qualified beyond the core knowledge. Objects: Developers-
Proj-A; Developers-Proj-B; Developers-Proj-C.

(F) Workers are commonly young, with no previous experience in development
projects. Objects: Developers-Proj-A; Developers-Proj-B; Developers-Proj-C.

1Developers used this expression to describe days when they are overloaded with work that
must be resolved immediately, e.g., when the system being developed goes into production.



6.2. A COMMUNICATION BREAKDOWN: COUNTERPRODUCTIVE PRIDE169

Forces contributed by the top management perspective

Must forces

(F) Skill acquisition has a cost that translates to the price of the service/product.
Objects: Try-harder; Ask-team-mate; Look-it-up.

(F) Duplicated skill acquisition effort represents an unnecessary cost. Objects:
Developers-Proj-A; Developers-Proj-B; Developers-Proj-C; Try-harder; Ask-team-
mate; Look-it-up.

Forces contributed by the project management perspective

Must forces

(A) Hiring only core-qualified workers increases the risk that a problem cannot be
solved due to lack of specific (non core) skills. Objects: Developers-Proj-A;
Developers-Proj-B; Developers-Proj-C; Perform-technical-task.

(A) Hiring multi-talent (clearly overqualified) workers is hard and costly. Objects:
Developers-Proj-A; Developers-Proj-B; Developers-Proj-C; Perform-technical-
task.

(*) (S) A system of forces involving the first two forces in this list.

Most contributors were new to the idea of using forces to diagnose problems. Even
those who had pattern writing experience were not sure about classifying forces as facts
and arguments, and about identifying causes. However, as participants practiced, they
progressed and felt more comfortable with these concepts.

6.2.4 Design

The team decided to collaborate to design one solution. A branch of the Breakdown
Landscape was created in case they needed to add forces or modify representations.
The moderator also took the role of editor. He suggested that they invite experts from
the lab’s CSCW research area. A shared perspective CSCW experts was created. Two
researchers agreed to participate.

While designing, the following design forces were documented.

Design forces

(F) After asking a colleague, one becomes knowledgeable in the area. Maybe not an
expert, but knowledgeable enough to be able to answer the question if it comes
up again. Objects: Ask-team-mate.

(F) It is hard to find the one who knows. Objects: Ask-team-mate.

(A) If a question is directed to a specific person, this person will usually react either
with help or indicating that he/she cannot help with the issue. As a result, the
requester knows whether to turn to someone else, to wait for promised help, or
to quit hope. Objects: Ask-team-mate.

(A) If a question is directed to a group, it is possible that those who can help do so,
or wait to see if someone else (with more spare time) helps first. As a result,
the requester may wait indefinitely for help or may quit waiting even if there
was someone who had the answer. Objects: Ask-team-mate.

(A) We have access to professionals with state of the art knowledge (possibly without
practical experience). Objects: Research-director-CSCW, Research-director-
CSCW.

(A) Researchers and academics have time and will to explore, learn and teach. Ob-
jects: Research-director-CSCW, Research-director-CSCW.



170 CHAPTER 6. USAGE EXPERIENCE

The proposed solution started as ”First Ask the Community then Learn-it-yourself”.
It consisted in trying to change how people went around technical problems. Instead of
trying to solve a complicated technical problem, developers would first post a question
to an e-mail list (internal to the organization). This should be seen as the ”default”
attitude and should not be criticized. Those who know the answer should feel com-
pelled to answer or to say they should be able to help soon. Therefore, the designed
solution had a process factor (the new way of approaching technical challenges) and
a tool factor (implementing the distribution list). Follow-up evaluation was scheduled
for three months after the solution was implemented.

6.2.5 Treatment

The implementation of the tool (mainly technical) part of the design was straight
forward. Additional implementation forces were found that had to do with going
through firewalls and reducing spam. For the process part (mainly sociological), it
was necessary to conduct a workshop with the developers. The workshop consisted
of several team building exercises that aimed at helping team members understand,
discuss, and eventually adopt the new way of working.

6.2.6 Evaluation

When the breakdown described in the previous section was handled, follow-up evalua-
tion was done differently from the way specified in Section 4.8. Team members would
conduct a collaborative testing of forces. Each one of them would subjectively indicate
the state (resolved or unresolved) of each force in the breakdown diagnosis document.
Three months after the solution was implemented, team members tried to do the test-
ing. The results were not consistent. It was not clear how forces should be evaluated.
After several attempts to make a sensible evaluation, the moderator decided to report
it as a level B breakdown titled ”Nonsense evaluation” (see Section 6.3). Moreover,
the moderator proposed to ask all those contributors to give their opinion regarding
the effect of the solution. There had been no recurrences of the breakdown in the
last three months. However, it was not clear that the solution effectively changes the
culture that caused the breakdown. They decided to re-schedule evaluation for a later
date, thus giving more time for the solution to work, waiting for the level B breakdown
to be handled, and to deliver a better way to do evaluation.

6.3 Handling Level B Breakdowns

When the ”Nonsense evaluation” level B breakdown was reported, the ”Unfair Voting”
level B breakdown was still unhandled. With both breakdowns still in the triggering
phase, team members needed to weight them according to frequency, severity and focus
(see Section 4.3.13), and to decide which one should pass to the definition phase. The
weight of breakdown ”Unfair Voting” had ”Could recur” for frequency, ”Conditions”
for severity, and ”Critical path activity” for focus. The weight of breakdown ”Nonsense
evaluation” had ”Seldom” for frequency, ”Introduces risk” for severity, and ”Critical
path activity” for focus. The top priority breakdown calculation showed breakdown
”Nonsense evaluation” as the only top priority breakdown, therefore it passed to the
definition phase.

As a result of handling the ”Nonsense evaluation” breakdown, a solution was pro-
posed and implemented that suggested that the form to evaluate each breakdown
should be determined when the solution is designed. To implement the solution, the
specification of the develop alternatives activity (see Section 4.6.2) and the specifica-
tion of the evaluate activity (see Section 4.8.2) were re-written, in the master scaffold-
ing, to the form they currently have in this document. New cases (i.e., new instances



6.4. OBSERVATIONS 171

of the scaffolding for later breakdowns) used new specification. The instance of the
scaffolding that corresponded to the case of the ”Counterproductive Pride” breakdown
was created from the old master of the scaffolding. Therefore, it was necessary to man-
ually update it to reflect the change in the process. Moreover, the develop alternative
activity of the design phase was shortly reactivated to complete the evaluation section
of the design alternative artifact. To evaluate the solution, team members decided on
a week where prepared questions (for which there were team members who had the
answers) would be posted to see the reaction of team members. The expected results
was that they, at least, answered that they would be able to help as soon as they had
a spare minute.

6.4 Observations

Usage experience, although limited, led to the following observations of key contri-
butions and problems that require further work. Explicitly documenting forces con-
tributed to higher acceptance of proposed solutions. There were cases where team
members agreed to adopt a tool that they were rejecting in the past because they now
could see that the arguments for its adoption were convincing. Before the introduction
of the process of collaborative tailoring, team members would propose new groupware
tools simply because they were appealing. Similarly, they would oppose other tools.
Explicitly documenting forces made these attitudes hard to sustain.

The introduction of the approach changed the distribution of participation and
effort. In the past, team member participation and effort spent was aimed mainly
at the design of solutions. Moreover, design discussions were often complex and un-
productive. As a result of applying the approach, effort concentrated in documenting
forces. Team members tried hard to provide all arguments they could think of, some-
times to contribute to a good decision, sometimes to bias the potential solutions to
their preference. Participation declined during design to the minimum required (one
team member for each invited perspective). Only in forced situations team members
developed parallel solutions (because it would contribute to a better solutions). Par-
ticipation (motivation) increased during the follow-up evaluation phase. However, this
can be explained by an interest in evaluating the results of tailoring with a method
instead of random tailoring as it was done in the past.

The introduction of the approach changed the tailoring culture of the groups that
evaluated it. In the past, tailoring was done either as the result of major reorganiza-
tions in response to external changes and major problems, or as the result of random
proposals for change (e.g., adopt this modern agile methodology). After having used
the approach proposed in this thesis, even though tools and support were no longer
available, team members continued documenting work breakdowns, prioritizing prob-
lems, explicitly documenting interests and requirements, and maintaining the list of
solutions whose impact needed to be confirmed.

The breakdown handling approach itself (i.e., the process, the tools, the artifacts,
and communication) generated much interest and discussion. Many changes and im-
provements were suggested soon after introduction. Due to a lack of time and of good
reasons (e.g., the lack of usage experience directly translated to poor diagnosis) only
a few of them were handled as breakdowns on the level B. The introduction of the
breakdown handling approach brought to the attention of the involved teams the need
of an explicitly documented, well thought change policy (in this case, based on the
reaction to breakdowns) and that such a policy must be itself changeable. In this
way, the evaluation of the approach served as a means to introduce the concept of
organizational improvement as proposed by Engelbart [23].

To be able to talk about breakdown handling, the approach presented here seri-
alizes the work to be done in a sequential process. This is done by many disciplines



172 CHAPTER 6. USAGE EXPERIENCE

(e.g., software engineering) to help tackle complexity. People are used to work follow-
ing such processes. However, when it comes to solving work breakdowns, they tend to
act chaotically unless the process is driven by an expert, for example, by a consultant,
or a computer system with built-in rules and tools that support the processes. Sepa-
rating diagnosis from design did not feel natural for them. In most cases, they were
tempted to propose solutions even though the problems had not been clearly analyzed.

6.4.1 The Groupware

The groupware (i.e., the Scaffolding Server, deliberation tools, and shared artifacts)
effectively supported collaborative breakdown handling among distributed team mem-
bers. In the past, only team members who had the possibility to attend the tailoring
meetings participated in tailoring discussions. These meetings were usually organized
and dominated by small groups of team members (e.g., the infrastructure group). De-
liberation tools allowed distributed team members to contribute on-line from their
offices whenever they had time, which was vital to involve several shared perspectives.

The artifacts (e.g., the breakdown diagnosis artifact) helped to make collaboration
more productive. Team members concentrated work on completing the required parts
of the document. The structure of the artifacts and the meta-information that the
scaffolding provides for each artifact helped team members stay focused.

Use case participants indicated that the Breakdown In-box tool, the Co-Evaluation
Tool, and the Co-Scale tool help to get more out of the energy invested in tailoring.
They provide an overview of the problems the organization faces, and they help team
members agree on which problems to tackle depending on their importance and po-
tential cost.

Experiences with the use of the breakdown handling method and related artifacts
started before most tool prototypes were operational. In early experiments, the op-
eration of tools was emulated by a combination of existing tools, such as e-mail to
submit contributions and Excel sheets to automate aggregation and publication re-
sults. The moderator acted as a coordinator, performed all required computation
(e.g., aggregation of contributions), and published results (e.g., in a web page). Pro-
totypes were developed based on how critical they were to support the method. The
scaffolding server and the Breakdown Landscape were the first tools to be prototyped.
The scaffolding server was critical as it provides instructions, records the status of
the process, and provides access to artifacts. The Breakdown Landscape is required
in most phases of breakdown handling. It reflects the team’s understanding about
teamwork, perspectives, and breakdowns forces.

The most promising tool, the Breakdown Landscape, also proved to be the most
difficult to use. Participants found it difficult to state useful forces. It only worked
smoothly when the team members involved had pattern writing experience. In other,
cases the author of this thesis had to help restate forces so as to build a useful land-
scape. Producing useful representations of teamwork (i.e., diagrams) requires training
and practice. Organizational charts and process descriptions were the simplest to cre-
ate because they are based on well known notations. Diagrams for specific aspects
of teamwork not commonly diagrammed in literature (e.g., how communication tools
and their features were used to support collaboration in the organization) required it-
erative improvement until they became useful for anchoring forces (i.e., relating forces
to teamwork objects).

Data captured in the Breakdown Landscape during the use cases was too limited to
draw final conclusions about its impact. However, interviewed team members shared
the opinion that the ability to identify elements of teamwork that are key for different
breakdowns is a means to reduce the chance that solutions to new breakdowns break
solutions of past breakdowns. The Breakdown Landscape effectively helped identify
team members whose participation was necessary. Managers indicated that identifying



6.4. OBSERVATIONS 173

areas of teamwork where many breakdowns meet has strategic value, for example, to
identify the need of organizational changes that would be too costly and take too long
if only solved as the result of incremental change through breakdown handling.



174 CHAPTER 6. USAGE EXPERIENCE



Chapter 7

Conclusions

This thesis tackles the problem of the lack of computer support for distributed team
members that need to perform tailoring in the context of teamwork. The challenge
of tailoring in the context of teamwork is to understand and support the needs of the
group members, from the moment they encounter a breakdown during work until they
have enacted the changes they deem necessary. Any contribution in this area will act
as a multiplier for the value of existing tailoring capabilities.

The approach followed in this thesis is based on the premise of participation as
a means to achieve acceptance of change. It consists of a method for collaborative
breakdown handling, a selection of specific groupware tools to be used for the deliber-
ation activities defined by the method, and guidance in the form of scaffoldings for the
application of the method. The method, the specific tools that support the method,
and the scaffolding for the application of the method, have been designed with a bal-
ance of flexibility and structure. Moreover, the method, the tools, and the scaffolding
can be tailored, individually and and collaboratively. The proposed support for col-
laborative tailoring of teamwork is delivered as a stand-alone groupware system for
collaborative tailoring. The system can be deployed along existing groupware systems,
thus extending them with support for collaborative tailoring. However, the extent to
which they can be tailored dependens on the tailoring facilities that they provide.

7.1 Summary of Contributions

This thesis asks the question of how to design our systems to adapt to change, not
automatically, but rather through the team’s negotiated tailoring of their work pro-
cesses, communication, resource management, and production of work results? To
answer this question, the thesis delivers the following original contributions:

• It proposes collaborative breakdown handling as conceptual view of collaborative
tailoring of teamwork, centered on the existence of multiple perspectives and the
occurrence of breakdowns (see Chapter 2).

• It presents an approach to support collaborative tailoring of teamwork that
comprises an on-line delivered collaborative breakdown handling scaffolding, a
system to support the coordinated application of the scaffolding, templates and
a repository for the artifacts that are created during breakdown handling, and
a selection of groupware tools to support collaboration, communication, and
negotiation for breakdown handling (see Chapter 4).

• A prototype of the scaffolding system and tools provides a proof of concept of
the approach. In addition, the system supports collaborative tailoring of the
team’s tailoring practices and is itself tailorable (see Chapter 5).

175



176 CHAPTER 7. CONCLUSIONS

• Results from two case studies suggest that the approach indeed facilitates col-
laborative breakdown handling (see Chapter 6).

7.2 Comparison to Related Work

Chapter 3 presented work in three related areas: tailorable groupware, understanding
tailoring, and collaborative tailoring. The chapter pointed out the various limitations
of past work. Tailoring is only covered as a technical issue (looking at the technical
system) without considering the team processes that form the context of tailoring (the
social system). There is no integrated approach (covering all aspects of teamwork)
that describes teamwork for tailoring in terms of processes, tools, artifacts, and com-
munication. Related work fails to recognize that tailoring is teamwork and as such
it is subject to change and should itself be tailorable. Existing approaches providing
groupware solutions for tailoring are limited to a particular system and support a lim-
ited set of the required capabilities (communication, collaboration, co-operation and
coordination, and negotiation).

This thesis exceeds related work by approaching tailoring of teamwork as a social
system with a model that explains tailoring as the result of collaborative breakdown
handling. The requirements of communication, collaboration, co-operation and co-
ordination, and negotiation observed in the social system are supported by the cor-
responding technical system. Such a system contributes to all aspects of teamwork,
namely, processes, tools, artifacts and communication. The approach in this thesis is
not limited to its application in a particular scenario or groupware system. The only
requirement is that the target system/scenario provides tailoring hooks (that is, it can
be tailored). Finally, the approach has been conceived to enable and support its own
evolution as the result of its tailoring.

7.3 Outlook

Section 6.4 pointed out some of the limitations and problems found during use. These
limitations and problems are the focus of future work.

The most promising tool, the Breakdown Landscape, also proved to be the most
difficult to use. Participants found it difficult to state useful forces. The Breakdown
Landscape stands on three pillars: (a) team members belonging to multiple perspec-
tives, (b) documenting expectations/considerations regarding problems and their res-
olution, (c) and a common reference model to anchor expectations/considerations and
to allow querying and inference. Forces are one approach to (b). Although they seemed
simple in the beginning, their lack of formalism may have been the cause of the diffi-
culty in using forces. Further work can benefit from exploring alternative approaches.
Promising alternatives can be found in the area of software engineering, specifically
from goal-oriented requirements elicitation methods (e.g., [19]). Representations based
on diagramming conventions are one approach to (c). Although team members can
use existing representations, it is difficult to create useful ones (that allow meaningful
anchoring). Future work can explore innovative forms of knowledge modeling. On-
tologies may be a good alternative, as there is research in building tools that simplify
the creation of ontologies and that support team members in collaboratively creating
them (for example, Protégé [56]).

To be able to talk about breakdown handling, the approach presented here serial-
izes the work to be done in a sequential process. However, when it comes to solving
work breakdowns, team members tend to act chaotically (unless the process is driven
by an expert, for example, by a consultant). In software engineering, agile method-
ologies have recently emerged as an alternative to traditional engineering processes.
Agile methodologies (e.g., extreme programming [12]) propose other mechanisms to



7.3. OUTLOOK 177

handle the complexity of software development than sequentializing work. It is possi-
ble that something analogous to agile methodologies can be conceived for collaborative
breakdown handling. Seeking such a solution is another direction for further work.

To reduce complexity, breakdown handling was limited to handling one breakdown
after the other. However, breakdowns may occur at the same time and it may be nec-
essary (or desired) to handle them in parallel. This presents new challenges for further
work, for example, how to identify and manage co-dependencies among breakdowns,
how to consistently extend the Breakdown Landscape to document the diagnostic
forces from independent breakdowns, and how to consistently design, implement and
evaluate solution alternatives.

The approach presented in this thesis focuses on changing the operational level of
an organization (understand that teamwork is a part of an organization’s operational
level). Is the approach presented here (tailoring as the consequence of breakdown
handling) also valid for other organizational levels such as the strategical level (where
breakdowns may be related, for example, to the vision and goals)?

Effective groupware emerges with time, as the result of co-adaptation. The usage
experience conducted in this thesis was limited in time and richness of cases. The real
potential of this approach can be observed only after extensive, long time usage. Such
long term studies need to be the focus of further work.



178 CHAPTER 7. CONCLUSIONS



Bibliography

[1] Code conventions for the java programming language,
http://java.sun.com/docs/codeconv/, Last accessed: 20/10/2003.

[2] e-qualification framework, http://www.e-qf.de/, Last accessed: Dec/14/2004.

[3] Yahoo groups, http://www.yahoogroups.com/, Last accessed: Dec/20/2004.

[4] Christopher Alexander, The timeless way of building, Oxford University Press,
New York. USA, 1979.

[5] Christopher Alexander, Sara Ishikawa, and Murray Silverstein, A pattern lan-
guage : Towns, buildings, construction, Oxford University Press, New York. USA,
1977.

[6] Teresa M. Amabile, The social psychology of creativity, Springer-Verlag, 1983.

[7] Ernesto Arias, Hal Eden, Gerhard Fischer, Andrew Gorman, and Eric Scharff,
Transcending the individual human mind: creating shared understanding through
collaborative design, ACM Trans. Comput.-Hum. Interact. 7 (2000), no. 1, 84–113.

[8] Ernesto Arias, Hal Eden, and Gerhard Fisher, Enhancing communication, facil-
itating shared understanding, and creating better artifacts by integrating physical
and computational media for design, Proceedings of the conference on Designing
interactive systems, ACM Press, 1997, pp. 1–12.

[9] Ernesto G. Arias, Designing in a design community: insights and challenges,
Proceedings of the conference on Designing interactive systems, ACM Press, 1995,
pp. 259–263.

[10] Ernesto G. Arias and Gerhard Fisher, Boundary objects: Their role in articulat-
ing the task at hand and making information relevant to it, International ICSC
Symposium on Interactive & Collaborative Computing (ICC’2000) (University of
Wollongong, Australia), ICSC Academic Press, 2000, pp. 567–574.

[11] Roswitha Bardohl, Karsten Ehrig, Claudia Ermel, Anilda Qemali, and Ingo Wein-
hold, Specifying visual languages with genged, APPLIGRAPH Workshop on Ap-
plied Graph Transformation (AGT’02), Satellite Event of ETAPS 2002 (Grenoble,
France), 2002, pp. 71–82.

[12] Kent Beck, Extreme programming explained: Embrace change, Addison-Wesley,
1999.

[13] Richard Bentley and Paul Dourish, Medium versus mechanism: Supporting collab-
oration through customisation, Proc. Fourth European Conference on Computer-
Supported Cooperative Work (ECSCW’95), Sept. 1995, pp. 133–148.

[14] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon, Xquery 1.0: An xml query language,
http://www.w3.org/TR/xquery/, Last accessed: Nov/2003.

179



180 BIBLIOGRAPHY

[15] Barry Boehm, Paul Grünbacher, and Robert O. Briggs, Developing groupware
for requirements negotiation: Lessons learned, IEEE Software 18 (2001), no. 3,
46–55.

[16] John D. Bransford and Barry S. Stein, The ideal problem solver, 2nd ed., W H
Freeman & Co, 1993.

[17] Robert O. Briggs and Paul Gruenbacher, Easywinwin: Managing complexity in
requirements negotiation with gss, 35th Annual Hawaii International Conference
on System Sciences (HICSS’02), vol. 1, 2002.

[18] Stephen Casner, Building customized diagramming languages, Visual Languages
and Visual Programming (Shi-Kuo Chang, ed.), Plenum Press, New York, 1990,
pp. 71–95.

[19] L. Chung, B. A. Nixon, E. Yu, , and J. Mylopoulos, Non-functional requirements
in software engineering., Kluwer Academic Publishers, 2000.

[20] Elizabeth F. Churchill, Jonathan Trevor, Sara Bly, Les Nelson, and Davor
Cubranic, Anchored conversations: chatting in the context of a document, Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, ACM
Press, 2000, pp. 454–461.

[21] Jeff Conklin and Michael L. Begeman, gibis: a hypertext tool for exploratory pol-
icy discussion, Proceedings of the 1988 ACM conference on Computer-supported
cooperative work, ACM Press, 1988, pp. 140–152.

[22] Jean M. Converse and Stanley Presser, Survey questions : Handcrafting the stan-
dardized questionnaire (quantitative applications in the social sciences), Sage Pub-
lications, 1986.

[23] Douglas C. Engelbart, Toward high-performance organizations: A strategic role
for groupware, Proceedings of the GroupWare ’92 Conference, San Jose, CA,
August 3-5, Morgan Kaufmann Publishers, 1992.

[24] J. W. Fellers and R. P. Bostrom, Application of group support systems to pro-
mote creativity in information systems organizations, Proceedings of the Twenty-
Seventh Hawaii International Conference on Systems Sciences, 1993.

[25] Gerhard Fisher, Symmetry of ignorance, social creativity, and meta-design, Inter-
national Journal Knowledge-Based Systems 13 (2000), no. 7, 527–537.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design pat-
terns: Elements of reusable object-oriented software, Addisson-Wesley, Toronto,
Ontario. Canada, 1995.

[27] Adele Goldberg and David Robson, Smalltalk-80: The language and its imple-
mentation., Addison-Wesley, 1983.

[28] Jonathan Grudin, Why cscw applications fail: Problems in the design and eval-
uation of organizational interfaces, CSCW ’88, Proceedings of the conference on
Computer-supported cooperative work (New York), ACM Press, 1988, pp. 85–93.

[29] Mark J. Guzdial and Kimberly M. Rose, Squeak: Open personal computing and
multimedia, Prentice Hall, 2001.

[30] Austin Henderson and Morten Kyng, Design at work: cooperative design of com-
puter systems, ch. There’s no place like home: continuing design in use, pp. 219–
240, Lawrence Erlbaum Associates, Inc., 1992.

[31] Thomas Hermann and Katharina Just-Hahn, Organizational learning with flexible
workflow management systems, SIGOIS Bull. 17 (1996), no. 3, 54–57.

[32] Marike Hettinga, Understanding evolutionary use of groupware, Telematica Insti-
tuut Fundamental Research Series, Universal Press, Veenedaal, The Netherlands,
Enschede, The Netherlands, 2002.



BIBLIOGRAPHY 181

[33] David Hollingsworth, The workflow reference model., Tech. Report TC00-1003,
Workflow Management Coalition, Hampshire, UK, January 1995.

[34] Ines Ines Grützner, Jürgen Münch, Alejandro Fernandez, and Badie Garzaldeen,
Guided support for collaborative modelling, enactment and simulation of software
development processes., Proceedings of ProSim’03, 2003.

[35] Knowledge Media Institute and The Open University, Meet-o-matic: The world’s
simplest cross-platform meeting arranger, http://www.meetomatic.com/, Last ac-
cessed: 08/01/2004.

[36] ISO, Product data representation and exchange: Integrated generic resource. part
41: Fundamentals of product description and support, second ed., 2000.

[37] P. Johnson-Lenz and T. Johnson-Lenz, Post-mechanistic groupware primitives:
rhythms, boundaries and containers, (1991), 271–294.

[38] Peter Johnson-Lenz and Trudy Johnson-Lenz, Computer-mediated communica-
tion systems, ch. Consider the Groupware: Design and Group Process Impacts
on Communication in the Electronic Medium, Academic Press, Newark, New
Jersey, 1981.

[39] , Rhythms, boundaries, and containers: Creative dynamics of asyn-
chronous group life, The International Journal of Man Machine Studies (1991),
no. 34, 395–417.

[40] Katharina Just, Step-by-step: a concept for describing co-operation within work-
flow management systems, SIGOIS Bull. 17 (1996), no. 1, 15–17.

[41] Helge Kahler, From taylorism to tailorability. suporting organizations with tai-
lorable software and object orientation, Symbiosis of Human and Artifact, pro-
ceedings of the HCI’95 (Amsterdam) (K. Ogawa Y. Anzai and H. Mori, eds.),
Elsevier, 1995, pp. 995–1000.

[42] Anders I. Mørch. M. Kyng and L. Mathiassen (eds), Computers and design in
context, ch. Three Levels of End-User Tailoring: Customization, Integration, and
Extension, pp. 51–76, MIT Press, 1997.

[43] Jeff Langr, Essential java style, Prentice Hall, 1999.

[44] Nancy H. Leonard, Richard W. Scholl, and Laura L. Beauvais, An empirical study
of group cognitive style and strategic decision making., Presented at the Annual
Meeting of the Academy of Management in August, 1998, 1998.

[45] Bo Leuf and Ward Cunningham, The wiki way, Addison-Wesley Professional,
2001.

[46] Wendy E. Mackay, Patterns of sharing customizable software, Proceedings of the
conference on Computer-supported cooperative work (CSCW’90), ACM Press,
October 1990, pp. 209–221.

[47] , Users and customizable software: A co-adaptive phenomenon, Ph.D. the-
sis, Massachusetts Instititute of Technology, 1990.

[48] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran, User-
tailorable systems: pressing the issues with buttons, Conference proceedings on
Empowering people: Human factors in computing system: special issue of the
SIGCHI Bulletin (New York), ACM Press, 1990, pp. 175–182.

[49] Thomas W. Malone, Kenneth R. Grant, Kum-Yew Lai, Romana Rao, , and
David A. Rosenblitt, The information lens: An intelligent system for information
sharing and coordination, Technological Support for Work Group Collaboration
(M. H. Olson, ed.), Lawrence Erlbaum Associates, 1989, pp. 65–88.



182 BIBLIOGRAPHY

[50] Thomas W. Malone, Kum-Yew Lai, and Christopher Fry, Experiments with
oval: A radically tailorable tool for cooperative work, Proceedings of the ACM
CSCW’92, Toronto, Canada (New York) (J. Turner and R. Kraut, eds.), Confer-
ence on Computer Supported Cooperative Work, ACM Press, 1992, pp. 289–297.

[51] Gerard Meszaros and Jim Doble, A pattern language for pattern writing, vol. 3,
ch. Patterns on Patterns, Addison Wesley Professional, 1998.

[52] Anders Mørch, Oliver Stiemerling, and Volker Wulf, Tailorable groupware: issues,
methods, and architectures (workshop report), The SIGCHI Bulletin 30 (1998),
no. 2.

[53] Anders I. Mørch and Nikolay D. Mehandjiev, Tailoring as collaboration: The
mediating role of multiple representations and application units., Computer Sup-
ported Cooperative Work (CSCW). The Journal of Collaborative Computing.
Kluwer Academic Publishers. Netherlands. Volume 9, Issue 1 (2000), 75–100.

[54] Tony Mobily, Paul Weinstein, and Mark Wilcox, Professional apache security,
Wrox Press, 2003.

[55] Bernard M. E. Moret, Decision trees and diagrams, ACM Comput. Surv. 14
(1982), no. 4, 593–623.

[56] N. F. Noy, R. W Fergerson, and M. A. Musen, The knowledge model of protege-
2000: Combining interoperability and flexibility, Proceedings of EKAW 2000,
2000.

[57] Jonathan W. Palmer, Supporting the virtual organization through information
technology in a new venture: the retex experience, Proceedings of the 1996 ACM
SIGCPR/SIGMIS conference on Computer personnel research, ACM Press, 1996,
pp. 223–233.

[58] George Polya, How to solve it, Princeton University Press, Princeton, NY, 1971.

[59] Dave Raggett, Arnaud Le Hors, and Ian Jacobs, Html 4.01 specification,
http://www.w3.org/TR/REC-html40/, Last accessed: December/2003.

[60] Daniel Riesco, Edgardo Acosta, and German Montejano, An extension to a uml
activity graph from workflow, (2003), 294–314.

[61] Horst Rittel and Melvin Webber, Dilemmas in a general theory of planning, Policy
Sciences 4, Elsevier Scientific Publishing, Amsterdam, 1973, pp. 155–159.

[62] Robert W. Root, Design of a multi-media vehicle for social browsing, Proceedings
of the 1988 ACM conference on Computer-supported cooperative work, ACM
Press, 1988, pp. 25–38.

[63] Donald A. Schön, The reflective practitioner. how professionals think in action,
Basic Books Inc., USA, 1983.

[64] Robert Slagter, Dynamic groupware services - modular design of tailorable group-
ware, Ph.D. thesis, University of Twente, 2004.

[65] Swiki swiki, http://minnow.cc.gatech.edu/swiki, Last accessed: March/2003.

[66] Gunnar Teege, Implementing tailorability in groupware. wacc’99 workshop report,
SIGGROUP Bulletin 20 (1999), no. 2, 57–59.

[67] Wil van der Aalst and Kees van Hee, Workflow management: Models, methods,
and systems (cooperative information systems), 1st ed., MIT Press, 2002.

[68] W.M.P. van der Aalst., Three good reasons for using a petri-net-based workflow
management system., The Kluwer International Series in Engineering and Com-
puter Science, vol. 428, ch. 10, pp. 161–182, Kluwer Academic Publishers, Boston,
Massachusetts, 1998.

[69] Lev S. Vygotsky, Thought and language, MIT Press, Cambridge, MA, 1986.



BIBLIOGRAPHY 183

[70] Weigang Wang and Jörg M. Haake, Flexible coordination with cooperative hyper-
media, Proceedings of ACM Hypertext’98 (HT98), June 1998, pp. 245–255.

[71] , Supporting workflow using the open hypermedia approach, Proceedings
of the First Workshop on Structural Computing (Peter J. Nrnberg, ed.), Aalborg
University Esbjerg, 1999, Technical Report AUE-CS-99-04, pp. 12–17.

[72] Don Wells, Extreme programming: A gentle introduction,
http://www.extremeprogramming.org/, Last accessed: Jan/01/2004.

[73] Martin Wessner, Peter Dawabi, and Alejandro Fernandez, Supporting face-to-face
learning with handheld devices., Proceedings of the International Conference on
Computer Support for Collaborative Learning 2003. (B. Wasson, S. Ludvigsen,
and U. Hoppe, eds.), Kluwer, 2003, pp. 487–491.

[74] Steve Whittaker, Susan E. Brennan, and Herbert H. Clark, Co-ordinating activ-
ity: an analysis of computer supported cooperative work, CHI’91: Conference on
Human Factors and Computing Systems (New Orleans, USA) (Scott P. Robert-
son, Gary M. Olson, and Judith S. Olson, eds.), ACM Press, 1991, pp. 360–367.

[75] Wikiwikiweb, http://c2.com/cgi/wiki?WikiWikiWeb, Last accessed:
March/15/2004.

[76] Terry Winograd and Fernando Flores, Understanding computers and cognition,
Ablex, Norwood, 1986.

[77] M. Wooldridge and N. R. Jennings, Formalizing the cooperative problem solv-
ing process, 13th International Workshop on Distributed Artificial Intelligence
(IWDAI-94) (Lake Quinhalt, WA, USA), 1994, pp. 403–417.

[78] Volker Wulf, Negotiability: a metafunction to tailor access to data in groupware.,
Behaviour & Information Technology 14 (1995), no. 3, 143–151.



184 BIBLIOGRAPHY



Appendix A

Selected Publications

1. Alejandro Fernandez, Badie Garzaldeen, Ines Grützner and Jürgen Münch.
Guided Support for Collaborative Modelling, Enactment and Simulation of Soft-
ware Development Processes. Journal on Software Process: Improvement and
Practice. Willey Interscience. In Press.

2. Alejandro Fernandez. Scaki - The Scaffolding Wiki. In Proceedings of DEXA
2004. pp., 271-275. IEEE Presss. ISBN 0-7695-2195-9.

3. Martin Wessner, Peter Dawabi, and Alejandro Fernandez. Supporting Face-To-
Face Learning With Handheld Devices. In B. Wasson, S. Ludvigsen, and U. Hoppe
(Ed.): Designing for Change in Networked Learning Environments, Proceedings
of the International Conference on Computer Support for Collaborative Learning
2003., pp. 487-491, Dordrecht, Kluwer, ISBN: 1402013833.

4. Alejandro Fernandez, Torsten Holmer, Jessica Rubart, and Till Schmmer. Three
Groupware Patterns from the Activity Awareness Family. In Jutta Eckstein, Alan
O’Callaghan and Christa Schwanninger (Ed.): Proceedings of the 7th European
Conference on Pattern of Languages of Programs, 2002, p. 375-394, Konstanz,
Universittsverlag Konstanz GmbH, 2003, ISBN 3-87940-784-3.

5. Alejandro Fernandez, Jörg M. Haake, and Adele Goldberg. Tailoring Group
Work. In J. M. Haake and J. A. Pino (Ed.): Groupware: Design, Implemen-
tation, and Use. Proceedings of the 8th International Workshop , CRIWG, La
Serena 2002, pp. 232-242, Springer, ISBN 3-540-44112-3.

6. Weigang Wang and Alejandro Fernandez. A Graphical User Interface Integrating
Features from Different Hypertext Domains. Proceedings of the Third Structural
Computing Workshop. Lecture Notes in Computer Science , Vol. 2266. Reich,
Siegfried; Tzagarakis, Manolis M.; De Bra, Paul M.E. (Eds.) 2002.ISBN: 3-540-
43293-0.

7. Alicia Diaz and Alejandro Fernandez. A Pattern Language for Virtual Environ-
ments. Journal of Network and Computer Applications. Vol. 23, No. 3, July
2000pp. 291-309. ISSN: 1084-8045. Academic Press.

8. Tomek, A. Diaz, A. Rito da Silva, R. Melster, M. Haahr, A. Fernandez, Z.
Choukair, M. Antunes, A. Ohnishi, W. Wieczerzycki. Multi-User Object Oriented
Environments. LNCS volume 1743. Springer Verlag.

185


