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Abstract. We perform a review on the importance of the ∆(1232 MeV) resonance in different
processes, analyze the existing problems with the fields used to describe it theoretically and
finally we make an analysis on the use of πN∆ alternative couplings in πN scattering. We
compare numerically results for the elastic cross section obtained by using the conventional
couplings, already adopted in several reaction calculations, with those obtained with the so
called ”spin-3/2 gauge invariant” vertexes suggested recently. Confronting with experimental
cross section data, we see that these results are by no means equivalent and that the differences
between them cannot be compensated by a readjustment of free parameters of background
contributions. We find that the conventional couplings work better than the gauge ones in
describing the data.

1. Introduction

We can ask ourselves, why to put attention on the isobar ∆(1232 MeV) resonance? The
immediate answer would be: since it is the first excited state of the nucleon(N) and has
a prominent role in strong interactions. It dominates the pion-production phenomena being
excited in πN → π′N ′, πN → π′N ′γ[11] scattering, which are useful reactions in order to check
different isobar models regards Lorentz invariance, unitarity, and gauge invariance. It is also
present in the γN → πN photoproduction process[2], important to determine the deformation
in the 3 quark(q) constitutive wave function. Also, it appears in eN → e′N ′π electroproduction
scattering [3] that is a reaction important to get vector form factors and participates in the
νN → lN ′π weak production [4], this being the main experimental background in neutrino
oscillation experiments. On the other side, the ∆ resonance dominates many nuclear phenomena
at energies above the π-production threshold. In cosmology, it is largely responsible for the ”GZK
cut-off” [5], drooping of cosmic ray rate due excitation of ∆ by scattering of CMB photons. High
precision measurements of the N → ∆ transition was possible at LEGS, BATES, ELSA, MAMI
and JLAB (several experiments on scattering by electromagnetic probes). The experimental
effort, has been accompanied by exciting developments in dynamical models, lattice QCD and
chiral effective-field theories.

The ∆(1232) was discovered 60 years ago by Fermi and Colaborators at the Chicago cyclotron
(now Fermilab), being it mass, width, spin and isospin,m = 1232 MeV≃ mN+300 MeV, Γ = 120
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MeV (τ = 10−23 sec), S = T = 3/2, respectively. Within the SU(6) quark model the N appears
as the ground state of a 3q system in a confining potential. In the same way the ∆ excitation
in πN scattering, for example π(ud)p(uud) → ∆++(uuu) → π′(ud)p′(uud), can be seen as a dd
annihilation. It then decays 99% of time in πN channel and 1% in the γπ electromagnetic one,
being this excitation essentially a spin flip magnetic dipole one (see Figure 1). Nevertheless, if
we considered D admixtures in the N or ∆ wave functions, a quadrupole transition is present.

Figure 1. M1 Excitation of the ∆.

From the theoretical point of view, we know that pions are the Goldstone bosons of the
spontaneously broken chiral symmetry of QCD and as the coupling with them goes as pπ, at
low energies perturbative expansion in powers of it is possible, we having the Chiral Perturbation
Theory [7]. On the other hand the resonance parameters can be extracted from reactions by using
unitary isobar models: unitarized tree-level calculations based on phenomenological Lagrangians.
Nevertheless ”pion cloud” effects, which represents the coupling of a pion to quarks, could only
be comprehensively studied within dynamical models based in T-matrix calculations.

2. The Rarita-Schwinger field

For implementing any of the mentioned approaches we need the kinetic L∆ and interacting
LπN∆ Lagrangians. The Rarita Schwinger (RS) spinor ψµ, which represents mathematically the
∆, is taken as an element of the non-unitary representation [(1/2, 0)⊕ (0, 1/2)]⊗ [(1/2, 1/2) =
(1/2, 0) ⊗ (0, 1/2)] of the Lorentz group. That is, ψµ ≡ ψ ⊗ Wµ, being ψ a Dirac spinor
and Wµ is a 4-vector with spin S = 0, 1 in the rest or helicity frames. Omitting for a
moment the Lorentz structure and putting attention only in the angular momentum we have
representations D(1/2)⊗D(0) = D(1/2) and D(1/2)⊗D(1) = D(3/2)⊕D(1/2), what enclose
2(S = 1/2) + 4(S = 3/2) + 2(S = 1/2) + antiparticles = 16 degrees of freedom (dof).
ψµ(x) satisfies the Dirac and Klein Gordon equations and additionally those states built with
Wµ(S = 1), satisfy the Proca one. From the 16 states only 8 satisfy the subsidiary conditions
∂µψµ = γµψµ = 0, what are seen as making zero ”projections” of ψµ on spin-1/2 subspaces to
get right dof counting for the free case.

The RS field is a ”constrained” dynamical system supplemented by constraints or subsidiary
conditions , being the Lagrangian from which we can get the equation of motion plus the
constraints

Lfree = ψµ(x)
{
i∂αΓ

α
µν −mBµν

}
ψν(x), (1)

where

Γα
νµ = gµνγ

α +
1

3
γµγ

αγν −
1

3
(γµg

α
ν + gαµγν),

Bνµ = gµν −
1

3
γµγν , (2)
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proposed by Rarita and Schwinger in 1941. Lfree includes the constraints and Γ, B do not mix
3/2 with 1/2 states, then it only fix 3/2 component of ψµ. Then, the contact transformation
ψµ → ψ′µ = R(a)µνψν ≡ (gµν + aγµγν)ψν , only affects ψ1/2µ components of ψµ and let Lfree

invariant we having a whole family of valid one parameter Lagrangians (a = 1/2(1 + 3A))

Lfree(A) = ψ(x)R(A) {i∂αΓα −mB}R(A)ψ(x), (3)

where for A = −1/3 we recuperate the RS one and where some indexes are omitted by simplicity.
Finally the spin-3/2 propagator G(p,A) can be obtained as usually giving

G(p,A) = R−1(A)G

(
p,−1

3

)
R−1(A),

G

(
p,−1

3

)
µν

= −
[

̸p+m

p2 −m2
P̂ 3/2
µν +

2

m2
(̸p+m)(P̂

1/2
11 )µν +

√
3

m
(P̂

1/2
12 + P̂

1/2
21 )µν

]
, (4)

this last being the RS propagator and P k
ij the projectors on the k = 3/2, 1/2 sector of the

representation space and with i, j = 1, 2 indicating sub-sectors of the 1/2 subspace [8]. At
difference of the on-shell case where the subsidiary conditions select only the 3/2 states, when
∆ is off-shell (p2 ̸= m2) the 1/2 ones appear. One can wonder if this situation is exclusive of
the RS field. And the answer is no, for example the W propagator appearing in π → W → νµ
or pion-pole terms in νN → µN ′π reactions (see Figure 2)

∆µν(p) = −
[
Pµν
1 (p)

p2 −m2
+
Pµν
0 (p)

m2

]
, (5)

has P0 and P1 projectors on the S = 0 and S = 1 sectors, respectively. Again here we have an
off-shell lower spin contribution as for RS case.

W
+

N’

π

N π

N

Figure 2. W meson propagation between the lepton weak vertex and a conversion to a pion in
a pion production reaction.

3. Interactions

Lint must be invariant under contact transformations and lead to A-independent amplitudes.
We analyze the strong π(ϕ)N(Ψ)∆(ψµ) vertex, as appears in the amplitude of Figure 3, but the
analysis can be extended to another type of interactions. We will analyze two different models
for the πN∆ vertex, the ”conventional” (C) and the ”3/2-gauge invariant”(G) one. The C vertex
is inspired in the nonlinear realization of the chiral symmetry[9], which leads to a derivative of
the pion field

LintC =
fπN∆

mπ
Ψ̄∂µϕR

(
1

2
(1 + 3A)

)
µν
ψν + h.c., (6)

and as this vertex couples to the spin-1/2 off-shell ∆ sector and one must pursue the constraints
analysis to generate new subsidiary conditions, this fact is viewed as a dof counting inconsistence.
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Figure 3. ∆-pole contribution to π+p elastic scattering.

Nevertheless, the W ↔ π vertex also couples to the spin-0 sector, more it is impossible for a
pion to decay without coupling to the off-shell spin-0 piece of the W propagator. The G vertex
is inspired by the fact that in the massless case Lfree is invariant under the spin-3/2 gauge

transformation[10] ψµ(x) → ψµ(x) + R−1(12(1 + 3A))µνR(−1)νµ
′
∂µ′χ(x), and one looks for a

Lagrangian respecting the same symmetry1

LintG(A) =
fπN∆

mπm
Ψ̄∂µϕ

†ϵµναβγβγ5R(−
1

2
(A+ 1))νσ∂αψ

σ + h.c.. (7)

This vertex contracted with the ∆ momentum is zero, which in turn nullifies the contraction

with P
1
2
µν

ij avoiding the coupling with the spin-1/2 sector in (4)(this is easy to check for A = −1).
Nevertheless, when we couple a photon making the minimal substitution ∂µ → ∂µ − iq∆Aµ, the
obtained electromagnetic Lagrangians are no more spin-3/2 gauge invariant appearing terms
q∆∂µχϵ

µναβAαγβγ5ψν + ..., this indicating that both gauge symmetries cannot coexist.

4. π+p cross section calculation

Viewing the evident complexity of the problem and since the C vertex constraints problem is
not present in perturbative calculations, leaving for a moment the G vertex 3/2-electromagnetic
gauge problem, we simply compare C and G couplings in the case of πN elastic scattering within
an isobar model. The different contributions considered to built the amplitude are depicted in
Figure 4. We put attention in the ∆-pole amplitude contribution (the ∆-cross one can be

Figure 4. Feynman graphs corresponding to different contributions to the elastic π+p scattering
amplitude.

obtained on the same footing) since the other ones can be constructed as usually from the

1 Now the corresponding propagator should be Gµν(p,A) = R−1
(
− 1

2
(A+ 1)

)µ
α
Gαβ(p,−1)R−1

(
− 1

2
(A+ 1)

)ν
β
.
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corresponding hadronic Lagrangians [11], we have

MC
∆++ =

f2πN∆

m2
π

u(p′p,m
′
s)p

µ
πGµν(p,−

1

3
)pνπu(pp,ms),

MG
∆++ =

f2πN∆p
2

m2
πm

2
u(p′p,m

′
s)p

µ
π(−)

̸p+m

p2 −m2
P̂

3
2
µνp

ν
πu(pp,ms).

(8)

To overcome the singular behavior of the resonant amplitude at p2 = m2 we use the complex
mass scheme (see Ref.[11]) making the replacement m2 → m2 − imΓ. The ∆ mass, width
and coupling constants gσ = gσππgσNN and f∆Nπ are left as the only free parameters to be
determined from the fitting of the total cross section of π+p scattering to the data [12]. The
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Figure 5. Elastic π+p total cross section calculated with the amplitude withMC
∆++ andMG

∆++ .

mass of the hypothetical σ meson that runs on the range 400− 1000 MeV region [13] is strongly
correlated with the gσ value (see Ref.[11]). We have moved mσ on the full mentioned range and
have looked for the value of gσ to get the best fitting for each adopted mσ, comparing at the
same time fittings done with different mσ. We find that for mσ = 450 MeV or mσ = 650 MeV,
depending on the model for M∆++ , we get in each case the best fitting and we are sure that
for these values we have the better description with each coupling. For the C couplings the best
fitting corresponds to mσ = 650 MeV, and we get : f2∆Nπ/4π = 0.317±0.003, m∆ = 1211.2±0.4
MeV, Γ = 88.2 ± 0.4 MeV, gσ/4π = 1.50 ± 0.12, and χ2/dof = 4.5, while for the G coupling
we use mσ = 450 MeV, and get 0.278± 0.002, 1211.6± 0.3 MeV, 76.62± 0.25 MeV, 1.00± 0.05
and 13.5, respectively. Results are shown in Figure 5. With these obtained parameters we also
show the predicted differential cross section at two fixed Tlab energy values. Our results are
compared with available data for both C and G couplings in the Figure 6. Note that following
the philosophy of effective Lagrangian models we have not introduced ad-hoc form factors for
the vertices, since the description of low-energy hadron interactions must incorporate only the
(structureless) relevant degrees of freedom. In addition, our model does not consider the final
state rescattering between the pion and the nucleon. These last two effects surely improve the
fitting, but more free parameters should be considered increasing the model-dependency of the
calculation and obscuring the C-G comparison.
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Figure 6. Differential π+p cross section calculated with the conventional (C) and gauge (G)
amplitudes for Tlab = 263.7, 291.4 MeV. Circles and triangles indicate experimental data from
Refs. [14] and [15], respectively.

5. Conclusions

The so called ”inconsistent” off-shell propagation of the 1/2 lower spin components of the ∆
field is clearly present in other cases, as it is for example the W boson induced reactions.
Within a simple isobar model including resonant and background terms, the fitting achieved
with the C couplings are clearly better than those obtained with G ones. Seems not possible
accommodate the parameters of the σ meson (those of ρ are fixed in both approaches by low
energy phenomenology) to get identical results with both types of couplings. Giving the problems
with the constraint analysis within the C couplings and those of coexistence between the spin-
3/2 and electromagnetic gauge invariance within the G ones, one can appreciate the complexity
of the problem and that is not closed.
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