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ABSTRACT
In order to explain the main characteristics of the observed population of extrasolar planets
and the giant planets in the Solar system, we need to get a clear understanding of which are the
initial conditions that allowed their formation. To this end we develop a semi-analytical model
for computing planetary systems formation based on the core instability model for the gas
accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores.
With this model we explore not only different initial discs profiles motivated by similarity
solutions for viscous accretion discs, but also consider different initial conditions to generate
a variety of planetary systems assuming a large range of discs masses and sizes according to
the last results in protoplanetary discs observations. We form a large population of planetary
systems in order to explore the effects in the formation of assuming different discs and also the
effects of type I and II regimes of planetary migration, which were found to play fundamental
role in reproducing the distribution of observed exoplanets. Our results show that the observed
population of exoplanets and the giant planets in the Solar system are well represented when
considering a surface density profile with a power law in the inner part characterized by an
exponent of −1, which represents a softer profile when compared with the case most similar
to the minimum mass solar nebula model case.
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1 IN T RO D U C T I O N

So far 464 planets have been found orbiting stars in the solar neigh-
bourhood. This population of planets, though strongly biased to
those planets that are easier to be detected with radial velocities,
presents tendencies that the theoretical models of planetary forma-
tion must reproduce. With the end of explaining the main character-
istics of the observed population of extrasolar planets, including the
planets in the Solar system, we need to get a clear understanding of
which are the initial conditions that allow their formation.

The fact that the planetary systems formed from a disc-like nebula
were recognized centuries ago, but even today our understanding
of this processes and initial conditions remain uncertain. With this
question in mind, the main objective of this work is to determine
which is the nebula model that allows us to form planetary systems
whose planets reproduce the observational sample of extrasolar
planets.

?E-mail: ymiguel@fcaglp.unlp.edu.ar (YM); abrunini@fcaglp.unlp.edu.ar
(AB)
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In recent years there have been several semi-analytical models
of planetary formation (Ida & Lin 2004; Miguel & Brunini 2008;
Mordasini, Aibert & Benz 2009) and planetary systems formation
(Miguel & Brunini 2009), which intend to reproduce the observa-
tional sample of exoplanets and explain with a simple model the
main characteristics of this distribution in order to get a better un-
derstanding of the process of planetary formation. For simplicity
the surface density model assumed in these models as basic build-
ing blocks for the planetary formation process are based on con-
ventional power-law models, as the standard minimum mass solar
nebula (MMSN) model of Hayashi (1981), which is an approxima-
tion to the gas-dominated nebula, taking into account the primitive
composition of the solar disc. This model, although efficient on its
simplicity, suffers from multiple disadvantages.

The minimum nebula (Edgeworth 1949; Kuiper 1956; Safronov
1969; Weidenschilling 1977; Hayashi 1981) was constructed by
assuming that there should be added to the masses of the present
planetary bodies enough icy materials and hydrogen and helium to
achieve solar composition and then this mass should be smeared
over the surrounding place. So the model was based on the strong
implicit assumption that planets were formed at their present loca-
tions, they accreted all of the solids in their vicinity and the accretion
was perfect, which means that the formation of one giant planet did
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not have consequences on the formation of the others. Despite this
model is a reasonable good approximation in the intermediate re-
gion of the solar nebula, posses too much surface density in the inner
region, underpredicts it in the outer nebula, and the total mass of
the disc is infinite in this formulation, so inner and outer boundaries
must be specified. For all these reasons and despite its widespread
use, it is clear that this model must be updated or changed.

With the spirit of retaining a simple model for the surface den-
sity in the nebula and get a more realistic model consistent with
protoplanetary discs observations, we consider a nebula with a sur-
face density profile motivated by similarity solutions for viscous
accretion discs as shown in Lynden-Bell & Pringle (1974) and in
Hartmann et al. (1998). This simple formula, which is characterized
by a power law in the inner part of the disc and an exponential decay
in the outer part, is a reasonable alternative for use in protoplanetary
discs because it is simple, it matches the protoplanetary discs ob-
servations (Andrews et al. 2009; Isella, Carpenter & Sargent 2009)
and unlike power-law approximations, these surface density model
predicts a sharp outer edge to the nebula without introducing an
arbitrarily cut to the disc. There are several free parameters in the
nebula model that we have to adjust with the aim of explaining the
distribution of observed exoplanets and the giant planets in our So-
lar system, such as the exponent of the power law in the inner part
of the disc, whose different values will bring a significant impact
on the formation of giant planets as we discuss in this work.

So with the aim of finding the planetary system formation model
that best fits the observations (including our Solar system), we
have developed a semi-analytical model where the main difference
with our previous model (Miguel & Brunini 2009) is the initial
nebula profile. The model, which is shown in Section 2, is based
on the nucleated instability model, where the solid cores grow in
the oligarchic growth regime. We also include the effects of hav-
ing embryos in a gaseous disc, considering type I and II regimes
of planetary migration, which were found to be fundamental in
reproducing the distribution of observed exoplanets. The results
are shown in Section 3 where we also show the comparison with
the observations, and the summary and conclusions are shown in
Section 4.

2 MO D E L A N D BA S I C EQUAT I O N S

In this section we show the model considered that is based on a
model previously developed by Miguel & Brunini (2008, 2009,
2010). As the main goal of this work is to show which are the
consequences of considering different density profiles and which
one suits better the observations and the Solar system, we will
explain the protoplanetary nebula model in detail.

2.1 Protoplanetary nebula structure

The structure of the protoplanetary nebula is usually assumed to
follow a power-law distribution in the form

6(a) = 60

µ
a

a0

¶−p

, (1)

where 60 is the surface density at the arbitrary radius a0. In this
formulation, inner and outer boundaries of the disc must be arbitrar-
ily specified otherwise the total mass of the disc would be infinite.
This is one of the limitations suffered by this formulation that was
initially motivated by models as the MMSN model developed by
Hayashi (1981).

In order to consider a more appropriate disc structure model, we
are based on the works of Andrews et al. (2009) and Isella et al.
(2009), who adopted a density profile characterized by a power
law in the inner part of the disc and an exponential decay in the
outer parts of the disc and is based on the similarity solutions of
the surface density of a thin Keplerian disc subject to the gravity
of a point mass (M?) central star (Lynden-Bell & Pringle 1974;
Hartmann et al. 1998). In this formulation the gas surface density
is given by

6g(a) = 60
g

µ
a

ac

¶−γ

e−(a/ac)2−γ

, (2)

where ac is a characteristic radius beyond which the density drops
sharply, γ is the exponent that defines the density profile and 60

g is
a parameter that is determined from the total mass of the disc which
is given by

Md = 2π

Z ∞

0
6g(a) a da, (3)

solving the integral we get the expression for 60
g:

60
g = (2 − γ )Md

2πa2
c

, with γ < 2. (4)

We adopted a temperature profile for a disc optically thin, given
by

T = 280
³ a

1 au

´−1/2
µ

L?

L¯

¶1/4

K, (5)

with L¯ and L? the Sun and stellar luminosity. The volumetric
density of gas is

ρ = ρ0 e−(Z/h), (6)

where h is the disc scaleheight (h ' 0.05(a/1 au)1/4a) and ρ0 is the
volumetric density of gas in the mid-plane of the disc given by

ρ0 = 8.33 × 10−13

µ
M?

M¯

¶1/2 60
g

a
5/4
c

µ
a

ac

¶−γ−5/4

× e−(a/ac)2−γ

µ
L¯
L?

¶1/8

g cm−3. (7)

We will assume that the solids surface density has an expression
similar to equation (2):

6s(a) = 60
s ηice

µ
a

ac

¶−γ

e−(a/ac)2−γ

, (8)

where ηice is a function introduced in order to represent the change
in the solids beyond the radius where the water condenses:

ηice =
(

1 if a > aice,

1
4 if a ≤ aice,

(9)

where the snow line is located at aice = 2.7(M?/M¯)2 au from a
central star of mass M? and if z0 is the primordial abundance of
heavy elements in the Sun and we assume the same for the disc,
thenÃ

60
s

60
g

!
¯

= z0, (10)

following the result of Lodders (2003) we assumed that z0 = 0.0149
and for a star of metallicity [Fe/H] thenÃ

60
s

60
g

!
?

=
Ã

60
s

60
g

!
¯

10[Fe/H] = z010[Fe/H]. (11)
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Figure 1. Solid surface density for three discs with the same total mass,
characteristic radius and metallicity but different values for γ . The dotted
line represents γ = 1.5, the dashed line is for γ = 1 and the solid line
represents γ = 0.5.

The metallicities are taken random considering that they follow
a lognormal distribution fitted from the results of the CORALIE
sample, as is shown in Mordasini et al. (2009).

In order to illustrate we show in Fig. 1 the solid surface density
as a function of semimajor axis for three discs with ac = 50 au, total
mass of 0.05 M¯ and solar metallicity and different values for γ .
The dotted line represents the solid surface density for γ = 1.5, the
dashed line shows the curve for the case when γ = 1 and finally
the solid line is the solid surface density for γ = 0.5. We note that
as the value of the exponent γ decreases, the amount of solids in
the inner part of the disc is reduced, while it increases in the outer
part, fact that brings deep consequences on the formation of giant
planets, as we will see in the results. The case most similar to the
MMSN model is when γ = 1.5 where we note an excess of solids
in the inner part of the disc, which drops sharply beyond the snow
line. This case is less favourable for the formation of several giant
planets in the same planetary system, since the mass is concentrated
and as a consequence the formation of a single giant planet in the
snow line is allowed leaving no residual material for others after
its formation. Recently, Guilera, Brunini & Benvenuto (2010) have
shown that when employing power-law discs 6 ∝ a−p, the value
p = 1.5 leads to a quickly formation of Jupiter that could inhibit
the formation of Saturn when the formation of both is considered
simultaneously. They also showed that smoother surface density
profiles (p = 1, 0.5) favoured the simultaneous formation of Jupiter
and Saturn.

The disc is extended between aint and aext, where the inner radius
is calculated accorded to an expression given by Vinkovic (2006)
who found it through observations in protoplanetary discs:

ain = 0.0688

µ
1500 K

Tsub

¶2 µ
L?

L¯

¶1/2

au, (12)

with Tsub the dust sublimation temperature taken as 1500 K and L?

and L¯ are the stellar and Sun luminosity, respectively. The inner
radius takes values around 0.01 au. The outer radius is the radius
that contains 95 per cent of the disc mass (the total disc mass is
approximately the gaseous mass of the disc):

0.95Md ' 2π

Z aext

0
6g(a)a da, (13)

where we assume that the total disc mass is approximately the
gaseous mass of the disc. Then

aext = 31/(2−γ )ac, (14)

which for a disc characterized by γ = 1 ranges between ∼90 and
∼300 au.

The total mass of the discs and their characteristic radius are taken
random considering that they also follow a log-Gaussian distribution
that we fitted following the results of Andrews et al. (2009) and Isella
et al. (2009). As the masses of the generated discs could be large
enough to undergo in a gravitational instability we check that our
discs are stable. The gravitational stability of a Keplerian accretion
disc with sound speed cs is measured by the Toomre Q parameter
(Toomre 1964), which is defined by

Q = cs ÄK

π G 6g
. (15)

In the case of our disc model,

Q ' 1.24 × 105
³ a

1 au

´γ−7/4 ³ ac

1 au

´−γ
µ

M?

M¯

¶
e(a/ac)2−γ

60
g

, (16)

where a value of Q ≤ 1 represents an unstable disc.
As we note in the previous equation, the parameter of instabil-

ity depends on the semimajor axis, therefore, it changes through
the disc. The minimum of equation (16) is found when a =³

7/4−γ

2−γ

´1/(2−γ )
ac, so we chose Qamin (the value of Q when a = amin)

as a representative value for the disc. Those discs with Qamin > 1
will be stable all over the disc. We also notice that the gravita-
tional stability parameter depends on γ , hence different values of γ

lead to different values of the Toomre parameter and therefore two
discs with equal mass and characteristic radius could be stable or
unstable, depending on the density profile.

This is shown in Fig. 2 where we show the mass versus the ac

of all the stable discs generated, and the different figures show the
results for three different values of the parameter γ . Figs 2(a)–(c)
show the stable discs generated with a density profile corresponding
to γ = 1.5, 1 and 0.5, respectively. We note that for larger values
of γ we need more mass to obtain a gravitationally unstable disc.
This suggest that, as is seen in equation (15), the global nature of
the instability depends both on the mass of the disc and on how this
mass is distributed.

Finally, in Figs 2(a) and (b) we note the presence of extremely
massive discs. These discs should not be considered Keplerian and
equation (15) does not apply to them. In order to avoid these very
massive discs, we check that the disc mass is less than 20 per cent
of the mass of the central star (Hartmann et al. 1998). Thus we
consider discs with masses up to 0.28 M¯.

In order to represent in a simplified way the depletion of the
gaseous disc, we assume that this mechanism can be modelled
considering an exponential decay for the mass of the gaseous disc,
which occurs on time-scales between 106 and 107 yr in agreement
to observation of circumstellar discs (Haisch, Lada & Lada 2001;
Hillenbrand 2005).

2.2 Growth of the protoplanetary embryos

Once we have the protoplanetary nebula defined, we locate the
initial cores. The first one is located at aint and the others are located
at 10 Hill radii away from each other until it reaches the disc outer
radius aext. Each initial embryo has the minimum mass necessary for
starting the oligarchic growth regime (Ida & Makino 1993; Kokubo
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Figure 2. Mass and characteristic radius of all the discs generated with
Qamin > 1: (a) when γ = 1.5; (b) when γ = 1 and (c) when γ = 0.5.

& Ida 1998), which is the growth stage where our embryos grow:

Moli ' 1.6a6/5103/5m3/563/5
s

M
1/5
?

, (17)

with m the effective planetesimal mass.

2.2.1 Solid accretion into the cores

The cores grow due to the accretion of solids, gas and also due to the
collision with other embryos. The rate at which a core accumulates
solids in the oligarchic growth regime was found by Safronov (1969)
and has the form

dMs

dt
= 10.536s ÄR2

p

µ
1 + 2GMt

Rpσ

¶
, (18)

where Ä is the Kepler frequency, Rp and Mt are the planet’s radius
and total mass (solid + gas) and σ is the velocity dispersion which
depends on the eccentricity of the planetesimals in the disc. We
assume that the rms eccentricity of the planetesimals in the disc are
damped and have reached an equilibrium value which is

eeq
m = 1.7 m1/15M

1/3
t ρ2/15

m

101/5ρ
1/5
0 M

1/3
? a1/5

(19)

as is shown in Thommes, Duncan & Levison (2003), where ρm is the
planetesimal bulk density. With this expression the solid accretion
rate including the evolution of the planetesimal rms e and i has the
form

dMs

dt
' 3.9102/5G1/2M1/6

? ρ
2/5
0 6s

ρ
4/15
m ρ

1/3
M a1/10m2/15

M
2/3
t , (20)

where ρM is the embryo bulk density, which is equal to the plan-
etesimals density, ρM = ρm = ρ.

The solids accretion ends when 6s is zero in their feeding zones.
The solids surface density diminishes due to a combination of two
factors:

(i) the cores ate the solids in their feeding zones,
(ii) the ejection of planetesimals diminished the solids surface

density in the region (Thommes et al. 2003; Ida & Lin 2004).

We also consider that when a core is able to retain gas, the drag
effect caused by the gaseous envelope on the planetesimals in-
creases the collision cross-section of the embryo. Following Cham-
bers (2006), we assume that the enhanced collision radius (Rcollision)
of the embryo is given byµ

Rcollision

R

¶4

= 0.000344μ4cP

κrm6d

µ
Mt

M⊕

¶2
Ã

24e2
eq

24 + 5e2
eq

!
, (21)

where c is the velocity of light, P is the orbital period of the pro-
toplanet, κ is the opacity of the atmosphere which is considered
as '4 cm2 g−1, μ ' 2.8 is the mean molecular weight of the at-
mosphere (assumed to have a solar composition) and the embryos
equilibrium eccentricity is considered as ≈2 in this expression.

As was said in the beginning of this section, collisions represent
an important evolutionary process which plays a significant role in
determining the final mass and spin state of the planets. The model
and consequences of embryo–embryo collisions were explained in a
previous work (Miguel & Brunini 2010), here we say that the result
of the collisions is the perfect accretion of the embryos involved.

2.2.2 Gas accretion on to the cores

The cores have an associate envelope if the molecular velocity
is smaller than the escape one. According to Mizuno, Nakazawa
& Hayashi (1978), once a protoplanet becomes greater than ∼the
Moon’s mass, the core attracts the neighbouring gas and an envelope
forms surrounding it. In the early stages of giant planets formation,
the gravity is balanced by the pressure gradient which is maintained
by the potential energy released by incoming planetesimals (Mizuno
1980), so the stability of this envelope depends on the mass of the
protoplanet and on the solids accretion rate. When the mass of the
embryo becomes greater than a critical value, or there are no more
solids available on its feeding zone, the envelope can no longer
be in hydrostatic equilibrium and begins to collapse (Mizuno 1980;
Bodenheimer & Pollack 1986), as a result, the gas accretion process
began. The core’s critical mass (Stevenson 1982; Ikoma, Nakazawa
& Emori 2000) is given by

Mcrit ∼ 10

µ
Ṁc

10−6 M⊕ yr−1

¶1/4

. (22)

Fortier, Benvenuto & Brunini (2007, 2009) studied the formation
and evolution of a protoplanet in situ, in the frame of the nucleated
instability model. They improved a numerical code based on a
Henyey technique (Benvenuto & Brunini 2005), and consider that
the oligarchic growth regime is the stage for the accretion of the solid
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cores and considered the gas drag effect acting on planetesimals
inside the planet atmosphere. We used the results of Fortier et al.
(2007) introducing an analytic approximation to their numerical
results as is explained in Miguel & Brunini (2008), and update here
the gas accretion rate according to their last results (Fortier et al.
2009). Then the gas accretion process occurs on a rate

dMg

dt
= Mt

τg
, (23)

where Mg is the mass of the surrounding envelope and τ g is its
characteristic growth time,

τg = 8.35 × 1010

µ
Mt

M⊕

¶−4.89

yr. (24)

We assume the next limits for ending the gas accretion process:

(i) the growth of the envelope ends when the planet consumes all
the gas available on its feeding zone

(ii) or it opens up a gap on its orbit
(iii) and finally the gas accretion ends when (dMg/dt) >

(1 M⊕/100 yr).

2.3 Planetary migration

The gravitational interaction between the embryos and the gaseous
protoplanetary disc leads to an angular momentum exchange be-
tween them and as a consequence an orbital motion or migration
of the embedded embryos occur (Goldreich & Tremaine 1980). For
low-mass planets the angular momentum flux injected into the disc
is negligible when compared to the viscous transport of angular mo-
mentum, in this case we have the type I migration regime, following
Tanaka, Takeuchi & Ward (2002) the migration rate isµ

da

dt

¶
migI

= cmigI[2.7 + 1.1β]

µ
Mt

M?

¶
6g a2

M?

µ
aÄK

cs

¶2

a ÄK,

(25)

as the time-scale for type I migration is inversely proportional to
the mass of the disc and the planet, it can be much shorter than the
disc lifetime, so the factor cmigI is introduced for considering effects
that might slow down or even stop migration without introducing a
mayor degree of complexity to the model and β has the form

β = −d log(6g)

d log(a)
= γ + (2 − γ )

µ
a

ac

¶2−γ

. (26)

When the planet reaches the mass necessary to open up a gap on its
orbit, the angular momentum flux from the planet locally dominates
the viscous flux and a new regime of planetary migration begins.
This is the type II regime, characterized by the next migration rate
(Lin & Papaloizou 1985; Lin, Bodenheimer & Richardson 1996)µ

da

dt

¶
migII

' 3sign(a − Rm)α
6g(Rm)R2

m

Mt

ÄK(Rm)

ÄK

×
µ

h(Rm)

a

¶2

aÄK(Rm), (27)

with α = 10−3 a dimensionless parameter which characterizes the
viscosity, Rm = 10 e2t/τdisc au and τ disc the disc depletion time-scale.

We assume that both migration mechanisms stop when the core
reaches the inner edge of the disc.

3 R ESULTS

We perform a series of simulations varying the density profile and
the type I migration rate and analyse which are the consequences

on the planetary formation of considering a different prescription
for the protoplanetary nebula profile and migration rates. In each
simulation we generate 1000 discs. Each system evolves for 20 Myr
and the initial conditions for each one are chosen random taking
into account the following conditions.

(i) The time-scale for the depletion of the gas has a uniform log
distribution between 106 and 107 yr.

(ii) The stellar mass has a uniform distribution in log scale in the
range of 0.7–1.4 M¯.

(iii) The distribution of metallicities of solar-like stars in the solar
neighbourhood follows a Gaussian distribution with μ = −0.02 and
dispersion 0.22 (Mordasini et al. 2009).

(iv) The total mass of the disc is well approximated by a log-
Gaussian distribution with mean −2.05 and dispersion 0.85. We
obtained this value by assuming a log-Gaussian distribution and
performed a non-linear least-squares fit to the sample observed by
Andrews et al. (2009) and Isella et al. (2009).

(v) The characteristic radius, ac, is also well approximated by a
log-Gaussian distribution with μ = 3.8 and σ = 0.18. This distribu-
tion was obtained with the same procedure described in the previous
item.

We also note that the initial number of planets per disc de-
pends on the disc size and mass as well as on the inner disc ra-
dius and the stellar mass, as is shown in Fig. 3, where the initial
number of embryos is plotted as a function of the disc mass for
the three different values of γ assumed in this work. Those discs
characterized by profile with γ = 1.5, 1 and 0.5 are shown in
Figs 3(a)–(c), respectively.

We note in the figures that the greater the mass of the disc, the
lower the initial number of embryos. This is because the separation
between the embryos is greater as the larger the initial mass of
the embryo. On the other hand, the initial mass of the embryo is
larger when the density of solids is higher and this in turn is higher
as the greater the mass of the disc is. In summary, the greater the
mass of the disc, the greater the separation between the embryos
and consequently there will be a lower initial number of planetary
cores.

Fig. 4 shows the mass and semimajor axis distribution of all the
planets that were formed in 1000 planetary systems where the effect
of planetary migration is not considered and the initial density disc
profile is γ = 1.5 (Fig. 4a), γ = 1 (Fig. 4b) and γ = 0.5 (Fig. 4c). The
first figure shows the results obtained with the profile more similar
to the MMSN model, where the solids are available just beyond the
snow line, fact that favours the formation of giant planets at this
location as we can see in the figure. This profile is also the steepest,
making more feasible the formation of a single giant planet close
to the snow line. In the second case, when γ = 1 the profile is a
bit soften, and as a consequence there are more solids available in
the outer parts of the disc, fact that promotes the formation of giant
planets further from the central star. Finally, in the last case there
are giant planets at around 15 au and even further.

As a result it is noticed that in order to form giant planets as the
ones observed in our own Solar system in their current locations, it
is more convenient to consider a protoplanetary nebula model with
a softer profile.

The next set of plots (Fig. 5) is the results when we do consider
planetary migration, but the type I planetary migration is delayed
100 times (cmigI = 0.01). Fig. 5(a) shows the distribution when
the protoplanetary nebula was modelled with a density profile with
γ = 1.5, Fig. 5(b) represents all the planets formed when γ = 1 and
Fig. 5(c) represents when γ = 0.5.
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Figure 3. Initial number of embryos per disc as a function of the disc mass:
(a) when γ = 1.5; (b) when γ = 1 and (c) when γ = 0.5.

Here we still note that the giant planet formation is favoured when
a softer profile is considered. One consequence of the planetary
migration is that a larger population of giant planets is observed.
This is due to the fact that when a planet is migrating slowly it finds
more solids available to accrete in the new feeding zone, and it
grows faster. We also note that the more massive planets are found
when γ = 1.5, this is because this profile overestimates the mass of
solids just beyond the snow line and the giant planets formed there
have more solids available than in the other cases and as a result
became bigger. Another point is that a population of giant planets
closer to the star begins to be observed, fact that was not seen when
the migration was not considered. This population of hot Jupiters
will be called hereafter population I.

If the migration is delayed only 10 times (cmig = 0.1) we found the
distribution shown in Fig. 6. Fig. 6(a) shows the mass and semimajor
axis when γ = 1.5, in Fig. 6(b) the profile is bit softer (γ = 1) and
the results with γ = 0.5 are shown in Fig. 6(c).

Although migration is very fast, still can be seen that the smaller
the γ is, the greater the chance of forming giant planets farther away
from the central star. In these distributions there are a more marked
differentiation between two populations of giant planets that had
begun to appear in Fig. 5: the population I of giant planets close to
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Figure 4. Mass and semimajor axis of all the planets formed in 1000 plan-
etary systems when the planetary migration was not considered: (a) when
γ = 1.5; (b) when γ = 1 and (c) when γ = 0.5.

the star, and another one of giant planets located beyond the ice line,
farther of the host star. Since this differentiation is not observed in
the distribution found without migration (Fig. 4), this must be an
effect caused by the orbital motion of the embryos. Those planets
that were initially located in a region reached in solids grow faster
and become giants in a time-scale shorter than the type I migration
time-scale and starts to migrate with the slower type II migration
regime, as a result, they remain close to the zone where they were
originally formed. On the other hand, we have the population of
planets which where initially located inside the ice line, closer to
the star, in this region the solids available are not enough to form
giant planets faster than the type I time-scale, so they were moved
rapidly inwards. On their path towards the star they found other
embryos to collide with and new material to grow, so they became
hot Jupiters. We note that when γ = 0.5 the population is not well
marked as in the other cases, this is because with this density profile,
the giant planets are formed in the outer parts of the disc and there
are no material available in the inner parts, so these discs do not
favoured the formation of hot Jupiters.

Finally, if we assume that there are no effects which act stopping
or slowing down the migration rate (cmigI = 1), we observe the
distribution shown in Fig. 7(a) when γ = 1.5, in Fig. 7(b) when
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Figure 5. The distribution of mass and semimajor axis of all the planets
formed when the planetary migration is considered but the type I is delayed
100 times: (a) when γ = 1.5; (b) when γ = 1 and (c) when γ = 0.5.

γ = 1 and in Fig. 7(c) when γ = 0.5. In these cases the migration
rate is faster than in the previous cases as a consequence some
planets migrate really fast, faster than the depletion time-scale, so
the cores did not have enough time to grow and remain as small
embryos. For this reason we note that the population of giant planets
decreased in comparison with the cases of slower migration rate,
and most of the planets are really close to the central star, located in
the inner edge of the disc, specially when γ = 1.5, because in this
case the planets are formed closer to the star.

3.1 Comparison with exoplanets observations

In order to know which parameters must be considered to get a
better representation of reality, in this section we compare the re-
sults obtained in our simulations with the mass and semimajor axis
distribution of observed exoplanets.

Fig. 8 shows the mass and semimajor axis distribution of observed
exoplanets1 and the four giant planets in the Solar system, which
are characterized for the biggest dots. We excluded of the sample

1 http://exoplanets.org
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Figure 6. Mass and semimajor axis of all the planets formed in 1000 plan-
etary systems when the planetary migration was delayed 10 times: (a) when
γ = 1.5; (b) when γ = 1 and (c) when γ = 0.5.

those discovered planets that orbit binary and multiple stars, since
the mechanisms of formation of these planets may not be explained
with our model.

We clearly notice in the figure two populations: one is the pop-
ulation I and the another one are those exoplanets centred about
∼3 au (population II hereafter).

Although in this work we are focused on the planetary migra-
tion as a possible explanation of these populations observed, it is
not the only mechanism proposed when trying to explain how hot
Jupiters came to be so close to their parent star: Kozai cycles and
planet scattering should provided us with an alternative explanation.
These mechanisms excite the sky-projected obliquity of the planet
and should provide us with a planet population on misaligned orbits
with respect to their star’s rotation, that it is now beginning to be
detected. In the work of Triaud et al. (2010), they present observa-
tions of some exoplanets who present these misalignments. So this
is saying that the population I could be explained by a combination
of mechanisms.

In order to get a better understanding of which are the parameters
that give us the best fit to the observations we superimposed the
observations on our results found without considering the migration
(Fig. 9) and when it is delayed, considering c = 0.01 (Fig. 10), 0.1
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Figure 7. The distribution of mass and semimajor axis formed when we do
not delayed planetary migration: (a) when γ = 1.5; (b) when γ = 1 and (c)
when γ = 0.5.

 0
 2
 4
 6
 8

 10
 12
 14

 0.01  0.1  1  10  100

M
t [

E
ar

th
 M

as
se

s]

Semi major axis  [AU]

Figure 8. The current mass and semimajor axis distribution of observed
exoplanets are shown where the giant planets in the Solar system are included
(four big dots) and the exoplanets found orbiting double or multiple stars
were excluded of the sample.

(Fig. 11) and 1 (Fig. 12) for the three values of γ analysed in this
work.

In Fig. 9 we show the overlap of the observations (exoplanets
are grey dots and black big dots are Jupiter, Saturn, Uranus and
Neptune) with the simulation results when the effect of planetary
migration is not considered. The case with γ = 1.5 is shown in
Fig. 9(a), where the simulation results fit pretty well the population II

 2
 4
 6
 8

 10
 12
 14

 0.01  0.1  1  10  100

M
t [

Ju
pi

te
r 

M
as

se
s]

Semi major axis  [au]
(a)

 2
 4
 6
 8

 10
 12
 14

 0.01  0.1  1  10  100

M
t [

Ju
pi

te
r 

M
as

se
s]

Semi major axis  [au]
(b)

 2
 4
 6
 8

 10
 12
 14

 0.01  0.1  1  10  100

M
t [

Ju
pi

te
r 

M
as

se
s]

Semi major axis  [au]
(c)

Figure 9. Mass and semimajor axis distribution obtained when planetary
migration is not considered (small black dots), the distribution of observed
exoplanets (grey dots) and the giant planets in the Solar system (the big
black dots): (a) when γ = 1.5; (b) when γ = 1 and (c) when γ = 0.5.

of exoplanets but it cannot reproduce the formation of the giant
planets in our Solar system. When γ = 1 there are more solids
available to form giant planets farther from the star and as a result
the population II of the observations can be reproduced and also
the giant planets in the Solar system. Finally when γ = 0.5 the
simulations show that the giant planets are formed preferably about
10 au, and although this allows the formation of the giant planets in
the Solar system, does not reproduce well the observed distribution
of extrasolar planets. As a conclusion, the value γ = 1, which is the
approximate medium value found by Andrews et al. (2009) on their
observations, is the best value in order to reproduce the population II
of observed exoplanets and the giant planets in the Solar system,
but it fails reproducing the population I of exoplanets.

In order to try to form the planets belonging to population I,
we introduce the effects of orbital migration of planets. Fig. 10
shows the results for different values of γ when the migration is
considered, but the type I migration was slowed down 100 times
(cmigI = 0.01). Figs 10(a)–(c) show the results when γ = 1.5, 1
and 0.5, respectively. We can notice that population I has began to
appear, but this is stronger in Figs 10(a) and (b).
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Figure 10. Mass and semimajor axis distribution of the planets found in the
simulation when the migration is delayed 100 times (small black dots), the
current distribution of exoplanets observed (grey dots) and the giant planets
in the Solar system (black big dots): (a) when γ = 1.5; (b) when γ = 1 and
(c) when γ = 0.5.

In Fig. 11 we show the overlap of the observations (plus the gi-
ant planets in the Solar system) and our simulation results when
the migration is considered and the parameter for delaying type I
migration is cmigI = 0.1. When γ = 1.5 we observe Fig. 11(a), when
γ = 1 we obtained Fig. 11(b) and with γ = 0.5 we found the overlap
shown in Fig. 11(c). As was explained in the previous section, in
these figures the same two populations noticed in the observations
appeared, which are a consequence of planetary migration. Never-
theless these two populations are best differentiated in Figs 11(a)
and (b), which means for γ = 1.5 and 1.

Although these two figures show the results that are the best fit to
the observations, the presence of a large population of very massive
giant planets (with masses larger than 5 MJupiter) is noticed here and
it is not observed. If we calculate the percentage of observed exo-
planets with masses greater than 5 MJupiter and located at a distance
≤0.4 au, we find that the 2.37 per cent of the observed exoplanets
have these characteristics, while the same percentage calculated for
the results of our simulations shows that the number of superhot
Jupiters for the case where γ = 1.5 and cmigI = 0.1 is 30.86 per cent
and the percentage is 18.58 per cent when γ = 1 and cmigI = 0.1. We
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Figure 11. Mass and semimajor axis of the giant planets in the Solar system
when planetary migration is considered and delayed 10 times (biggest black
dots), the distribution of observed extrasolar planets (grey dots) and the
simulations results (small black dots): (a) when γ = 1.5; (b) when γ = 1
and (c) when γ = 0.5.

could think that this superhot Jupiter population exists but it was not
detected yet. However, if such planets exist, they should have been
observed, since their observation is favoured by the observational
techniques, so this overpopulation must represent a limitation of
our model. We will discuss this in Section 3.2.

If there is no factor delaying type I migration the overlap of
observations and simulation results are those shown in Fig. 12.
The results obtained with γ = 1.5 are shown in Fig. 12(a), those
obtained with γ = 1 are represented in Fig. 12(b) and with γ = 0.5
are shown in Fig. 12(c). In this case we note that the migration is too
fast, and most of the planets reach the inner edge of the disc, so with
this value of cmigI we can reproduce the population I of exoplanets
observed but the population II is absent.

In summary, we find that when we do not consider planetary
migration we can only reproduce population II and when migration
is considered but it is not delayed, then only population I is repro-
duced. As a conclusion, planetary migration is a critical factor to
explain the observed distribution and we need to get a better under-
standing of the factors that act slowing down and stopping planetary
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Figure 12. Mass and semimajor axis distribution of our simulation results
when the migration is considered and it was not delayed (cmigI = 1) (small
black dots), the distribution of observed exoplanets (grey dots) and Jupiter,
Saturn, Uranus and Neptune (biggest black dots): (a) when γ = 1.5; (b)
when γ = 1 and (c) when γ = 0.5.

migration in order to get a better explanation of the planetary for-
mation process.

On the other hand, one of the main objectives of our work is to
show the importance of considering different protoplanetary nebula
profiles on giant planet formation. If we analyse which is the disc
model that better explains the observations, we found that both γ =
1.5 and 1 represent them quite well, but we choose γ = 1 as the
value that allows us to have an initial protoplanetary disc consis-
tent with the observations and capable of reproduce the exoplanets
observational sample and also the four giant planets of our Solar
system.

3.2 About the overpopulation of massive giant planets
close to the star

As discussed in the previous section, although we obtained a good
fit to the observations (Fig. 11b), we found an overabundance of
planets with masses greater than 5 MJupiter and located very close to
the central star, which are not detected observationally. In order to
try to determine the cause of this overabundance of giant planets

in the inner edge of the disc, we explored different alternatives. On
the one hand, we analysed the possibility that such planets may
have lost much of its atmosphere by erosion due to stellar winds
and as a result most of its primordial gaseous envelope has escaped.
According to Lammer et al. (2003), the mass loss of hot Jupiters due
to this effect is ∼1012 g s−1 or ∼1.5 × 10−2 MJupiter Gyr−1, which
is an important effect for objects with masses less than or equal to
Jupiter, but is irrelevant for superhot Jupiters and therefore does not
explain the observed mass excess.

On the other hand, we also analysed the possibility that the dissi-
pation of gas in the nebula has a significant effect on these superhot
Jupiters. The gaseous disc dissipates between 1 and 10 Myr (Haisch
et al. 2001; Hillenbrand 2005) due to different effects, one of them
is the viscous draining on to the central star (Hartmann et al. 1998),
although the photoevaporation is also very important (Hollenbach
et al 1994; Clarke, Gendrin & Sotomayor 2001). In this paper we
considered a simple model of gas dissipation in the disc, where the
gas dissipates exponentially but independently of the distance to the
central star, while in reality, the gaseous dissipation is much more
complicated. Clarke et al. (2001) have shown that a low level of
photoevaporative mass loss from the disc in the region between 5
and 10 au can promote the eventual rapid ’switch off’ of the disc
inward of this radius, this coincides with the epoch at which the
accretion rate through the disc falls as a consequence of viscous
draining, to a level comparable with the photoevaporative mass-
loss rate. As a result the inner disc empties faster than the rest of the
disc. These phenomena could stop the type II migration of a giant
planet already formed. So this could be one of the possible reasons
of why we do not observe very massive giant planets close to that
star. In order to explore this effect we need a more rigorous model
for the disc evolution, which will be incorporated in our following
works.

Finally, when comparing Fig. 11(b) with other plots obtained with
different values to delay the migration, there is no overpopulation
when migration is slower (Fig. 10b), so this effect could also be an
effect of the cmigI value considered.

When considering simultaneously the standard core accretion
scenario for giant planet formation and gaseous migration for the
orbital evolution, we face a serious problem. For standard disc
models, type I migration are primarily inward, and their time-scale
is at least one to two orders of magnitude shorter than the disc
lifetime (106–107 yr), which means the cores would be accreted by
the central star before they could build up any substantial gaseous
envelope. Therefore, in order to avoid being swallowed by their
central stars, the planet’s migration must be significantly slowed
down or stopped somehow, to this end we used the factor cmigI, as
was explained in Section 2.3. However the question is, how much
should we slow down planetary migration?

A number of scenarios have been proposed to solve the non-
stop migration problem: Menou & Goodman (2004) explore how
the uncertainties in the structure of protoplanetary discs may affect
type I migration rates and found that it can be significantly slowed
down at opacity transitions in the disc; Lyra et al. (2009) show
that as the surface density and temperature fall the planet orbital
migration and disc depletion time-scales eventually become com-
parable; in Paardekooper & Mellema (2006) it was shown through
three-dimensional radiation–hydrodynamic simulations that plan-
ets could suddenly move outward as well as inward, depending on
the local opacity; Matsumura, Pudritz & Thommes (2007) proposed
that the low-viscosity regions in protostellar discs (dead zones) can
significantly slow down planet orbital motion; Terquem (2003) and
Nelson & Papaloizou (2004) shown that including magnetic fields
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may slow down or even stop type I migration; Masset et. al (2006)
showed that surface density jumps in the disc can trap low-mass
protoplanets reducing the type I migration rate to the disc’s accre-
tion rate. We also add that irradiation should lead to a hole formed
by photoevaporating wind (Clarke et al. 2001; Alexander, Clarke &
Pringle 2006a,b), which quickly depletes the disc, which possibly
bring migration to an even earlier halt.

All these works show that type I migration rate strongly depends
on the exact disc conditions in the vicinity of the embedded em-
bryo. Therefore, we must be cautious about what is the cmigI value
assumed. The factor that slows down migration should be a pa-
rameter that depends on the disc conditions in the proximity of the
embryo and as such it is expected to be not a unique value for all
discs but a distribution of possible values depending on the initial
disc characteristics. We also propose that this could be a possible
solution to the problem of the overabundance observed, since the
number of massive giant planets observed in population I is strongly
dependent on the value of cmigI considered, in other words, on the
rate of type I migration assumed. So in order to have a more ap-
propriate model, we should consider a distribution of values cmigI,
taking into account the factors that inhibit the migration depends on
the disc where the planets are embedded.

4 SU M M A RY A N D C O N C L U S I O N S

In the present work we have developed a semi-analytical model
for computing planetary systems formation which is based on the
core instability model for the gas accretion of the embryos and
the oligarchic growth regime for the accretion of the solid cores.
The gas accretion model considered is a new approximation that we
obtained introducing an analytic approximation to the numerical
results found by Fortier et al. (2009).

The disc surface density profiles play a fundamental role in the
formation of giant planets and, therefore, in the formation of the
planetary system, so in order to get a clear understanding of which
are the initial conditions that allowed the formation of the observed
exoplanets and the giant planets in the Solar system we explore
different models for the initial protoplanetary nebula structure. We
assume that the gas and solid surface density are characterized by a
power law in the inner part of the disc and an exponential decay in
the outer parts, which has great advantages, one of which is that we
are not forced to arbitrarily cut the disc in order to obtained a finite
disc mass. Both discs change with time: the solid disc is locally
depleted due to the accretion of the embryos and the gas disc is
globally depleted with a time-scale between 106 and 107 yr.

In our model we assume that the embryos have an orbital motion
due to their interaction with the host star and consider two regimes
of planetary migration: type II for the larger embryos and type I for
the smaller ones, where the rate is delayed a factor cmigI in order
to represent the factors that act slowing down or even stopping
planetary migration.

With this model we consider different initial conditions to gen-
erate a variety of planetary systems and analyse the giant planets
statistically. We assumed different initial discs profiles, a large range
of discs masses and sizes according to the last results of observations
in protoplanetary discs (Andrews et al. 2009; Isella et al. 2009), dif-
ferent stars in a range between 0.7 and 1.4 M¯ and also different
values of the parameter which acts delaying type I migration. We
explore the effects in the formation of assuming different discs and
found that the observed population of exoplanets, including Jupiter,
Saturn, Uranus and Neptune, is well represented when considering
planetary migration and a surface density with a power law in the

inner part characterized by an exponent of γ = 1, which represents
a softer profile when compared with the case most similar to the
MMSN model case. Nevertheless we would like to note that de-
spite having chosen γ = 1 as the best value, in reality we should
have considered a distribution of values of γ in order to take into
account the different discs where the planetary formation can oc-
cur. However, since the media value of the observations is γ ∼ 1
(Andrews et al. 2009), the fact of not considering a distribution does
not represent a big problem in the model considered.

On the other hand, if we explore the effects of considering dif-
ferent values for delaying type I migration, we found that the best
match to the observations is obtained when we delayed it some
value between 10 and 100 times, but as noticed in Section 3.2, this
parameter depends strongly on the disc characteristics and therefore
should be taken from a distribution of values and not be a unique
value as has been considered so far in the synthetic population mod-
els. So we should have a better understanding of the factors that acts
slowing down and stopping planetary migration in order to get a
better explanation of the planetary formation process.
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