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Abstract:

The dynamics of the Buck and Sukumar model (B. Buck and C. V. Sukumar, Phys. Lett. A 81, 132 (1981))

is investigated using different semi-classical information-theory tools. Their interplay reveals somewhat
unexpected features. A new signature for the classical-quantum barrier is encountered thereby.
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1. Introduction

The generation of nonclassical light and its interaction
with matter are receiving intense attention in quantum
optics.
ties emerging from present control-technology regarding

This interest is driven by research opportuni-

atoms and electromagnetic fields. The concomitant, all im-
portant details of the matter-field interaction have been
thoroughly scrutinized, with the Jaynes-Cummings model
(JCM) playing a pivotal role [1-4]. In spite of the JCM-
simplicity, it permits a variety of generalizations, appli-
cable to distinct environments and regimes [2]. In partic-
ular, we may mention the work of Buck and Sukumar [3]
that introduced the intensity dependent JCM. Because of

*E-mail: sayedquantum@yahoo.co.uk
TE-mail: plastino@fisica.unlp.edu.ar

the commensurability of the Rabi frequencies arising from
the model's couplings, periodic revivals emerge, absent
in the original JCM, with a time-dependent state-vector
that is periodic itself. As a consequence, any expectation
value will share such feature, which leads to an enhance-
ment of certain effects that would otherwise be ignored
by JCM-practitioners [4, 5]. We wish here to revisit the
Buck-Sukumar model using information-theory tools (ITT)
so as to be in a position to, hopefully, display interesting
details of the concomitant dynamics. Our quantifiers are
Wehrl-entropy and Fisher’s information measure (FIM).
(Von Neumann'’s entropy is not an indicator of localization,
a very important concept, explained below, for our present
purposes). Additionally, the von Neumann entropy cannot
be used to measure the entanglement in mixed states. Fur-
ther, it depends on the eigenvalues of the field (atomic)
density matrix and in many cases it is quite difficult to
calculate the eigenvalues of the field density matrix.

In the present contribution our main interest lies in in-
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vestigating the temporal evolutions of the Fisher informa-
tion (FI) and Wehrl's entropy, for a single-qubit system in
the presence of an intensity dependent field and also to
compare Fl vs. Wherl descriptions. Why does this mat-
ter? Because these two measures describe (a) interesting
semiclassical physics and (b) both classical correlations
and also quantum entanglement [6-8]. The Cramer-Rao
bound, an interesting indicator as well that has not been
much utilized in the present context, is also studied. In ad-
dition, some intriguing glimpses at the classical-quantum
frontier are obtained.

The paper is organized as follows: Section 2 deals with
preliminary matters: the basic model of a single-qubit in
the presence of an intensity dependent field together with
the Wehrl entropy fundamentals, on the one hand, and
the different Fls used here on the other one. Section 3
is devoted to the discussion of our numerical results and
some conclusions are drawn in Section 4. A brief historical
summary of relevant previous work is presented in the
Appendix.

2. Preliminary materials

2.1. The model

We review below the main details for the treatment of
a two-level atom interacting with a single-mode of the
cavity field [5]. The Hamiltonian, in the rotating wave
approximation, can be written as [9]

Fi=wea’a+ 21(0)(0] = [1)(1)
+Af (a7a) (a7[1)(0] + a[0)1]), (1)

where wr is the field frequency, wa the transition fre-
quency between the upper |0) and lower state |1) of the
atom, and A the effective coupling constant. The field cre-
ation (annihilation) operator is a7 (&) while f(a47d) rep-
resents the intensity dependent function of the cavity
field mode. Restricting ourselves to the functional form
f (A)=V/a7a, the interaction Hamiltonian reads

Fy = A@T1)(0] + [0)(11), (2

where )=av/ata and T =Vataa’. The time evolution
operator for the effective Hamiltonian (2) becomes

(o) o)

sin(T 1217‘121)
i— COS(T LZ'T@)

g

3)
In this last relation T = At is the scaled time. The time
units are given by the inverse of the coupling constant A.
We assume (l) that the initial state of the system is the
product p*f (0) = p” (0) ® pf (0), with our qubit assigned
initially to the upper state, i.e., p*(0) =]0) (0|, while (I)
the field’s initial state is a coherent-one pf (0)=|a){a|=
> Cy()C; (o) ) (m, with

n,m=0

The Husimi Q—function Qf of the field-mode, in terms
of the diagonal elements of the density operator in the
coherent-state basis, is

0r (B.0)= T (B[UA O (0] B, 4)

where Try means that we trace over the atomic variables.
Next, we turn our attention to the semiclassical Wehrl-
entropy [12, 13] that describes the time evolution of a
quantum system in phase-space. This entropy, introduced
as the classical entropy of a quantum state, yields mean-
ingful insights into the dynamics of the system [12, 13]
and is defined as the coherent-state representation of the
density matrix [12, 13, 17] via

Sw () =— / 0B, 0r B.1)dB,  (5)

where d?B = |B| d|B| dO©. We can specialize things by
recourse to the Wehrl phase distribution (Wehrl PD),
defined to be the phase density of the Wehrl entropy
(18,19, 22} e,

So(f)=— / OF (B.)InQF (B 0)|BIdIB]  (6)

where © = arg(B). Here, the “phase space” of the prob-
lem has coordinates (B, ©). The Wehrl entropy was in-
tended by Wehrl to be primarily a measure of localization
in phase space [12, 13]. The opposite effect is called de-
localization [47, 48].
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2.2. Fisher Information

The Fisher information measure (FIM) for any PDF f(x)
can be cast in the fashion [31, 32]

2
- / dx f(x){alg:(x)} , (7)

and is encountered in many physical applications (see,
for instance, [33-48], and references therein). The FIM
associated to Husimi distributions Qg (Xj, X3, t) is defined
as [49]

1 o0 (oo}
lp(t):m// O (X1, Xo, T (X, Xa, )d X, dX;

_ / 0 (B, 1)T (B, 1) B, (8)

where [ (X7, X3, t) and (B, t) can be written in terms of
the phase space parameters, yielding

2

Xi, X
(X1, X2, 1) Z (ij(t —a ln(QF((an; 2. 1)

'y

)

j=1

It is shown in reference [30] that in the present circum-
stance one has

2
F(B.1)=) a3(t)
j=1

cos(e-f—f

2 *)
Z k dln(Q(B. 1))
= [k—2+B(k

1 aBk-2+ek—n| "

with

o (1) = (X, (02) = (X)), (1)
and

= / / X;Q(Xq, X2, )d X1d X;.

We also consider, as a dynamical measure, the quantity

/e(t)=—/0w Qu (B 1T (B.1)|Bld|Bl. (12)

It is worth noting that the definition (8) is given in analogy
to that of the field Wehrl entropy (the special case t=0
being /-(0) =2) so that the corresponding Fisher’s phase

distribution can be cast, in terms of the error function
erf (x) = ffoe ”dy, as

l6(0)= iﬂ exp (x — az) X
{xvVr[1 +erf (x)]f +exp (—x?) £}, (13)

where x=a cos(©) and

f,—:az—xz—i-é, j=1,2. (14)
In correlations terms the bipartite system becomes uncor-

related whenever /£(0) =~ 2, this value representing the
lower bound for /. One has

IF(0) = Sw(0) + 1 — ln, (15)

and

I6(0) = Se(0) — l;‘—: exp (—a?)

{1 + xv/m (1 + erf (x)) exp(xz)}. (16)

Equations (15) — (16) establish the connection between
Fisher’s information measure (FIM) and Wehrl's entropy at
T =0. Notice that at this time /r—lg =1—Iln ! =constant,
which is a counterintuitive result, since one expects their
sum to be approximately constant [48]. This curious result
is due to the periodicity of the evolution.

2.3. Cramer-Rao bound

The “true” informational content of FI is conveyed by the
Cramer-Rao inequality (CR). Indeed, this is its most im-
portant property, that we recapitulate in one-dimension,
for simplicity's sake. If the classical Fisher informa-
tion associated with translations of a one-dimensional

observable x with corresponding probability density f(x)

is [31, 52]
2
IX:/dxf(x) (algi(x)) , (17)

then it obeys the above referred inequality, namely

(Ax)? > 1! (18)

involving the variance of the stochastic variable x [52]
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(Ax)2=<x2)—(x)2=/dx f(x) x*— (/dx f(x)x)z. (19)

We remark that the derivative operator significantly influ-
ences the contribution of minute local f-variations to Fl's
value, so that the quantifier is called a “local” one. Note
that Wehrl's entropy decreases with skewed distributions,
while Fisher’s information increases in such a case. Local
sensitivity is useful in scenarios whose description neces-
sitates appeal to a notion of “order”.

For our present purposes we deal with a time-dependent
CR, that, in self-explanatory notation reads

IF(1)A2, (20)
where

A7 = (B?) —(B)

21
(B = 2" [ 18] Or (B.1) 1B d 8| dO, s=1,2. *)

3. Results

We start now the presentation of our numerical results.
We will see that the coherent state parameter a, rep-
resenting the square root of the mean-photon number,
greatly influences the dynamics, as can be clearly ap-
preciated in Figs. 1 that depict, respectively, Ir and Sy
as a function of T and « [(a) and (b)] together with their
projections on the a-T-plane [(c) and (d)] (T is a “scaled”
time). Both the inherent periodicity of the dynamics and

Figure 1. The time-evolution of (a, ¢) Fisher’ information I (), (b, d)
Wehrl’s entropy Sy (t), versus the scaled time T = At and
the root of the mean photon number a=+/.

the long living correlation between the single qubit and
the coherent field are clearly visible. They increase as
the photon-number grows. Both quantifiers exhibit the
periodicity of the system.

Fig. 2 is the analog of 1, but this time for the phase dis-
tributions [Cf. Eq. (12)]. It is shown that, as the time
evolution proceeds, the single peak of the initial coherent
state splits up into two peaks diverging away from each
other gradually at the time T =s. The two peaks merge
into a single peak at © =+s. Also, when T =27 the two
peaks become joined at © =0. Time periodicity is evident.
A comparison between Fig. 2(a, c) and Fig. 2(b,d) exhibits
the same behavior, although with smaller changes ensuing
at T=mmn.
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Figure 2. The Fisher's Phase Distribution /g(f) and Wehrl's Phase
Distribution Se (t) versus the scaled time T and the phase
space parameter © for a=3.

In figure 3 we plot the FI- and Wehrl- time evolutions
together with the associated X,—variance (for typograph-
ical simplicity, we set in the graphs Y =X3). One chooses
three values of the a-parameter, namely, = 1, 2, 3, re-
spectively. In order to ensure good accuracy, the behavior
of the Fisher information /-(t) has been determined us-
ing an appropriate scale so as to meaningfully compare
it to Wehrl's entropy. Fl's behavior is clearly dominated
by the variance component U)Z(Z(t) [Cf. Eg. (11)] This is
to be expected, and FIM is indeed a measure of fluctua-
tions [31]. Note the quite different numerical values taken
by FI, much larger than those of Sy,. Thus, the Fisher-
peaks become steeper than the Wehrl-ones. The highest
values attained at their peaks by both quantifiers grow
with a. Note that fluctuations also grow with a.

Fig. 4 illustrates our two quantifiers, i.e., the /¢ vs. Sy
behavior, a plot that has to be looked at while keeping in
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Figure 3. Time volution of (a) Fisher’ information /r(t), (b) Wehrl's
entropy Sw (t), and (c) variances a)z(z(t). We set Y = X;.
We also plot curves for different values of the square root
of the mean photon number a, namely, dotted curve for
a=1, dashed curve for a =2, and solid curve for a=3.
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Figure 4. lllustration of the I vs. Sy behavior for parameters values
for different values of the square root of a, where figure (a)
a=1, figure (b) a=2, and a =3 for figure (c).

mind that of the preceding figure. Since Sy is a global
measure, while FIM is a local one [47] at first sight the
behavior depicted might perhaps appear surprising, al-
though this is not really so, on the basis of the preceding
considerations related to Fig. 3. The peak-altitude grows
with a for both quantifiers, here depicted at a fixed time.
The monotonous behavior that is apparent can thus be
readily understood. Remember now the delocalization ef-
fect we have mentioned above [47], associated to Wehrl's
entropy. Delocalization in our (B, ©) increases a bit from
a=1to a=2, where it stops growing. This already is an
indication of classicality, that we expect for very large a,

since one way of reaching the classical limit is by going
over to the thermodynamic limit of infinite particle-number.
We are here encountering a seemingly bizarre scenario in
which such limit is reached with just 9 particles, though.
The route to classicality [50, 51] is thus paved by i) a grow-
ing mean photon-number (the celebrated N — oo way of
achieving classicality) and ii) a stabilization of Wehrl's
entropy. Why? because delocalization stops augmenting,
indeed, wanes as we approach the classical limit. Such
kind of scenario begins to insinuate itself at a =2 (four
photons) and becomes fully installed already at a = 3
(nine photons)! Thus, Sy cannot continue growing as a
grows, but nothing impedes /¢ to increase, as the more
information becomes available if the structure of the sys-
tem acquires additional details because more particles are

involved.
(a)
140 ! X
120 ‘
100+ R 1
80 A
[Sal- et 1
40+ q
2+ 4 e n , .
D 1 2 3 4 5 6

1+n{m) =2

Figure 5. We depict the (a) FIM and (b) Wehrl entropy behaviors
versus the square root of the mean photon number for two
different values of the scaled time T where T = /4 (solid
line) and T = /2 (dotted line).

The above considerations receive a boost via Fig. 5, that
depicts the FI-Wehrl behavior versus the mean photon
number. /¢ always grows with a entailing that, as one in-
tuitively understands, errors diminish as particle-number
grows. Wherl's measure has a peak at about a =3 and
then diminishes. This can also be understood on the basis
of preceding considerations. Sy measures our ignorance
about localization in phase-space, which, as it should, be-
comes smaller as a grows.

In Fig. 6 we display some results about the evolution of
the CR given by Eq. (20). We see that the CR product
oscillates with time and rapidly increases as o grows. At
a=1 this product almost saturates its lower bound (unity).
This fact can be regarded as confirming the prevalent idea
that quantum states “carry” more information than clas-
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(a7

Figure 6. The Cramer-Rao product /+(t)A? as a function of the
scaled time T for different values of a where the dotted
curve a=1, dashed curve a =2 and the solid curve a=3.

sical ones. Why? Because the former contain, in addi-
tion to classical correlations, also the quantum ones rep-
resented by entanglement and quantum discord (see for
instance [53]).

4. Conclusions

We have here considered, from an information-theory
viewpoint, the dynamics of a single-qubit system. Our
information-quantifiers were the Wehrl entropy, a phase-
space localization measure and Fisher's information.
These two quantities aptly illustrate on the complicated
dynamics at hand. The main characteristics of the prob-
lem are governed by the mean photon number and the
intensity dependent field.

An extensive numerical analysis was performed and illus-
trated via a variety of graphs. As one could foretell, peri-
odicity is a main feature. Long-lived correlations between
the qubit system and the coherent field are clearly ap-
preciated. The monotonous (with a) growth of the Fisher
measure as the Wehrl entropy grows is a counterintuitive
feature that has been detected. This is a surprising facet
because it is well known that whenever Fisher informa-
tion grows, Shannon or Wehrl entropies decrease [31, 48].
Notice that Fl measures gradient content [31, 48] while
Wehrl's measure is a localization-indicator [48]. How-
ever, the physics of the phenomenon can be understood.
As explained in the preceding Section, the interplay be-
tween our two quantifiers Sy and /¢ is equivalent to that
of localization (Wehrl) vs. diminution of errors (Fisher).
Rather unexpectedly, we get illuminating insights into the

emergence of classicality, in line with very recent find-
ings [54]. We seem to have discovered a new signature
of the classical-quantum barrier: a rapid growth of /¢ at
constant Sy.

Appendix: Background material

Generalities

This is an historical Section that can be omitted at a
first reading. Information-theory tools ITT have also been
the subject of much interest, in particular when they are
applied in a non-thermal setting. In this regard, von Neu-
mann’s (NE) [9], linear (LE) [10], and Shannon’s entropy
(SE) [11] have been frequently used for a variety of quan-
tum systems. It is worth mentioning that the SE involves
only the diagonal elements of the pertinent density matrix
and in some cases yields information similar to that ob-
tained from either the NE or LE measures. Other impor-
tant entropic-scenario involve semiclassical physics and
one employs there the phase-space field Wehrl entropy
(FWE) [12, 13].

Some relevant previous work on quantum op-
tics

The FWE has been successfully applied in descriptions
of different properties of quantum optical fields, such as
phase-space uncertainty [14, 15], decoherence [16, 17], etc.,
a theme that will be the focus of our endeavor in this
work. As a consequence, we are led to the concept of
Wehrl phase distribution (WPD), that has been exten-
sively developed and shown to be a successful indicator of
both noise (phase-space uncertainty) and phase random-
ization [18, 19]. Furthermore, the FWE has been fruit-
fully applied to dynamical systems. In this respect we
must mention that the FWE-time evolution in the case of
the Jaynes-Cummings model has been thoroughly inves-
tigated in [17, 20, 21]. The FWE i) turns out to be more
apt for distinguishing amongst states than the NE [18, 19]
and ii) is known to yield helpful information on atomic
inversion processes. Indeed, FWE-studies of the canoni-
cal setting in which a single-trapped ion interacts with a
laser field (with different field configurations) have been
considered in [22]. We also know now that both (1) the
fluctuations of the laser phase and (2) the initial-state
setting play important roles concerning the evolution of
quantifiers like the Husimi Q—function, Wehrl's entropy
and Wehrl's phase distribution [22].

A rather different functional of the probability distribu-
tion function (PDF), called Fisher’s information (FI) [23]
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was also invoked here. FI was originally introduced by
Fisher [23] as a measure of “intrinsic accuracy” in sta-
tistical estimation theory. We will concern ourselves in
this communication with the Fl-version constructed with
the semi-classical Husimi probability distribution function
(PDF) [24-26]. It has been shown in [27] that FI can be
used for evaluating the accuracy limits of a quantum mea-
surement because it provides one with meaningful error
estimates, even in the case of highly nonclassical regimes.
This is due to the fact that variances are used to quan-
tify the error in quantum measurements (variances and Fl
are intimately linked via the Cramer-Rao bound [23]). The
relation between the so-called atomic Fisher information
(AF1) and different entanglement measures such as von
Neumann’s, linear, and atomic Wehrl's entropy has been
analyzed in [28], whose authors found that the entangle-
ment of a two-level atom can be measured by them. Also,
Fl is used to measure the correlation between the quan-
tized field and a Kerr medium [29]. A still new application
for Fl is found in [30]: it can be employed as an informa-
tion quantifier for the description of the weak field versus
strong field dynamics in the case of a trapped ion in a laser
field. Ref. [30] compared Fl, as an information quantifier,
with von Neumann’s and Wehrl's entropies, and provided
some analytical Fl-results.
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