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1. Introduction

Eigenvalue problems of the Steklov type occur in many applications. As examples, we can cite the problem of determining
the vibration modes of a structure in contact with an incompressible fluid [1], the analysis of the stability of mechanical
oscillators immersed in a viscous media [2] and the dynamics of liquids in moving containers [3], the so-called sloshing
problem.

In a recent paper [4], we analyzed the first order Crouzeix-Raviart finite element approximation of this spectral problem.
We proved convergence and obtained a priori error estimates for the eigenvalues and the eigenfunctions. The purpose of
this paper is to derive a posteriori error estimators for the nonconforming method studied in [4].

A posteriori error analysis for nonconforming finite element approximations experienced a remarkable development
during the last ten years.

For second-order elliptic boundary value problems, a posteriori error estimates were first obtained for the
Crouzeix-Raviart method by using a Helmholtz type decomposition of the gradient of the error [5]. The same technique
has been generalized for a large class of nonconforming finite element methods in [6].

Hierarchic basis type estimators were presented in [7] where two sided bounds on the error were obtained by solving
suitable local problems and assuming that a saturation condition is valid.

An alternative approach based on the use of a smoothing procedure of the nonconforming solution is presented in [8].
Similar ideas have been proposed in the previous work [9] in order to derive an error estimator for nonconforming
approximations of a nonlinear problem. However, the analysis of the efficiency of the error estimators obtained in this
way seems to depend on additional assumptions on the regularity of the true solutions.
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Later, by extending the equilibrated residual method to nonconforming finite element schemes, a robust a posteriori
estimator for the Crouzeix-Raviart approximations of Darcy’s equation was proposed and analyzed in [10]. This approach
was generalized to the Fortin-Soulie element in [11].

Recently, a posteriori error estimates of the residual type were derived within an unifying framework for lowest order
conforming, nonconforming and mixed finite element methods [ 12-14] for the Laplace, Stokes and Navier-Lamé equations.
Another interesting result concerning the linear convergence of an appropriated adaptive finite element algorithm for the
lowest order Crouzeix-Raviart elements was presented in [15].

Much less attention has been paid to nonconforming methods for eigenvalue problems. This might be due to the fact that
eigenvalue problems have a nonlinear character. Therefore, the extension of the techniques originally developed for source
problems is neither obvious nor direct.

In particular, for eigenvalue problems of the Steklov type, to the best of the authors’ knowledge, no a posteriori error
estimates for nonconforming methods have been obtained yet.

The analysis presented in this paper is carried out along the lines of [8]. Roughly speaking, it consists of the following
steps.

First, we split the error into two components, usually called the conforming part and the nonconforming part of the error.
This splitting is obtained by introducing a post-processing procedure which is based on an averaging technique applied
directly to the nonconforming approximation and requires only explicit local computations.

The derivation of the a posteriori estimates relies on the possibility of estimating each part of the error separately.

The nonconforming part of the error is related directly with the difference between the Crouzeix-Raviart approximation
of the eigenfunctions and the smoothed approximation of them given by the post-process. We prove a posteriori estimates
for the broken energy norm of this difference and we show that these estimates can be established in terms of the jumps of
the discrete solutions. In other words, there is no need of actually computing the post-processed eigenfunctions in order to
obtain these error estimations.

To deal with the conforming part of the error, we use the existing techniques for conforming finite element methods
[16-18].

The error estimator obtained in this way resembles one of the estimators introduced by Dari et al. in [5] for the
approximation by non conforming finite element methods of Poisson type problems. As we mentioned before, the approach
considered in that paper is based on the use of a Helmholtz decomposition in combination with some orthogonality relations
for the error. No direct extension of these techniques seems to be possible in order to deal with Steklov type problems.

It is well known that edge residuals, i.e., jump terms in the normal derivatives of the approximated solution across
interior boundaries, dominate the error in linear conforming finite element approximation of source problems (see [19,20],
for instance). This result has been extended to eigenvalue problems and conforming methods in [17,18]. It is also known that
in the nonconforming case, edge residuals include the jumps across the element boundaries of the tangential derivatives as
well.

Our next step is to obtain edge residuals dominated error estimates for the Crouzeix-Raviart approximation of the Steklov
problem. In fact, we prove that

- the volumetric part of the residual terms is dominated exactly by the edge part of the residuals,
- the normal component of the jump of the discrete fluxes across interior edges is dominated by the volumetric part of the
residuals up to higher order terms.

In particular, these results allow introducing two simpler error estimators which turn out to be equivalent to the broken
energy norm of the error also up to higher order terms. Similar results, but for source problems, were first presented in [15].

We end this paper by proving optimal a priori estimates for the L? norm of the error in the restriction to the boundary of
the domain of the approximate eigenfunctions. These results improve the previous ones obtained in [4] and are crucial in
order to prove the equivalence, up to higher order terms, between the error and the proposed error estimators.

Finally, let us remark that the results presented in this paper are valid for a general simply connected polygonal domain
and general meshes satisfying the usual regularity assumptions. The error estimators introduced here are easy to compute
locally from the approximated eigenpair and can be used for the design of adaptive algorithms.

2. The Steklov eigenvalue problem and its discretization

Let £2 C R? be a simply connected and bounded domain with a polygonal boundary 92 = I". We consider the following
spectral problem:
Find A € R and u # 0 such that

—div(eVu) + Bu=0 in$2,
du (2.1)

a— = AU onl,
on

where the coefficients « = «(x) and 8 = B(x) are bounded above and below by positive constants. We assume that
a € CH(R).
Here and in the sequel, we shall use standard notation for Sobolev spaces H*(£2), their norms || - ||s and seminorms | - |;.
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Let V := H'(£2). Let a and b be the symmetric bilinear forms defined by

a(u, v) == / aVu- Vv +/ Buv, Vu,vevV,
Q 2

b(u, v) :=/ uv, Vu,velV.
r

Since « and B are bounded in £2, a is continuous and coercive on V. Then, the variational formulation of the spectral
problem (2.1) is given by
Find . € Randu € V, u # 0, such that
a(u, v) = Ab(u,v), VvelV. (2.2)

From the classical theory of abstract elliptic eigenvalue problems [21], we can infer that problem (2.2) attains a sequence
of finite multiplicity eigenvalues A, > 0, n € N, diverging to 400, with corresponding L?(I")-orthonormal eigenfunctions
u, belonging to V.

We introduce the following spaces:

X = 1*(2) x [*(I)
W= {(,§) e H'(2) x H2(I) : £ = ulr),
endowed with the norms defined by
|, &)1 = (ullg + 1§15 )2,
I, &)1 = (lullf + 1E15 ).
We consider the bounded linear operator T : X — X defined by T(f, t) = (u, £) € W and

a(u,y) + b, u) =b(r,pn), V@, pu) ew. (2.3)
By virtue of Lax-Milgram Lemma, we have
I, &I = CIFf, DI

Since a and b are symmetric, T is self-adjoint with respect to a and b. Clearly, (A, (u, €)) is an eigenpair of T if and only if
% — Tand (u, &) is a solution of problem (2.2). Therefore, the knowledge of the spectrum of T gives complete information
about the solutions of our original problem.

The following proposition states a priori estimates for the solution of problem (2.3) depending on the regularity of the
data.

Lemma 2.1. Let (u, £) be the solution of problem (2.3). There exist constants r € (1/2, 1] and C > 0 such that
e if T € I*(I"), u € H*/2(£2) and

lull14r2 = Clitlo,r, (2.4)
e if T € H(I"), withe € (0,1 — 1/2), u € H¥?T¢(£2) and

lull3/24¢ < CliTlle,r» (2.5)
e if t e HYX(I'),u € H" () and

lull1+r < CllTlly2,r- (2.6)

Proof. It follows directly from classical regularity results (see [22]). O

In the previous proposition, r = 1 if £2 is a convex region and r < % with 6 being the largest interior angle of 2,

otherwise (see [23]). As a consequence, the eigenfunctions (uy, &) of T belong to H'+"(§2) x H'/?*"(I") and satisfy

lunll1+r < Cll(un, 1l < Clinllo.r- (2.7)
Let {75,} be a family of triangulations of £2 satisfying the following conditions:

- any two triangles in 7, share at most a vertex or an edge
- the minimal angle of all the triangles in 7 is bounded below by a positive constant which does not depend on h.

The index h denotes, as usual, the maximal mesh size of 7;,, namely, h := maxyeg; hr, with hy being the diameter of T. Let
&x denote the set of all the edges of triangles T € 7;. We split this set as follows: & = & U &, with &} :={¢ € & : £ ¢ I'}
and 8{ = {l € &, : £ C I'} being the sets of inner and boundary edges, respectively. Let .V, denote the set of vertices of

the elements in 7; and M, the set of midpoints of the edges in &,.
With the triangulation 7, we consider the lowest-order Crouzeix-Raviart finite element spaces:

Vi = {vp € [2(22) : vplr € P1(T), VT € Ty, and vy, is continuous at My, N 2},
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and we introduce the nonconforming spaces
Ly = {pn € L*(T) : e € P1(0), VL € &, },
Wh = {(vp, un) € Vi X Ly : pop = vl r}.
We choose

1/2
1 Wn, ) lln = (Z vl 1+ + lloallg + ||uh||é,p)

TeTy
as a norm over the space W + W, Clearly,
W+ W, = X,
lvll = llvlln, YveW.
Let a, and by, be the symmetric bilinear forms defined by
ap(u, v) == Z/ocVu - Vv +/ puv, Vu,v eV +V,
TeT) T 2
bu(§, ) :=b(&, p), VE, pel* ().

Then, the discretization of the spectral problem (2.2) is given by
Find Ay, € R and (up, &) € Wy, (up, &) # (0, 0), such that

an(un, vn) = Anb(Sn, n),  V(n, n) € Wh. (2.8)
Next we consider the bounded linear operator Ty, : X — W + W), defined by T, (f, ) = (uy, &) € Wj and
an(Un, vi) + bp(Ens on) = bn(T, un),  V(vn, up) € W (2.9)

Once more, the eigenvalue problem for Ty, is equivalent to the spectral problem (2.8) in the sense that (A}, (uy, &)) is an
eigenpair of Ty, if and only if (Ap, (up, &,)) is a solution of (2.8) with A, = Ai* - 1.
h
Optimal order error estimates are known for the eigenfunctions normalized with the norm || - ||;. More precisely, let

A B (uv g) A 2 (Uh, g’l)
,E) = —> and L) = ——
8= on ™ e = e e

The following error estimates hold (see [4]).
Theorem 2.2. There exist strictly positive constants C and hq such that, if h < hy, then
1@, &) — (@n, é)lln < CH',
|n — An| < CH*,
with r being the regularity constants as in Lemma 2.1.

The following lemma shows that similar estimates are valid for the eigenfunctions normalized by
W, &) llo,r =1 and |[(un, &n)llo,r = 1. (2.10)

Lemma 2.3. There exist strictly positive constants C and hg such that, if h < hy, then
Il (u, &) — (un, &)lln < CH".
Proof. Let us denote
yi=WE),  v= ), 7= @%), and Pyi= @ &)
Straightforward computations yield

Iy = valle < Iy le v = Palle + 170 llal 17 1l = 1vallnl

. lvnlln
= ||V||h(||)’_)’h||h+’1_ .
ly I

Because of (2.10), [ llo.r = 1/lly lln and [[74llo,r = 1/llyalls. Then

lvnlln I 7ello.r — 17 llo.r A A
‘1— - < vullnlly = Pullo.r
Iy Iln lVnllo.r
< (ly = walla + 1Y I N7 = Palln-
Therefore,

Iy = walln < Iy s+ My 117 = Zalla + 17 Ma vy = valla 17 = Palln-
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By virtue of Theorem 2.2, there exists a constant C’ such that || — x|l < C’h". Hence, we can choose hq such that
C'lly llkhg < 1/2, and we finally obtain
Iy = vulle <2+ Iy Iy InllP = Pulls < CR', VA < ho.
Thus, we conclude the proof. O

We end this paragraph by introducing some notation that we will use in the subsequent analysis.
Let £ be an interior edge shared by elements T, and Ty, i.e., £ = dT; N dT,. We define the jump of a function v, € V, on £
by
[vr] == (unlr,)le — (nlr)le-
Given an edge ¢ € 8,2 we choose a unit normal vector ng, pointing outwards T,, and we set
[VvpTIa == Vurlr, -ng — Vuglr, - ng
[Vvp IIe := Vuplr, X ng — Vuglr, x ng,
which correspond to the jumps of the normal and tangential derivatives of vy, across £, respectively. Notice that these values
are independent of the chosen direction of the normal vector n,. Moreover, if n, = (n}, nZ), we define the tangent on ¢ by
t, = (—nZ, n}) and we write
[Vun I :== Vunlr, - te — Vuplr, - to.
From now on, C will denote a constant independent of h and u, but not necessarily the same at each occurrence. This
constant will also be independent of the particular approximated eigenvalue if we do not mention it.

3. A post-processing operator

In order to construct an a posteriori error estimator, we define a smoothing conforming procedure for the discontinuous
approximations obtained by using the Crouzeix-Raviart method. To do this, we introduce a post-processing operator based
on the ideas given by Schieweck in [24], which can be directly applied to our problem.

In what follows, we consider the family of meshes {7} and the notation introduced above. Let

Vi = {vp € H'(22) : vhlr € P1(T), VT € Ty}

be the standard linear finite element space. Let {i, : v € N} be the canonical basis of this space consisting of continuous
piecewise linear functions attaining the value 1 at x,, and vanishing at all other vertices in 7.
Foreachv € M, let

w, ={T e€Ty:veT}

be the set of all elements in 7, having a vertex in Xx,,. Clearly, w, = supp ¥,,. We denote by |w, | the cardinality of w,.
For any v, € Vj, we define a post-processing operator R, : Vy, — Vi by

Ryvy = Z a, Yy
VEN
with o, being the average of the values of v, at the node v given by
1
ay = —— Y (Wl (x,).
|w“ Tewy,

Note that the coefficients «,, can be easily computed by using the basis representation

Wl (%) = D Bege (%), (3.1)

€caT
where {¢; : £ € &} are the edge-oriented basis functions of the Crouzeix-Raviart space, i.e., piecewise linear functions

which equal 1 at the midpoint of ¢ and vanishing at the midpoints of all the other edges ? # L.
The function Ry vy, is uniquely defined by the values at the nodes of the partition given by Eq. (3.1). It is clear that R is a
linear operator. Moreover, we have the following result.

Lemma 3.1. The post-processing operator Ry, satisfies

- forany v, € Vi, Ryvp = vy,
- foreach T € Ty, there exists a constant C, independent of h, such that

1/2
IRyvnll1 < c(Z ||vh||%,T> . Yoy € Vi,

TCOr
where 07 is the union of T and a few neighboring elements.
Proof. The proof is essentially contained in those of Lemmas 2,3 and 7 in [24]. O
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Lemma 3.2. For any uy, € V}, the following estimate holds
D lun = Ruunlld < €Y e ualllF
TeT, geg;l

where C is a positive constant only depending on the regularity of the mesh.

Proof. The proof is essentially contained in that of Theorem 2.2 in [25]. O

Lemma 3.3. For each edge £ € 8,’, suchthat £ =Ty N Ty,

2
€17 unlllo.e < C Y u— unlyr.
i=1

Proof. First we observe that u is continuous because of Lemma 2.1. Consequently, we can write

/[uh]2 = /[U — upllun] = /(U — Up)lry [unl — /(U — up)lr, [un]- (3.2)
¢ ¢ ¢ ¢

Let us denote
zi=u—uply, 2z = @Uu—ulr

for the sake of notational simplicity. Let P, denote the L?(£)-projection of H'/%(£) onto the constants. Since [uy] is a linear
function vanishing at the midpoint of £, we have

/Zﬁ[uh] = /(Z;r — Poz;))unl < C1EI2IIV (= un)llo.r, [l [unlflo.c
¢ ¢

where the last inequality follows from the standard estimates for P,.
The second term in the right hand side of Eq. (3.2) can be dealt with analogously. We obtain

[zt = [ = paptun) < O 9@ = wlo, .
¢ ¢
Thus, we conclude the proof. O

Lemma 3.4. Let u € V and u, € V}, be the solutions of problems (2.2) and (2.8), respectively. Then, there exist a constant C,
independent of h, such that

lu — Ruuplly,e < Ch'".

Proof. The estimate follows immediately from the triangle inequality, Lemmas 3.2,3.3and 2.3. O

Let us remark that there is no need of actually computing Ryuy, to calculate the error indicators defined below.
4. A posteriori error estimator

From the point of view of applications, it is highly important to be able to design meshes correctly refined as to reduce
the approximation errors as much as possible with the lowest computational effort.

The standard approach to attain this goal is to compute an approximation of the eigenpair of interest on an initial coarse
mesh 7, and to use the obtained approximate eigenpair to compute indicators of some local measure of the error for each
element T € 7} in order to know which of them should be further refined.

We choose the discrete norm

2 . 2 2
vnll} po = lonllg o + Y lval? 5 (4.1)
TeT

on V + V,, to measure the error of the computed eigenfunction up,.
In what follows, we will define error indicators 5y for each element T € 73. These indicators are expected to satisfy the
following properties:

1. Reliability: they should provide an upper estimate of the global error:

1/2
lu— unllipe <C (Z n%) + hot., (4.2)

TeTy

where h.o.t. denotes higher order terms, i.e., terms which becomes negligible in comparison with the other ones in the
estimate, when the mesh size becomes small.



4106 A. Dello Russo, A.E. Alonso / Computers and Mathematics with Applications 62 (2011) 4100-4117

2. Efficiency: they should provide lower error estimates, as local as possible, in order to indicate which elements should be
effectively refined:

nr < Cllu — upll1,p,0; + ho.t., (4.3)

where wr is the union of T and a few neighboring elements.
3. Low computational cost: the effective computation of nr should be inexpensive in comparison with the overall
computation of u, and Ap,.

4.1. Definition of the error indicators. Reliability of the error estimates

To define these error indicators, we begin by providing some error equations which will be the starting point of our
analysis.

We consider a particular eigenpair (X, u) and its corresponding finite discrete approximation (A, up). Let e, = u — uy
denote the error in the approximation. By the triangle inequality, we have

llenll1,ne < llu — Rutpll1,n,e + llup — Rattpll1,n,02,

where Ryuy, € Vi is the post-processed finite element approximation associated to the non conforming solution uj, defined
in the previous section.
From the definition of the discrete norms || - ||1 5, ¢, it follows that the bilinear forms a;, are continuous and coercive
uniformly on V + V4. Then, there are positive constants ¢y and ¢, such that
il — Ryl < sup PR D) g D)y 000 = Rath, b))
veVv vl vev [vllne  wvev lvll.e

ap(up — Ry, v)

lvll.e
Notice that c¢; and c, are actually the coerciveness and the continuity constants and depend only on the variable
coefficients o and S (see the definition of problem (2.1)). In what follows, for the sake of simplicity, we shall restrict ourselves
to the case « = B = 1. The general case requires only technical modifications.
Then, with the previous assumption, we obtain

< czllup — Rpttpl 1,2

ap(ep, v)
llenll1,ne < sup ———— + 2 |luy — Rptipll1,n,02- (4.4)
vev vl e

For each £ of the triangulation, let
, {[[Vuh Te, ifeeél
]l,t =

0, if¢ g’
We define
1 1/2
mr=(= Y |E||uz,t||§,()
(24 LcoT
and
1/2
= (z nar) |
TeTh

The arguments of Section 3, in particular Lemma 3.2, yield the following upper bound for the second term in Eq. (4.4).
Lemma 4.1. The following estimate holds:

lun — Ruunll1he < Cn1,
where C only depends on the regularity of the mesh.

Proof. Letusdenoteby T~ and T* two adjacent triangles and by X the midpoint of the common side £.LetP; = (x;, y;),i = 1,
2, denote the endpoints of £. Then,
Xi+X  X—X ity Y2

x(n) = —— + =, —n, —-1<pn=<1
(n)2+2ny(n)2+2n n

is a parametric representation of £.
Let us consider the natural extensions of the linear functions uy|;- and uy|r+ to the larger set T~ U T™. For notational
convenience, we will denote these extended functions again by up|r- and uy|7+. In this situation,

5 €]
Unlr=() = Unlr=Xe) + == (Vinlrs - t)n, —1=n =1 (45)
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Then, since up|r- and uy |+ coincide at X,
€
[unl(m) = 7(Vuh|r+ bt —Vuplr- -tn, —1=<n=<1,
from which we have
1 2 €] 2
€1 unlllg e = - IIVun Te 117

Then, summing up on all the edges ¢ € & and using Lemma 3.2, we conclude the proof. [

4107

(4.6)

Regarding the first term in the right hand side of Eq. (4.4), the error indicator we are going to use is quite similar to the

one derived for the standard linear elasticity equations (see [16]).
ForeachT € 7j, let

1/2
1
Mt = (m lunllg.r +5 > 1€ ||Je,n||é,€) :

£coT

where

1 vVup T, if¢ e &
]Zn = . r
2(Vup -ng — Apup)|e, if€ e &',

1/2
- (znz,r) |
TeT

Lemma 4.2. The following estimate holds:

Let

ap(ep, v)

< C(n2 + llAu — Aptnllo.r) .
vev [IV]l1,0

where C only depends on the regularity of the mesh.

Proof. Integrating by parts, we obtain from (2.2) and any v € V

1, V) = A - Vu, -nv +
an(ep, v) /ruv Z </ Uy - Nv /Tuhv>
:k/uv— /uhv—Zf[Vuhﬂnv—
r TeTy

/(Vuh n—khuh)v—)\h/ Upv
teé! r

= /()»u—)»huh)v— Z(/uhv_ - Z /]ﬁnv>
r TeT, £coT

Let v' be a continuous piecewise linear approximation of v such that

tegl

12 "
lv—v'llor < Clvlig T2, VT € T,

lv—v'lloe < Clvlig €2, Ve CaT,

(4.7)

(4.8)
(4.9)

where 67 is the union of T and a few neighboring elements (see [26], also [27]). Since v' € V NV}, we can use (2.2) and (2.8)

to obtain

an(u — up, V" :A/ uv'—kh/ upv'.
r r

Then, straightforward computations yield

ap(ep, v) = / (A — Apup)v' + ap(en, v — v")
r

=/<Au—xhuh>v—/ (v —v) — /]en(v—v)
r 2 Te/, £caT
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Therefore, the Cauchy-Schwarz inequality, estimates for the interpolation error (4.8) and (4.9), and the definition of the
error estimator 7 lead to

ap(en, v) < [|Au — Aptpllo.rlivllo.r + Cnz2lvii e,
from which we can conclude the proof. 0O
An estimator for the nonconforming error on element T is given by

2. .2 2
Ny =0+ r

n= (Z n?)l/z-

TeT,

Let

The following theorem states an upper estimate for the error in terms of 7 plus one more term which is proved to be of
higher order.

Theorem 4.3. The following estimate holds:

lu — uplline < C(n+ IAu — Antgllo,r) -
Proof. It is an immediate consequence of Lemmas 4.1 and 4.2 and the definition of the error estimator . [

Remark 4.4. The previous theorem shows that the global estimator provides an upper bound of the error in the discrete
energy norm up to a term. As we will show below, this term is of higher order than the error estimate given by Theorem 2.2.
See Section 6.

4.2. Efficiency of the error indicators

Our next goal is to show that the local error estimators nr provide local lower bounds for the error on a neighborhood of
T. Notice that the efficiency of the error indicator n; r is an immediate consequence of (4.6) and Lemma 3.3. The following
theorem yields this result.

Theorem 4.5. ForallT € T3, let wr == U{T € Th: T shares an edge with T}. There exists a positive constant C, depending only
on the regularity of the elements of wr, such that

nr < Cllu — upll1n,wp-
The following lemmas provide an upper estimate for each term in the definition of 7, 1.
Lemma 4.6. For each element T € 7y,
TV unllo.r < C (ITIV lu — unllo.r + |u — uplvr) -
Proof. Let ¢r := uybr, with br being a cubic bubble scaled as to satisfy

/mw=/wmm=wmﬂn
T T

Then, standard homogeneity arguments yield

llorllo,r < Cllunllo,r ITI,

lorlir < Cllupllor ITIV2.

Since ¢r vanishes on 9T, we have

/Vuh~Vrpr=/ Vu, -ngr =0,
T aT

whereas, extending ¢r by zero outside of T and using (2.2) with ¢r € V, we obtain

/VU'V¢T+/U¢T:0.
T T
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So, as a consequence of all this, we have

/UhSDT_/U(PT_/VU'V(PT
T T T

—/(u — Up)@r —/V(u —up) - Vor
T T
lu — upllo,rll@rllo,r + IV —up)llo,rIVerllo,r

< C(Ilu = unllorITI + IV @ — u)lo.rITIV?) llunllo,r,

which allows us to conclude the lemma. O

2
llunllo.rITI

IA

A

Lemma 4.7. For each edge ¢ such that £ = T N T, with Ty, T, € Ty,

2
112 Wemlloe < €D (1T lu = wnllor, + lu — uplrr,) -
i=1

Proof. For J;n = [Vunll, let ¢, € Hy(T; U T,) be such that
[deag =161l
¢

/ Yo, =0 Yy eP(T), i=1,2.
Ti
The function ¢, can be taken as a continuous piecewise quadratic polynomial augmented with local bubbles of degree four.
Standard homogeneity arguments yield
lpello.r; < ClLEIY? Wenllol T2, i=1,2
lgelin; < CIEI" Wenlloe, i=1,2.
Extending ¢, by zero outside of T; U T, and using (2.2) with ¢, € V, we obtain

/ VU-V(/J(—F/ up; =0
T{UT, TUT,

whereas, by integrating by parts on each triangle, we have

Z (/ Vup - Vo +/ uhw,) = /Vuh ‘MY = /]e,n<ﬂe~
i T; T; 4 4

i=1
2

-> </ Vu—up) - Ve + | (u— uh)§0£>
T; T;

i=1

2
1€l Wenllg.e

2
> (1w = unliglel g + = wnllo.n I @ello.r;)
i=1
2
C> (Iu = unlvg, + 1T u = wnllo.r;) 1€1 Wenllo.e

i=1

IA

IA

and the proofis concluded. O

Lemma 4.8. For each ¢ of a triangle T € 7y, suchthat £ C I,
1612 Wemllo.e < C (Il = unllyr + 1612 [12u — Anttnllo.c) -

Proof. It is simple to show that there is a unique ¢y € $3(T) vanishing on the two edges ¢’ # ¢ of T and satisfying

/w/f - —2/1@,.11// Vi € P1(0),
Y4 V4

/‘PTZO-
T
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Furthermore, standard homogeneity arguments yield
lerllor < ClEIY Wenllo.e:
lerhr < Clel™ 2 Wenlloe-

Let us take ¥ = J, n € £1(£). Extending ¢r by zero outside of T and using the residual equation (4.7), we obtain

Ueal?, = / (ttn — Vg - Wr
14

= /V(u —up) - Vor + /(u —Up)er — /(Au — Aplp)or + / Ungr
T T l T

< |lu—uplrrlerlir + llu — unllorllerllor + IAu — Apunllo.cllerlioe + llunllorllerilor
< C(1617"|u = unlyr + 1€1"*lu — upllo.r + IAu — Antnlloe + 11" [[unllo,r) We.nllo.e,

where we have used the estimates above for ||¢r|lo.r and |¢r|1,7, and a standard local trace inequality to estimate ||¢r||o.¢-
Notice that, since we are assuming regularity of the family of meshes {7}, we have £ ~ |T|"/2. Therefore, we can write

€12 Wemllo.e < € (llu = unllyr + 16121120 = Anunllo.e + 1TV [[unllor)
and we conclude the proof by applying Lemma 4.6. O

The following lemma shows that the term ||A u — Anup]lo.¢|£]'/? can be split into two parts: one is bounded by the local
error and the other is of higher order than the local estimator.

Lemma 4.9. For each £ of a triangle T € 7, such that £ C T,
€12 12w = Antnllo.e < € (Mlu = unllir + 1 mar)
witho > 0.

Proof. By using the triangle inequality, we can write

A = Anunllo.el€* < Mlu — upllo,el€]> + |1 — Xl llunllo.cl€]">. (4.10)
Since u — uy € H'(T), a local trace inequality leads to
llu — unllo.e < C (18172 1lu = upllor + €1V u — uply.7) -
Then, the first term in the right hand side of inequality (4.10) is bounded by
llu — unllo,cl€]"* < € (Ilu — unllor + 1€ [u — upl1.r) < Cllu — 7.
In order to bound the second term, we can use again a local trace inequality and an inverse estimate to obtain
lunllo.e < C (117 llunllor + €1 unlir) < Clel™[lunllor-
Therefore,
A — Anl llnllo,el €12 < CIA = Anl llunllor < CH* "tz
the last inequality because of Theorem 2.2 and the definition of 1, r. Thus, the result follows from the fact that r €
(1/2,1]. O
As a direct consequence of all the previous lemmas we have the following theorem.
Theorem 4.10. For allT € 7, let wr = U{? € Ty : T shares an edge with T}. There exists a positive constant C, depending
only on the regularity of the elements of wr, such that
1. If T has only inner edges, then
M2, < Cllu —tnll1h0r
2. If T has an edge lying on I, then
N2 < CAA 4+ Mllu— upllinew, + O 02T

5. Another two a posteriori error estimators

The goal of this section is to define simpler estimators which also yield global upper and local lower bounds on the error
of the approximations of the Steklov eigenvalue problem.

Let {¢, : £ € &,} be the natural basis of the Crouzeix-Raviart space associated with ¢, i.e., the piecewise linear function
attaining the value 1 at the midpoint of £ and vanishing at any other midpoint.
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Lemma 5.1. Let T € 73, such that 0T N I" = (. There holds
|T| lunligr < D 1l Wealls, < |T| lunlld  + % Z IT| unll2 7.
£cor TCwT
where wr == | J{T € Ty : T shares an edge with T}.

Proof. Given an interior element T € 73, we denote by T;, i = 1, 2, 3 its neighbor triangles. Let £ be such that ¢ = T N T;.
Then, from (2.8) we have

—/ Uph@e = /Vuh . V(/)g +/ Vuh . V(/)g = / Vuh i oy —I—f Vuh - My@e
TUT; T T aT oT;
= [Vup IIn 1€l = Jenl€l.

[Tl
3

Now, since [|¢¢ 1§ 7. =

/ Up@e
TUT;

and then

(lunllo,r T2 + Nunllo, I Til'72)

7

> 1 Wealls < 21T] lunllfr + 5 Z ITi| lunll3 .-

LCaT

On the other hand, a straightforward computation yields

IT|+ 1Tl .
Uppe = #Uh(xz),
TUT;

2 _ Tl 200
/Tuh = ? Z ui (Xe),

£CoT
where X, denotes the midpoint of the edge £. Therefore,
(IT| + ITi])* IT|? IT|
D 1 Wealld, = Zi'uh(xe,.)_ 5 D UGk = Il

£coT 9 £caT

So, combining the inequalities above, we conclude the proof. O

Lemma 5.2. Let T € 7}, such that 0T N I" = £. There hold

|T| lunllgr < D 1Nl 5

{caT

WiA

}"2
€] Wealls, < 1T Iunllg 7 + élzlzllvuh -

Proof. Let ¢ be such that £ = 9T N I". Then, from (2.8), we have

/th = /Ahuhw - / Vup - Vo, = /()\huh — Vu, - ng)gp
T ¢ T ¢

1
< llAnup — Vuy - nglloell@elloe = 5”]45,11”0,45 lloello,e
Then, since [|g¢ 13 , = |¢] and [; unpe = Flup (e,

Tl .
= i) < Wenlloel€]'?.

Let us now denote by T;, i = 1, 2, the two triangles sharing an edge with T. Let ¢;,i = 1, 2, denote the edge in common.
Proceeding as in the proof of the previous lemma, we can write

T;|)? T|?
el = T g = Bl
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where X,, denotes the midpoint of the edge ¢;. Consequently
IT| 2 IT|? 25 5 2
5 Ml === D S ui ) = 312 Wp alg ;-
2caT tcor
This established the first estimate of the lemma. In order to prove the second one, we need to compute ||J; nlo. when? C I.
Let ¢ € &/, we have

/()\huh — Vuy -np)? = A /u% — (2Aup(Xe) Vuy, - ng — (Vuy, 'ﬂz)z) [£].
¢ ¢
Now, some simple calculations show that for any uj, € Vj,
. 1
/Uﬁ = up (Re)|0] + — (Vup - t)*|€].
¢ 12
Hence,

N 1
Wenllg, =4 (Mhuh(xz) — Vuy - mg*[€] + E”V’Jh 'tz||(2),g|f|2) .

On the other hand, since ¢, = 1on ¢ and ||(/)g||é’T = %

/UW@ = /()\huh — Vi )@y = (Antip(Xe) — Vup - ng) €],
T ¢

T
up@e| <4/ = llupllor-
T 3

Therefore, combining the estimates above we obtain
il

3
which allows us to conclude the proof. O

2 ° 2 1 2 1 21913
lunlly ¢ > [AnunRe) — Vup - mg|” €] = Z||Jz,n||o,z - E(Vuh )7 ¢

Lemmas 5.1 and 5.2 above imply that we may omit the volumetric contribution in the expression of 7, r and define
a simpler error estimator based only on the jumps of the normal and tangential discrete derivatives of the approximate
solution. As we show below, this new estimator is equivalent to the approximate eigenfunction error up to higher order
terms.

Let

P 1
Tor =5 D W eally,

£CoT
and the corresponding global error estimator

1/2
7= (Z ”%,T +’77\§,T) .
TeTh
The following theorems show that this estimator is globally reliable and locally efficient up to higher order terms.
Theorem 5.3. There exists a positive constant C, depending only on the regularity of the mesh, such that
lu = uplline < C @+ lIAu — Anugllo,r) -

Proof. Lemmas 5.1 and 5.2 yield ny < Cqjr for all T € T3, with C being a constant depending only of the regularity of the
mesh. Then, the result follows directly from Theorem 4.3. O

Theorem 5.4. ForallT € 7y, let wr == U{T € Ty : T shares an edge with T}. There exists a positive constant C, depending only
on the regularity of the elements of wr, such that

1. If T has only inner edges, then
1 < Cllu — upll1hop»
2. If T has an edge lying on I, then
N < CAA+ M) u— upllpop + O )2 1.

Proof. It is obvious that 77 < nr for all T € T4. Then, the results follow directly from Theorems 4.5 and 4.10 and
Lemma5.2. O
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Another error estimator can be defined by observing that the terms corresponding to the jumps of the discrete flux across
element boundaries are dominated by the volumetric ones up to higher order terms. In fact, due to Lemmas 5.1 and 5.2, we
can define the following local estimator

or = Tl lunllg
and the corresponding global error estimator
1/2
n = (Z n%_r + ﬁ%r) .
TeT;
The following theorem shows that this estimator yields a global upper bound on the error measured in the Vj,-norm.

Theorem 5.5. There exists a positive constant C, depending only on the regularity of the mesh, such that
1/2

lu = unlline < C |7+ Ihu— dnunllor +An | D 1€l lun — unxo)ll3
tegl
where X, denotes the midpoint of the boundary edge ¢.
Proof. For T € 7} such that 3T N I = ¢, Lemma 5.1 yields directly
nr < Cr.

For ¢ e 8{ let T be the triangle in 7 such that £ C dT. Thanks to Lemma 5.2 and expression (4.5), we can write

— A ~
np = Cilp + 216 I1Vun - tllg,, = G + A51€1 llun — un(xo) g -
Thus, summing up on all the triangles T € 7, and using Theorem 4.3, we conclude the proof. O
The analogue of Theorem 5.4 is the following theorem.

Theorem 5.6. ForallT € 7y, let wr = U{? €T T shares an edge with T}. There exists a positive constant C, depending only
on the regularity of the elements of wr, such that

N1 < Cllu — upll,nep -
Proof. The proof follows immediately from Theorem 4.5 and Lemma 4.6. O

Remark 5.7. The final form of estimator 7 resembles those derived in [5,15] for the Crouzeix-Raviart approximation of
source problems.

6. Optimal a priori error estimate for ||[u — uy||o,» and terms of higher order

The first goal of this section is to prove an estimate of higher order for the error ||u — up||o, . We do this by using the
abstract spectral approximation theory given in [4]. We preserve the notation of Section 2.

We begin by defining the Steklov-Poincaré operator associated to problem (2.3),i.e., given € L?>(I"), let u be the unique
solution in V of the following problem

/aVu~Vv+/ﬁuv+/uv=/rv, Yv e V. (6.1)
2 2 r r

Then, we define Bt := u| and we note that B is a bounded linear operator from L?(I") into itself. From the definitions of B
and T, (2.3) and (6.1), we can establish

Bt =CoT(f, 1)

with C being the operator defined by
C: X — [*(D)
(u,§) —§.

In a similar way, we can define the approximate operator B, : L*>(I") — L?(I") by Byt = up|, where uy, is the unique
solution in V}, of the discrete problem

/ aVuh . Vvh —I—/ ﬁuhvh—|—/ Upvp :/ TVp, Vv,, e V. (62)
2 2 r r

Then, we obtain
Byt = Co Th(f, 7.').
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Two properties have to be proved to apply the theory in [4] in order to conclude convergence of the spectral
approximation and non existence of spurious modes. The first one means that the operators B, provide good approximations
of B when applied to sources (f, 7) in the discrete space. The second one means that the used finite element spaces provide
good approximations of the eigenfunctions of B.

Lemma 6.1. For (f, T) € W), there exists a positive constant C such that
(B —Bywzllo.r < Ch"?|zllo,r,

with r being the regularity constants as in Lemma 2.1.

Proof. It is a direct consequence of Theorem 4.3 in [4] and the relations defining Band B,. O

Lemma 6.2. For each eigenfunction u of B associated with A there exists a strictly positive constant C such that

hr+1/2

inf |lu — upllo,r = G llull14r-
upeVy

Proof. It is a direct consequence of Theorem 4.2 in [4] and the relations defining Band B,. O
Let A be a fixed eigenvalue of the operator T and 4, its corresponding associated eigenspace. When the source term
belongs to 4;, the order of the approximation is larger. In fact, we have the following result.
Lemma 6.3. For (f, 7) € 4, the following estimate holds
B —Bpzlor < Ch*"?|tllor,
with r as in Lemma 2.1.

Proof. Given (f, 7) € 4;,let (u, &) = T(f, ), (up, &) = Tp(f, ) and e, = u — uy. Since u, € Vj, the error function ey, is
discontinuous. We denote by [e;] the jump of this function across an edge ¢ € 8,’,
We use a duality argument based on the following auxiliary problem:

—div(eVe) + Bp =0 in g2,

) 6.3
a—‘p—l—(p:eh onl'. (63)
on

Since ey € HE(I"), with € € (0, 1/2), the results of Lemma 2.1 yields ¢ € H?>*€(£2) C H'*"/2(£2) and

loll14r/2 < Cllenllo,r- (6.4)
By using Egs. (6.3), we have

dp e

2 had — has

fa=Lqmre)n= Dl (5e)e
h

= _Z/af[eh]Jr Z (/ diV(aV¢)6h+faV<p~Veh> +/ pen
T r

le €I TeT,

/a— eh]+/ Boey, + Z/qu-Veth/ pey, (6.5)
I r

Tem /T

teg)
where we have used the equality

Z/ara—eh Z /a—eh—l—Z/a—[eh

TeTh le gh

and integration by parts. Notice that the regularity of ¢ implies that g—ﬁ is well defined as an L?(I")-function.

Let ¢' be the piecewise linear Lagrange interpolation of ¢. Since ¢’ € V NV}, we can use problems (6.1) and (6.2) to
obtain the following residual equation

Z/ “VEn~V¢'+/ ﬁehrp'+/ enp' = 0. (6.6)
TeT), aT 2 r
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Therefore, subtracting Egs. (6.5) and (6.6) we obtain
dp
et = Y [av@ =) Vet [ po=shent [@=dhen-3 [ailen
Tem VT 2 r ieel ¢ on

We are going to estimate the terms appearing in the right hand side of the equation above separately. Let us recall here
that the coefficients o and 8 are assumed to be bounded above and below by positive constants.

o First term:
By using the Cauchy-Schwarz inequality and standard error estimates for the Lagrange interpolant ¢!, we have

< eVp —)lorlVenllor < CHl@ll14r/2rllenllrr-

/aw —¢')- Ve,
T

Then, summing up on all the triangles T € 7, and using estimate (6.4) and Theorem 4.4 in [4], we conclude

> /avw — ¢ - Ve,
:

TeTy

3r/2
< Ch¥2|lenllo.rlITllo.r-

e Second term:
Proceeding exactly as in the proof of the previous estimate, we obtain

> / Blp —¢Der
:

TeTy

143r/2
< Ch"|leyllo.r I 7llo.r-

e Third term:
By using a trace theorem and standard error estimates for the Lagrange interpolant ¢', we have

o —¢'lloe < C (W lle — @' llor +h"le —@'l17) < Wl 4r/a7.

Then, summing up on all the edges ¢ € Shr and using estimate (6.4) and Theorem 4.4 in [4], we can write

/ (o — ¢ey
r

e Fourth term:
Let P, denote the L?(£)-projection of H (£) onto the constants. For an edge £ € 8,2 let Ty, T, € T, besuchthatT;NT, = £.

Since u is continuous and [uy] is a linear function vanishing at the midpoint of £, we have
/l;ag—ﬁ[eh] /l;(agi —-P (Oéi)) [ex]
ﬁ(az% — P (a?—ﬁ)) (enlry) — /Za (g—i - P, (Oé*ﬁ)) (enlry)
S| [ (52 - pe (o52) ) (i) — e

i=1,2

1 1+3r)/2
< lle = 'lo.rllenllo.r < Ch*2enllo rliTlo.r

IA

Let P; denote the L?(T)-projection of H*t/2(T) onto the constants. By using a trace theorem and standard error estimates
for Pr, we can write

0
/g aa—ﬁ[eh]

< > lleVe-n—Pr@Ve - no.ll(enlr) — Prienl)lo.e
i=1,2

<y (W*VVelrar) (B llenllss) .
i=1,2

Thus, summing up on all the edges ¢ € E,i and using estimate (6.4) and Theorem 4.4 in [4], we obtain

dp
> [aslie] < G Plealoriior.
¢ on

ZESL
Then, by combining all these estimates, we conclude the proof. O

Let m denote the multiplicity of the eigenvalue A of Band &, the corresponding eigenspace as above. Since |[B—By|lo. - —
0 as h — 0, there exists m eigenvalues of By, A, Ao, ..., Amn, repeated according to their respective multiplicity,
converging to A (see [4]). Let 4, be the direct sum of the corresponding associated eigenspaces. The following theorem
is a consequence of Theorem 3.12 in [4] and Lemmas 6.2 and 6.3.
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Theorem 6.4. There exist strictly positive constants C and hg such that, if h < hy, then

1. For each uy € 4;,, with ||upllo,r = 1, dist(upn, 4,) < Ch*/?,
2. Foreachu € 8;, with ||ullo,r = 1, dist(u, 4,,) < Ch*/2,

with r as in Lemma 2.1.

We further conclude that if u is a unit eigenfunction of B corresponding to A then there is a unit eigenfunction uy, of B, such
that

llu — unllo,r < CH*"72. (6.7)

The error estimate established in Theorems 4.3 and 5.3 or 5.5 shows that the proposed global estimator provides an upper
bound of the error in the broken energy norm up to a multiplicative constant and some additional terms. We are now in
position to prove that these terms are of higher order, i.e., they are asymptotically negligible with respect to |[u — up||1.n,0-
In fact, we have the following result.

Lemma 6.5. There exists a constant C independent of h such that

Au = Apupllo,r < CH*"72, (6.8)
WY ey — up )13, < CR¥ (6.9)
ée&[

with r as in Lemma 2.1.

Proof. We begin by observing that the first inequality follows directly from Theorem 2.2 and estimate (6.7).
Now, let £ be a boundary edge. Let P, denote the L?(¢)-projection of H™+/2(£) onto the constants. Since uy|, is a linear
function, Pyup|, = up(X¢), with X, being the midpoint of £. We immediately have

An(up — up(Xe)) = (Apun — AU) + A(u — Peu) + Pe(Au — Anup)
from which we obtain
Mnllun — upX)llo.e < C (IAntup — Autllo,e + Allu — Peullo.r) -

Let T be the triangle in 73, such that £ C 3T. Let P; denote the L?(T)-projection of H+!(T) onto the constants. By using a
suitable trace theorem and standard error estimates for Pr, we have

llu — Peullo.e < € (h™"2|lu — Pruflo.r +h"?IV(u — Pru)llor) < CH 2 |uflsr 1,

the last inequality being true because Lemma 2.1 and the fact that u is an eigenfunction of problem (2.2). Then, summing up
on all the edges ¢ € Shr inequality (6.9) follows from estimate (2.7) and inequality (6.8). O

Remark 6.6. The generic constant C appearing in the estimates of the theorem above depends on A. Although it is not
difficult to trace this dependence, we prefer not state it explicitly.
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