Measurement of Dijet Azimuthal Decorrelations in pp Collisions at $\sqrt{s} = 7$ TeV

G. Aad et al.*
(ATLAS Collaboration)
(Received 14 February 2011; published 29 April 2011)

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full data set ($\int L dt = 36 \text{ pb}^{-1}$) acquired by the ATLAS detector during the 2010 $\sqrt{s} = 7$ TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high-energy regime.

DOI: 10.1103/PhysRevLett.106.172002

The production of events containing high transverse-momentum (p_T) jets is a key signature of quantum chromodynamic (QCD) interactions between partons in pp collisions at large center-of-mass energies (\sqrt{s}). The Large Hadron Collider (LHC) opens a window into the dynamics of interactions with high-p_T jets in a new energy regime of $\sqrt{s} = 7$ TeV. QCD predicts the decorrelation in the azimuthal angle between the two most energetic jets, $\Delta \phi$, as a function of the number of partons produced. Events with only two high-p_T jets have small azimuthal decorrelations, $\Delta \phi \sim \pi$, while $\Delta \phi \ll \pi$ is evidence of events with several high-p_T jets. QCD also describes the evolution of the shape of the $\Delta \phi$ distribution, which narrows with increasing leading jet p_T. Distributions in $\Delta \phi$ therefore test perturbative QCD (pQCD) calculations for multiple jet production without requiring the measurement of additional jets. Furthermore, a detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the standard model [1].

In this Letter, we present a measurement of dijet azimuthal decorrelations with jet p_T up to 1.3 TeV as measured by the ATLAS detector, beyond the reach of previous colliders. The differential cross section ($1/\sigma)(d\sigma/d\Delta \phi$) is based upon an integrated luminosity $\int L dt = (36 \pm 4) \text{ pb}^{-1}$ [2]. The $\Delta \phi$ distribution is normalized by the inclusive dijet cross section σ, integrated over the same phase space. This construction minimizes experimental and theoretical uncertainties. Previous measurements of $\Delta \phi$ from the D0 [3] and CMS [4] Collaborations are extended here to higher jet p_T values.

Jets are reconstructed using the anti-k_t algorithm [5] (implemented with FASTJET [6]) with radius $R = 0.6$, and the jet four-momenta are constructed from a sum over its constituents, treating each as an (E, \vec{p}) four-vector with zero mass. The anti-k_t algorithm is well motivated since it is infrared safe to all orders, produces geometrically well-defined conelike jets, and is used for pQCD calculations (from partons), event generators (from stable particles), and the detector (from energy clusters [7]). The azimuthal decorrelation $\Delta \phi$ is defined as the absolute value of the difference in azimuthal angle between the jet with the highest p_T in each event, p_T^{max}, and the jet with the second-highest p_T in the event. There are nine analysis regions in p_T^{max}, where the lowest region is bounded by $p_T^{\text{max}} > 110$ GeV and the highest region requires $p_T^{\text{max}} > 800$ GeV [7]. Only jets with $p_T > 100$ GeV and $|y| < 2.8$, where y is the jet rapidity [8], are considered. The two leading jets that define $\Delta \phi$ are required to satisfy $|y| < 0.8$, restricting the measurement to a central y region where the momentum fractions (x) of the interacting partons are roughly equal and the experimental acceptance for multitjet production is increased. In this region where $0.02 \leq x \leq 0.14$, the parton distribution function (PDF) uncertainties are typically $\pm 3\%$ (at fixed factorization scale) [9]. The cross sections, measured over the range $\pi/2 \leq \Delta \phi \leq \pi$ and normalized independently for each analysis region, are compared with expectations from a pQCD calculation [10] that is next-to-leading order (NLO) in three-parton production. The perturbative prediction for the cross section is $O(\alpha_s^2)$, where α_s is the strong coupling constant.

The angular decorrelation is sensitive to multijet configurations such as those produced by event generators like SHERPA [11], which matches higher-order tree-level pQCD diagrams with a dipole parton-shower model [12]. Samples for $2 \rightarrow 2 \rightarrow 6$ jet production are combined using an improved parton matching scheme [13]. Event generators such as PYTHIA [14] and HERWIG [15] use $2 \rightarrow 2$ leading order pQCD matrix elements matched with phenomenological parton-cascade models to simulate higher-order QCD effects. Such models have been successful at reproducing other QCD processes measured by the ATLAS Collaboration [7,16].

The ATLAS detector [17,18] consists of an inner tracking system surrounded by a thin superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer based on...
large superconducting toroids. Jet measurements depend most heavily on the calorimeters. The electromagnetic calorimeter is a lead liquid-argon (LAr) detector with an accordion geometry. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as the active medium, and with either steel, copper, or tungsten as the absorber material. The pseudorapidity (η) [8] and ϕ segmentations of the calorimeters are sufficiently fine to ensure that angular resolution uncertainties are negligible compared to other sources of systematic uncertainty.

A hardware-based calorimeter jet trigger identified events of interest; the decision was further refined in software [17,18]. Events with at least one jet that satisfied a minimum transverse energy (E_T) requirement were recorded for further analysis. The events in each p_T^{max} range are selected by a single trigger with a given E_T threshold, and the lower end of the range is chosen above the jet p_T at which that trigger is $\approx 100\%$ efficient. Three sets of triggered events with different integrated luminosity are considered: 2.3 pb$^{-1}$ for $110 < p_T^{\text{max}} \leq 160$ GeV, 9.6 pb$^{-1}$ for $160 < p_T^{\text{max}} \leq 260$ GeV, and 36 pb$^{-1}$ for $p_T^{\text{max}} > 260$ GeV [2]. Events are also required to have a reconstructed primary vertex within 15 cm of the center of the detector; each vertex had ≥ 5 associated tracks. The inputs to the anti-k_t jet algorithm are clusters of calorimeter cells seeded by cells with energy that is significantly above the measured noise [7]. Jets reconstructed in the detector, whether in data or the GEANT4-based simulation [19,20], are corrected for the effects of hadronic shower response and detector-material distributions using a p_T- and η-dependent calibration [7] based on the detector simulation and validated with extensive test beam [18] and collision data [21] studies. Jets likely to have arisen from detector noise or cosmic rays are rejected [22].

The resulting $\Delta \phi$ distribution is shown in Fig. 1 for jets with $p_T > 100$ GeV. There are 146 788 events in the data sample, 85 of which have at least five jets with $p_T > 100$ GeV. Also shown is the PYTHIA sample with MRST 2007 LO* PDF [23] and ATLAS MC09 underlying event tune [24], processed through the full detector simulation and normalized to the number of events in the data sample. Two- and three-jet production primarily populates the region $2\pi/3 < \Delta \phi < \pi$ while smaller values of $\Delta \phi$ require additional activity such as soft radiation or more jets in an event. Figure 1 illustrates that the decorrelation increases when a third high-p_T jet is also required. Events with additional high-p_T jets widen the overall distribution.

The measured differential $\Delta \phi$ distributions in data are corrected in a single step with a bin-by-bin unfolding method [7] to compensate for trigger and detector inefficiencies and the effects of finite experimental resolutions. These correction factors, evaluated using the PYTHIA sample, lie within $\pm 9\%$ of unity. The leading sources of systematic uncertainty on the normalized cross section are the jet energy scale calibration (2%–17%) [7], the bin-by-bin unfolding method (1%–19%), and the jet energy and position resolutions (0.5%–5%). The ranges in parentheses represent the magnitude of the uncertainties near π and $\pi/2$, respectively, and correspond to the analysis region with the smallest statistical uncertainty (160 < p_T^{max} < 210 GeV). Multiple $p\bar{p}$ interactions in the same beam crossing that can increase the measured jet energy are included in the evaluation of the jet energy scale uncertainties (<0.8% on the cross section for all analysis regions).

The normalized differential cross section is shown for each of the nine p_T^{max} analysis regions as a function of $\Delta \phi$ in Fig. 2. As p_T^{max} increases, and the probability for the emission of a hard third jet is reduced, the fraction of events near π becomes larger. Overlaid on the data are the results from a NLO pQCD $[O(\alpha_s^3)]$ calculation, NLOJET ++ [10] with FASTNLO [25] and using the MSTW 2008 PDF [9]. The factorization and renormalization scales are set to p_T^{max} and are varied independently up and down by a factor of 2 to determine the scale uncertainties. The scale uncertainties are larger between $\pi/2 < \Delta \phi < 2\pi/3$ where the pQCD calculation is effectively leading order in four-parton production. The PDF uncertainties are treated as the envelope of the 68% C.L. uncertainties from MSTW 2008 [9], NNPDF 2.0 [26], and CTEQ 10 [27], and are combined with the uncertainties resulting from an α_s variation of ± 0.004; the α_s contributions dominate. The calculation is corrected for nonperturbative effects due to hadronization and the underlying event [28]; the correction is smaller than 3%. The fixed-order calculation fails near $\Delta \phi \rightarrow \pi$ where soft processes dominate and contributions from logarithmic terms are enhanced. Figure 3 displays the ratio of the cross section...
with respect to the NLO calculation. In most regions, the theory is consistent with the data. However, the prediction in the range $110 \lesssim p_T^{\text{max}} < 160$ GeV is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG in Fig. 4. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \to \pi$; all three provide a good description of the data in this region. In the region $\pi/2 < \Delta \phi < 5\pi/6$, where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most $\Delta \phi$ and p_T^{max} regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA [28] and HERWIG [24] also describe the data.

In summary, we present a measurement of dijet azimuthal decorrelations in events produced in pp collisions at $\sqrt{s} = 7$ TeV. The normalized differential cross sections

\[\frac{1}{\sigma} \frac{d\sigma}{d\Delta \phi} \]

are based on the full data set ($\int L dt = 36$ pb$^{-1}$) collected by the ATLAS Collaboration during the 2010 run of the LHC. Expectations from NLO pQCD $[O(\alpha^4)]$ and those of

\[\text{fig. 2 (color online). The differential cross section } \langle 1/\sigma \rangle \times (d\sigma/d\Delta \phi) \text{ binned in nine } p_T^{\text{max}} \text{ regions. Overlaid on the data (points) are results from the NLO pQCD calculation. The error bars on the data points indicate the statistical (inner error bar) and systematic uncertainties added in quadrature in this and subsequent figures. The theory uncertainties are indicated by the hatched regions. Different bins in } p_T^{\text{max}} \text{ are scaled by multiplicative factors of 10 for display purposes. The region near the divergence at } \Delta \phi \to \pi \text{ is excluded from the comparison.} \]

\[\text{fig. 3 (color online). Ratio of the differential cross section } \langle 1/\sigma \rangle (d\sigma/d\Delta \phi) \text{ measured in data with respect to expectations from NLO pQCD (points). The theory uncertainties are indicated by the hatched regions. The region near the divergence at } \Delta \phi \to \pi \text{ is excluded from the comparison.} \]

\[\text{fig. 4 (color online). Ratio of the differential cross section } \langle 1/\sigma \rangle (d\sigma/d\Delta \phi) \text{ measured in data with respect to the result from SHERPA (points). The shaded region indicates the SHERPA statistical uncertainty. Predictions from PYTHIA and HERWIG, also in ratio to SHERPA, are displayed as lines.} \]
several event generators successfully describe the general characteristics of our measurements, including the increasing slope of the $\Delta \phi$ distribution with p_T^{max} and the shape near $\Delta \phi \sim \pi/2$ where events with multiple jets make a considerable contribution. Our data, which include jets with p_T values that significantly exceed earlier measurements, explore QCD in a new kinematic region.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; STSC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DSNRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JPS, Japan; CNRSRT, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is gratefully acknowledged, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (U.S.), and in the Tier-2 facilities worldwide.

[8] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Rapidity is defined as $y = 1/2 \ln[(E + p_T)/(E - p_T)]$, where E is the energy and p_T is the longitudinal component of the momentum along the beam direction.

(ATLAS Collaboration)

1 University at Albany, Albany New York, USA
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 Department of Physics, Ankara University, Ankara, Turkey
4 Department of Physics, Dumlupinar University, Kastamun, Turkey
5 Department of Physics, Gazi University, Ankara, Turkey
6 Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7 LAPP, CNRS/IN2P3 and Universit´e de Savoie, Annecy-le-Vieux, France
8 High Energy Physics Division, Argonne National Laboratory, Argonne Illinois, USA
9 Department of Physics, University of Arizona, Tucson Arizona, USA
10 Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institute de Física d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13 Institut de Fisica dels Alts Energis and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
14 Department of Physics, Humboldt University, Berlin, Germany
15 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
16 Department of Physics, Bogaziçi University, Istanbul, Turkey
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 Department of Physics, Bogazici University, Istanbul, Turkey
19 INFN Sezione di Bologna, Bologna, Italy
20 Dipartimento di Fisica, Universit`a di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Brandeis University, Waltham Massachusetts, USA
23 Universidade Federal do Rio De Janeiro COPPE/EEF, Rio de Janeiro, Brazil
24 Instituto de Fisica, Universidade de Sao Paolo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton New York, USA
26 National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27 University Politehnica Bucharest, Bucharest, Romania

172002-13
176 Yerevan Physics Institute, Yerevan, Armenia

177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

*Deceased.

Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.

Also at Departamento de Ciências and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at TRIUMF, Vancouver BC, Canada.

Also at Department of Physics, California State University, Fresno CA, USA.

Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland.

Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

Also at California Institute of Technology, Pasadena CA, USA.

Also at Institute of Particle Physics (IPP), Canada.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Louisiana Tech University, Ruston LA, USA.

Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Manhattan College, New York, NY, USA.

Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at High Energy Physics Group, Shandong University, Shandong, China.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Física, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

Also at Department of Physics, Nanjing University, Jiangsu, China.