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                   Introduction 

 Prenatal growth is a dynamic process determined by the 
interaction of exogenous (including nutrition, infection, and 
toxicity) and endogenous (genetics) factors, all of which affect 
cellular proliferation and differentiation and consequently the 
formation of tissues and organs. These processes occur more 
rapidly  in utero  than during any other period of ontogeny, 
making this stage of development one of the most vulnerable 
to injury ( Godfrey and Barker, 1995 ;  Schneider  et al. , 1999 ; 
 Kuzawa and Quinn, 2009 ). Environmental conditions 
experienced early in life can profoundly in uence the biology 
and long-term health of an organism ( Kuzawa, 2007 ). 

 An adequate increase of uterine blood  ow throughout 
gestation is essential for uterine, placental ,  and f o etal 
growth. Thus, uterine blood  ow is inextricably linked to 
f o etal growth and survival ( Lang  et al. , 2003 ). Most of the 
cases of intrauterine growth retardation (IUGR) result from 
restrictions to the placental delivery of nutrients as a 
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 SUMMARY     The    goal of this study was to analyse the effect of growth hormone (GH) on catch-up growth 
of functional facial (splanchnocranial) and neurocranial components in rats with intrauterine growth 
retardation (IUGR). Wistar rats were divided into the following groups: control (C), sham-operated (SH), 
IUGR, and IUGR + GH. IUGR was surgically induced and GH was administered between 21 and 60 days of 
age. Radiographs were obtained at 1, 21, 42, 63, and 84 days of age in order to measure length, width, and 
height of neurocranium (NL, NW, and NH) and face length, width, and height (FL, FW, and FH). Analysis 
of variance was perfomed at 1 day of age and a principal components analysis (PCA) at 84 days of age. 
Neurocranial and facial volumetric indexes were calculated as NVI =  3   NL × NW × NH and FVI =  3   FL × 
FW × FH, respectively, and adjusted by non-linear regression analysis. On postnatal day 1, there were 
signifi cant differences between SH and IUGR ( P  < 0.01). Also, in both genders, fi nal neurocranial volume 
was similar between SH and IUGR + GH groups, while the IUGR group had the lower value ( P  < 0.01). 
Final facial volume was similar among the three groups. In both genders, facial growth rates were 
SH = IUGR > IUGR + GH ( P  < 0.01). The fi rst axis of the PCA exhibited size effect and the second axis showed 
shape effect. Reductions of placental blood fl ow modify cranial growth. The functional neurocranial and 
facial components in rats with IUGR presented different recovery strategies through modular behaviour, 
mainly related to modifi cations of growth rate as response to GH administration.   

consequence of de ciencies in maternal nutrition, reductions 
in  utero placental blood  ow, and/or malfunctioning of the 
placenta ( Cross  et al. , 1994 ;  Godfrey  et al. , 1996 ). 

 Two main patterns of f o etal growth restriction are observed. 
When f o etal growth is impaired during the  rst or second 
trimester, the infant will have symmetric growth restriction. 
This proportional lack of growth is caused by reduced 
f o etal cellular proliferation of all organs. In contrast, 
asymmetric growth, in which an infant has smaller 
abdominal size compared to head size, will occur if the 
decrease in growth velocity happens in the last trimester. 
This head-sparing phenomenon is the most common form 
of IUGR and is attributed to the ability of the f o etus to 
adapt, redistributing its cardiac output to the spleen, adrenal, 
coronary, and cerebral circulations. Although some overlap 
can occur, the timing of growth delay is more important than 
 aetiology  in determining the pattern of growth restriction 
( Lin  et al. , 1991 ;  Brodsky and Christou, 2004 ). 
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 In addition to being a major factor in stillbirth, IUGR has 
serious consequences for babies who survive. IUGR is 
associated with increased risk of premature birth ,  increased 
morbidity and mortality among premature neonates ,  hypoxic 
brain injury and its long-term sequelae, and the need for 
respiratory support and chronic lung disease ( Garite  et al. , 
2004 ). In later life, growth-restricted infants are at increased 
risk of various disorders, including obesity, diabetes ,  and 
ischaemic heart disease ( Cox and Marton, 2009 ). 

 Dentists and orthodontists who treat  growth- retarded 
patients must realize that most of these children have a 
delay in dentofacial development and in dental maturation 
and that the facial proportions can be thoroughly different 
from those of normal patients ( van Erum  et al. , 1997 ). 
Studies of craniofacial growth in children with reduced 
somatic growth because of different origin have shown that 
several facial structures are smaller, as could be expected. 
However, growth retardation does not affect all structures 
to the same extent, which results in an abnormal facial 
morphology ( Kjellberg  et al. , 2000 ). 

 Catch-up growth may be de ned as growth velocity 
above the statistical limits of normality for age and/or 
maturity during a de ned period of time following a 
transient period of growth inhibition. The effect of catch-up 
growth is to bring a child  towards , or in  favourable 
 circumstances, right up to its otherwise normal developmental 
curve ( Williams  et al. , 1974 ;  Williams, 1981 ). The use of 
 growth hormone ( GH )  in IUGR, as evidenced in experimental 
models, results in catch-up growth observed in total body 
weight ( Guimarey  et al. , 2003 ). In growing children, 
although GH supplementation to augment their stature 
has become relatively common, the effects of this practice 
on the growth of the craniofacial complex are not well 
understood ( Singleton  et al. , 2006  ;   Glen  et al. , 2008 ). It is 
known that in the craniofacial complex, this hormone 
regulates cartilage formation and accelerates craniofacial 
growth in children ( van Erum  et al. , 1997 ). On the other 
hand,  Rice  et al.  (1997) , in an experimental study, using 
mice treated and untreated with human  GH , reported the 
existence of catch-up growth of skull after the time when 
normal and dwarf mice, do not usually show any substantial 
growth. These authors also reported that catch-up growth is 
an example of both re-stimulated and prolonged growth 
beyond the time when normal growth has stopped. In this 
case, the treatment was particularly effective on nasal, 
maxillary ,  and mandibular lengths, elements due largely to 
endochondral ossi cation. However, the effect of the GH 
on the size of skull bones and how this action affects their 
relationships have not been studied. 

 Because human studies can be limited by small sample 
sizes, cross-sectional designs, uncontrolled variables, and 
often retrospective nature, animal models have been used to 
obtain more rigorous analyses ( Nathanielsz, 2006 ;  Singleton 
 et al. , 2006 ). In this sense, during the last decades, IUGR 
has been studied through experimental models. Many of 

these models used ligation of uterine vessels in gestating 
rats as a means to produce the retarded state and are relevant 
for questions related to human gestation ( Wigglesworth, 
1964 ;  Ogata  et al. , 1985 ;  Oyhenart  et al. , 1998 ;  Huizinga 
 et al. , 2004 ,  Vuguin, 2007 ). 

 This study presents a longitudinal analysis of morphological 
changes occurred in the skull of pups from mother rats with 
reduced blood  ow during gestation, utilizing a functional 
craniofacial model. The skull is a highly complex integrated 
region of the skeleton that contains diverse organs and carries 
out numerous dynamic functions, some of which involve 
mechanical forces that affect multiple regions. It comprises 
different components that perform speci c functions  —  vision, 
audition, olfaction, breathing, mastication,  and  neural 
integration ( Moss and Young, 1960 ;  Moss, 1973 ). Such 
functions are maintained through the shape and size changes 
brought about during ontogenetic development ( Moss and 
Young, 1960 ;  Moss, 1997 ;  Hallgrímsson  et al. , 2007 ). 

 Particularly, we evaluated the following hypotheses:  1.  if 
a reduction of blood  ow determines growth retardation, it 
will have effects on the two major functional components 
and  2.  if the growth retardation continues during the post 
lactation period, the GH treatment will promote catch-up 
growth.  

  Materials and  m ethods 

 Wistar rats ( Rattus norvegicus albinus ), raised at the 
Instituto de Genética Veterinaria (IGEVET, Facultad 
de Ciencias Veterinarias, CCT La Plata- CONICET ), 
were maintained as an outbred colony. The animals were 
kept free of pathogens and treated in compliance with 
standardized institutional guidelines. They were housed in 
solid stainless   steel cages at a room temperature ranging 
from 21 to 25°C and a 12:12 h our  photoperiod (lights on 
at 06:00 a.m.). The animals were fed on a pelleted and 
sterilized commercial stock diet containing proteins (23    per 
cent ), carbohydrates (44    per cent ), lipids (11    per cent ), 
water (8    per cent ),   bre  (5    per cent ), ash (5    per cent ), 
minerals (3  per cent ), and a vitamin mix (1    per cent ). When 
the rats reached adulthood (70 days), they were mated 
overnight. Beginning of pregnancy was determined by 
presence of spermatozoa in vaginal smears. Pregnant rats 
were housed in individual steel cages, fed on a stock diet  ad 
libitum , and assigned to one of three experimental groups: 
 control  (C),  i ntrauterine  growth   retarded  (IUGR), and 
 sham -operated (SH). Control dams did not receive any 
treatment. A lower midline laparotomy under ether  anaesthesia 
 was done on the pregnant females of the IUGR group at day 
14 of gestation. The arteries near the lower end of each 
uterine horn were partially ligated with a 3-0 – silk suture 
( Oyhenart  et al. , 1998 ). Pregnancy was allowed to proceed 
until delivery. The SH dams were subjected to laparotomy, 
but without vessel bending, in order to isolate the effects of 
surgery from those of vessel ligation. 
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a reduction of blood  ow determines growth retardation, it 
will have effects on the two major functional components 
and  2.  if the growth retardation continues during the post 
lactation period, the GH treatment will promote catch-up 
growth.  

  Materials and  m ethods 

 Wistar rats ( Rattus norvegicus albinus ), raised at the 
Instituto de Genética Veterinaria (IGEVET, Facultad 
de Ciencias Veterinarias, CCT La Plata- CONICET ), 
were maintained as an outbred colony. The animals were 
kept free of pathogens and treated in compliance with 
standardized institutional guidelines. They were housed in 
solid stainless   steel cages at a room temperature ranging 
from 21 to 25°C and a 12:12 h our  photoperiod (lights on 
at 06:00 a.m.). The animals were fed on a pelleted and 
sterilized commercial stock diet containing proteins (23    per 
cent ), carbohydrates (44    per cent ), lipids (11    per cent ), 
water (8    per cent ),   bre  (5    per cent ), ash (5    per cent ), 
minerals (3  per cent ), and a vitamin mix (1    per cent ). When 
the rats reached adulthood (70 days), they were mated 
overnight. Beginning of pregnancy was determined by 
presence of spermatozoa in vaginal smears. Pregnant rats 
were housed in individual steel cages, fed on a stock diet  ad 
libitum , and assigned to one of three experimental groups: 
 control  (C),  i ntrauterine  growth   retarded  (IUGR), and 
 sham -operated (SH). Control dams did not receive any 
treatment. A lower midline laparotomy under ether  anaesthesia 
 was done on the pregnant females of the IUGR group at day 
14 of gestation. The arteries near the lower end of each 
uterine horn were partially ligated with a 3-0 – silk suture 
( Oyhenart  et al. , 1998 ). Pregnancy was allowed to proceed 
until delivery. The SH dams were subjected to laparotomy, 
but without vessel bending, in order to isolate the effects of 
surgery from those of vessel ligation. 
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 After delivery, IUGR (37 males and 31 females) and SH 
(15 males and 15 females) pups were  cross  -fostered  to well 
nourished control dams. Control pups (16 males and 15 
females) continued lactation with their own mothers. 
A standard diet was available  ad libitum  to the mothers. The 
IUGR group was divided into two subgroups: non-treated 
IUGR (14 males and 14 females) and IUGR   +   GH (23 
males and 17 females) ,  which were injected subcutaneously 
with GH (3.0 mg/kg/day of Genotropin®) between 21 and 
60 days old.  SH  pups were injected with only the hormonal 
vehicle with the same doses and periodicity as those for the 
IUGR   +   GH group. 

 After weaning, all the animals were fed a stock diet  ad 
libitum .   This experimental protocol was approved by the 
UNLP ethics committee for animal research. 

  Measurements 

 Males and females of each group were X-rayed under light 
ether  anaesthesia  at 1, 21, 42, 63, and 84 days of age in 
order to obtain the longitudinal data for each animal. After 
sedation, the rats were oriented in a cephalostat and 
radiographed in  dorso ventral and lateral planes with a 

   
 Figure 1  �     Radiography    of rat skull showing measurements used in this 
study    .    

Siemens Heliophos 4 at 240 mA/125 kV. Shoots were 
regulated at 100 mA, 0.02 seg, 40 – 50 kW (according to the 
age of the animal). AGFA Mamoray MR5-II, 18  ×    24 cm 
 lm was used for the radiographs. A 110   cm focus  –   lm 
distance was used to reduce the magni cation effect, 
calculated as MgC = Bx/Ax, where MgC is the magni cation 
coef cient, Ax a variable measured on the 84th day 
radiograph, and Bx the same variable measured on the skull 
( Pucciarelli  et al. , 2001 ). The length, width, and height of 
major neurocranial (NL, NW,  and  NH) and facial (FL, FW, 
 and  FH) components were measured on each radiograph 
with a Fowler Max-Cal Digitrix caliper (0.01 mm accuracy ; 
  Figure 1 ). All measurements were made by one author 
(F.A.Q.), which precluded interobserver differences. 
Intraobserver repeatability was assessed by remeasuring 20 
randomly selected cases per age (15    per cent  of the total 
sample). Intraobserver error was calculated using the 
Dahlberg statistic:  √ ( ∑  d  2 /2 n ), where  d  2  is the quadratic 
difference between pairs of repeated measurements and 
 n  the number of pairs of measurements. This statistic is 
expressed in  millimetres  and can be interpreted as the average 
disparity between measurement sessions. Intraobserver error 
was less than 0.1 mm for all variables.     

 To estimate the size variations of the major components 
with respect to age and  gender , volumetric indices were 
calculated as follows:  neurocranial   index  (VNI)   =  3  √ NL  × 
 NW  ×    NH;  facial   index  (VFI)=  3  √ FL  ×  FW  ×  FH ( Cesani 
 et al. , 2006 ).  

  Statistical  a nalysis 

 The data corresponding to neurocranial and facial lengths, 
widths, and heights were processed statistically by analysis 
of variance (ANOVA) and the values for  nal age (day 84) 
by principal components analysis (PCA). In order to avoid 
the full-size differences between males and females and 
according to the patterns of sexual dimorphism exhibited by 
this species ( Hughes and Tanner, 1970 ;  Jansson  et al. , 1983 ; 
 Rol De Lama  et al. , 2001 ), data for each gender were 
 analysed  through separate PCAs. 

  Table 1  �     Analysis of variance ( ANOVA )  test for neurocranial and facial variables on postnatal day 1.  

  Neurocranial Facial 

 Neurocranial length Neurocranial weight Neurocranial height Facial length Facial weight Facial height 

  F -value  P  F -value  P  F -value  P  F -value  P  F -value  P F-value  P   

  Intercept 43265.74 ** 32445.61 ** 26269.45 ** 3245.87 ** 8973.94 ** 4618.79 ** 
 Gender 0.41 ns 0.01 ns 0.45 ns 0.18 ns 1.01 ns 0.01 ns 
 Treatment 37.93 ** 6.94 ** 24.17 ** 1.87 ns 32.29 ** 0.20 ns 
 Gender × treatment 5.28 ** 0.26 ns 0.12 ns 0.02 ns 4.25 ** 0.87 ns  

  Control, sham, and intrauterine growth retardation (IUGR) animals. ns, not signi cant.  
  *  P     <   0.05 ,  **  P     <   0.01 .    
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 The volumetric indices were  analysed  by non - linear  
 regression curves, adjusted to: y = e  a + b /x . The parameter  a  
estimated in this model was the value for maximum growth, 
while the reciprocal of age represented the growth rate; with 
e  a   being the size of the  nal neurocranial component,  b  the 
growth rate, and  e  the base in Napierian logarithms. 
Differences in the neurocranial and facial volumetric indices 
among the groups studied, with the control group as reference, 
were calculated based on the estimations made in this model.   

  Results 

 The  ANOVA  on postnatal day 1 showed highly signi cant 
differences in neurocranial length, width ,  and height and 
facial width between treatments ( Table 1 ). The  post     hoc  
analysis revealed signi cant differences in neurocranial 
length between C and SH of both  genders  ( Table 2 ). 
Consequently, the SH animals were chosen as the reference 
group. Moreover, IUGR males and females evinced 
signi cant growth retardation in both neurocranial (length 
and height) and facial (length and width) components; 
in addition, females exhibited signi cant differences in 
neurocranial width ( Table 2 ).         

  Table 3  presents the mean and standard deviation of 
neurocranial and facial volume from day 1 through 84.     

  Table 4  summarizes the results from non - linear   regression 
analysis of neurocranial and facial volumes. In both  genders , 
 nal neurocranial volume did not exhibit signi cant 
differences between the animals of the SH and IUGR   +   GH 
groups, with the IUGR group having a lower value. On the 
other hand, there was no difference in the growth rates of 
the neurocranium between SH and IUGR animals. In 
contrast, IUGR   +   GH showed signi cant slower growth 
than the SH group. Final facial volume did not exhibit 
signi cant differences among the three groups; however, 
growth rates were different because the SH group presented 
higher values than the IUGR and IUGR   +   GH rats.  Figure 2  
shows the differences between the means of neurocranial 
and facial volumetric indices, estimated by the regression 
model, for the pairs SH  –  IUGR and SH  –  IUGR   +   GH.         

 In males, the  rst PCA axis accounted for 50.0  per cent  of 
the total variance with an eigenvalue of 1.19, and all 
variables correlated positively with this axis (with the 
exception of facial length), thus re ecting a strong effect of 
size on separating the different treatment groups (SH   = 
IUGR   +   GH > IUGR). The second axis summarized 24.8  
  per cent  of the remaining variance with an eigenvalue of 
0.59, thus indicating shape variation ( Table 5 ,  Figure 3 ).         

 In females, the  rst PCA axis accumulated 47.8  per cent  
of the total variance with an eigenvalue of 1.03, separating 
the treatment groups (SH   = IUGR   +   GH > IUGR) and 
showing positive correlation with all the variables, i.e. 
effect of size. The second axis captured 30.6  per cent  of the 
remaining variance with an eigenvalue of 0.66, expressing 
shape variation ( Table 5 ,  Figure 4 ).        Ta
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 After delivery, IUGR (37 males and 31 females) and SH 
(15 males and 15 females) pups were  cross  -fostered  to well 
nourished control dams. Control pups (16 males and 15 
females) continued lactation with their own mothers. 
A standard diet was available  ad libitum  to the mothers. The 
IUGR group was divided into two subgroups: non-treated 
IUGR (14 males and 14 females) and IUGR   +   GH (23 
males and 17 females) ,  which were injected subcutaneously 
with GH (3.0 mg/kg/day of Genotropin®) between 21 and 
60 days old.  SH  pups were injected with only the hormonal 
vehicle with the same doses and periodicity as those for the 
IUGR   +   GH group. 

 After weaning, all the animals were fed a stock diet  ad 
libitum .   This experimental protocol was approved by the 
UNLP ethics committee for animal research. 

  Measurements 

 Males and females of each group were X-rayed under light 
ether  anaesthesia  at 1, 21, 42, 63, and 84 days of age in 
order to obtain the longitudinal data for each animal. After 
sedation, the rats were oriented in a cephalostat and 
radiographed in  dorso ventral and lateral planes with a 

   
 Figure 1  �     Radiography    of rat skull showing measurements used in this 
study    .    

Siemens Heliophos 4 at 240 mA/125 kV. Shoots were 
regulated at 100 mA, 0.02 seg, 40 – 50 kW (according to the 
age of the animal). AGFA Mamoray MR5-II, 18  ×    24 cm 
 lm was used for the radiographs. A 110   cm focus  –   lm 
distance was used to reduce the magni cation effect, 
calculated as MgC = Bx/Ax, where MgC is the magni cation 
coef cient, Ax a variable measured on the 84th day 
radiograph, and Bx the same variable measured on the skull 
( Pucciarelli  et al. , 2001 ). The length, width, and height of 
major neurocranial (NL, NW,  and  NH) and facial (FL, FW, 
 and  FH) components were measured on each radiograph 
with a Fowler Max-Cal Digitrix caliper (0.01 mm accuracy ; 
  Figure 1 ). All measurements were made by one author 
(F.A.Q.), which precluded interobserver differences. 
Intraobserver repeatability was assessed by remeasuring 20 
randomly selected cases per age (15    per cent  of the total 
sample). Intraobserver error was calculated using the 
Dahlberg statistic:  √ ( ∑  d  2 /2 n ), where  d  2  is the quadratic 
difference between pairs of repeated measurements and 
 n  the number of pairs of measurements. This statistic is 
expressed in  millimetres  and can be interpreted as the average 
disparity between measurement sessions. Intraobserver error 
was less than 0.1 mm for all variables.     

 To estimate the size variations of the major components 
with respect to age and  gender , volumetric indices were 
calculated as follows:  neurocranial   index  (VNI)   =  3  √ NL  × 
 NW  ×    NH;  facial   index  (VFI)=  3  √ FL  ×  FW  ×  FH ( Cesani 
 et al. , 2006 ).  

  Statistical  a nalysis 

 The data corresponding to neurocranial and facial lengths, 
widths, and heights were processed statistically by analysis 
of variance (ANOVA) and the values for  nal age (day 84) 
by principal components analysis (PCA). In order to avoid 
the full-size differences between males and females and 
according to the patterns of sexual dimorphism exhibited by 
this species ( Hughes and Tanner, 1970 ;  Jansson  et al. , 1983 ; 
 Rol De Lama  et al. , 2001 ), data for each gender were 
 analysed  through separate PCAs. 

  Table 1  �     Analysis of variance ( ANOVA )  test for neurocranial and facial variables on postnatal day 1.  

  Neurocranial Facial 

 Neurocranial length Neurocranial weight Neurocranial height Facial length Facial weight Facial height 

  F -value  P  F -value  P  F -value  P  F -value  P  F -value  P F-value  P   

  Intercept 43265.74 ** 32445.61 ** 26269.45 ** 3245.87 ** 8973.94 ** 4618.79 ** 
 Gender 0.41 ns 0.01 ns 0.45 ns 0.18 ns 1.01 ns 0.01 ns 
 Treatment 37.93 ** 6.94 ** 24.17 ** 1.87 ns 32.29 ** 0.20 ns 
 Gender × treatment 5.28 ** 0.26 ns 0.12 ns 0.02 ns 4.25 ** 0.87 ns  

  Control, sham, and intrauterine growth retardation (IUGR) animals. ns, not signi cant.  
  *  P     <   0.05 ,  **  P     <   0.01 .    

F. A. QUINTERO ET AL.4 of 9

 The volumetric indices were  analysed  by non - linear  
 regression curves, adjusted to: y = e  a + b /x . The parameter  a  
estimated in this model was the value for maximum growth, 
while the reciprocal of age represented the growth rate; with 
e  a   being the size of the  nal neurocranial component,  b  the 
growth rate, and  e  the base in Napierian logarithms. 
Differences in the neurocranial and facial volumetric indices 
among the groups studied, with the control group as reference, 
were calculated based on the estimations made in this model.   

  Results 

 The  ANOVA  on postnatal day 1 showed highly signi cant 
differences in neurocranial length, width ,  and height and 
facial width between treatments ( Table 1 ). The  post     hoc  
analysis revealed signi cant differences in neurocranial 
length between C and SH of both  genders  ( Table 2 ). 
Consequently, the SH animals were chosen as the reference 
group. Moreover, IUGR males and females evinced 
signi cant growth retardation in both neurocranial (length 
and height) and facial (length and width) components; 
in addition, females exhibited signi cant differences in 
neurocranial width ( Table 2 ).         

  Table 3  presents the mean and standard deviation of 
neurocranial and facial volume from day 1 through 84.     

  Table 4  summarizes the results from non - linear   regression 
analysis of neurocranial and facial volumes. In both  genders , 
 nal neurocranial volume did not exhibit signi cant 
differences between the animals of the SH and IUGR   +   GH 
groups, with the IUGR group having a lower value. On the 
other hand, there was no difference in the growth rates of 
the neurocranium between SH and IUGR animals. In 
contrast, IUGR   +   GH showed signi cant slower growth 
than the SH group. Final facial volume did not exhibit 
signi cant differences among the three groups; however, 
growth rates were different because the SH group presented 
higher values than the IUGR and IUGR   +   GH rats.  Figure 2  
shows the differences between the means of neurocranial 
and facial volumetric indices, estimated by the regression 
model, for the pairs SH  –  IUGR and SH  –  IUGR   +   GH.         

 In males, the  rst PCA axis accounted for 50.0  per cent  of 
the total variance with an eigenvalue of 1.19, and all 
variables correlated positively with this axis (with the 
exception of facial length), thus re ecting a strong effect of 
size on separating the different treatment groups (SH   = 
IUGR   +   GH > IUGR). The second axis summarized 24.8  
  per cent  of the remaining variance with an eigenvalue of 
0.59, thus indicating shape variation ( Table 5 ,  Figure 3 ).         

 In females, the  rst PCA axis accumulated 47.8  per cent  
of the total variance with an eigenvalue of 1.03, separating 
the treatment groups (SH   = IUGR   +   GH > IUGR) and 
showing positive correlation with all the variables, i.e. 
effect of size. The second axis captured 30.6  per cent  of the 
remaining variance with an eigenvalue of 0.66, expressing 
shape variation ( Table 5 ,  Figure 4 ).        Ta
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  Discussion 

 Functional cranial components can be differentially altered 
by environmental factors. As a result, the facial component 
appears to be more susceptible than the neurocranial one 
( Pucciarelli, 1981 ;  Fields, 1991 ). Accordingly, previous 
reports have indicated that IUGR rats, whose mothers had 

their uterine vessels ligated at the beginning of gestation, 
showed more signi cant facial than neurocranial growth 
retardation ( Oyhenart  et al. , 1998 ). In this case, the ligation 
was made during the last third of gestation, and growth 
retardation affected both these major components. Thus, 
this discrepancy might have arisen as a consequence of 
differences in timing of the prenatal stress period. 

  Table 3  �    Mean and standard deviation  (SD)  of neurocranial and facial volume from the day 1 at 84 day. IUGR, Intrauterine growth retardation.  

  Edad Neurocranial volume Facial volume 

 Sham IUGR IUGR + growth 
hormone (GH)

IUGR + Ca Sham IUGR IUGR + GH IUGR + Ca 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD  

  Males 
   �  1 30.94 0.73 29.75 1.05  —  —  —  — 16.21 0.77 15.31 1.44  —  —  —  —  
   �  21 48.53 0.98 46.85 1.06 47.42 1.43 46.94 1.18 27.25 0.73 26.20 0.98 26.24 0.98 26.14 1.37 
   �  42 54.41 0.91 52.90 1.06 53.19 1.34 53.19 0.86 34.99 1.25 34.24 1.03 34.07 1.38 33.34 0.92 
   �  63 57.89 0.75 56.40 1.38 57.01 1.18 56.74 0.66 39.86 1.16 39.08 0.80 39.30 1.01 38.24 1.28 
   �  84 60.29 0.81 58.06 1.52 59.32 1.31 58.40 0.88 42.51 1.10 42.05 1.41 41.47 0.97 40.83 1.18 
 Females 
   �  1 31.11 0.65 29.28 1.12  —  —  —  — 16.21 0.85 14.89 1.52  —  —  —  —  
   �  21 48.46 0.87 45.88 1.59 46.38 1.20 46.87 1.02 27.09 1.08 26.01 1.33 25.33 0.88 24.45 1.41 
   �  42 53.53 0.78 51.96 0.75 52.76 0.61 53.03 1.12 34.78 0.99 33.79 0.90 33.99 0.80 33.83 1.12 
   �  63 55.90 1.16 54.06 0.69 55.35 0.49 55.87 1.15 38.42 1.19 37.83 1.15 38.19 0.82 38.43 0.88 
   �  84 57.39 1.20 55.59 0.92 57.48 0.89 57.72 0.89 40.51 1.43 40.21 0.78 40.27 0.83 40.87 1.00  

  Table 4  �    Non-linear   regression analysis of neurocranial and facial volumes on postnatal day      84 .   

  Neurocranial volume Facial volume 

 Residual standard error: 0.02995  −  multiple  R  2 : 0.9826, 
adjusted  R  2 : 0.9822  −   F. : 2455 ( P  value: < 2.2 × 10  − 16 )

Residual error standard: 0.05171  −  multiple  R  2 : 0.9807, 
adjusted  R  2 : 0.9803  −   F. : 2209 ( P  value: < 2.2 × 10  − 16 ) 

 Estimate Standard error  T  value Pr (>| t |) Estimate Standard error  T  value Pr (>| t |)  

  Intercept (volume) 3043 0.006 471 � 978 <2 × 10  − 16 *** 2823 0.011 253 � 580 <2 × 10  − 16 *** 
 Gender 0.041 0.009 4551 6.78 × 10  − 6 *** 0.040 0.015 2559 0.010* 
 Growth rate  − 0.721 0.011  − 60 � 493 <2 × 10  − 16 ***  − 1186 0.020  − 57 � 660 <2 × 10  − 16 *** 
 Maximum volume  
   �   Intrauterine growth 

retardation (IUGR)
 − 0.024 0.009  − 2641 0.008** 0.001 0.016 0.069 0.945 

   �   IUGR + growth 
hormone (GH)

 − 0.009 0.008  − 1065 0.287 0.003 0.015 0.259 0.795 

 Gender  
   �  Growth rate  − 0.051 0.016  − 3030 0.002**  − 0.043 0.029  − 1490 0.136 
   �  IUGR  − 0.003 0.013  − 0.283 0.777  − 0.008 0.022  − 0.359 0.719 
   �  IUGR + GH  − 0.003 0.012  − 0.279 0.780  − 0.015 0.020  − 0.738 0.460 
 Growth rate  
   �  IUGR  − 0.024 0.016  − 1517 0.130  − 0.078 0.029  − 2650 0.008** 
   �  IUGR + GH  − 0.034 0.017  − 2000 0.046   *  − 0.083 0.028  − 2950 0.003** 
 Interaction  
   �   Gender + IUGR + 

growth rate
0.022 0.024 0.917 0.359 0.026 0.041 0.645 0.519 

   �  Gender + IUGR + 
GH + growth rate

0.005 0.022 0.242 0.809 0.039 0.038 1016 0.310  

  R 2  (R squared) = coef cient of determination; F = F-statistic - goodness of  t.  
   *  P  > 0.01,  **  P  > 0.001,  ***  P  > 0.000.   
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 According to  Woodall  et al.  (1996)  and  Oyhenart  et al.  
(2002) , neurofacial proportions evidence a strong effect 
of IUGR. Our results agree with earlier  ndings reported 
by  Quintero  et al.  (2005)  in which intrauterine  growth-
 retarded rats showed signi cant cranial allometric 
effects. Because the skull size of IUGR animals does 
not reach normal values, it is assumed that it does not 
recover by itself. The lack of growth recovery in IUGR 
has been associated with multiple causes, including 
growth rate during the very  rst months of life ( Karlberg 
and Albertsson-Wikland, 1995 ), individual variability, 
nutritional circumstances ( Stanley and Speidel, 1985 ), 
and endocrine dysfunctions such as insuf cient secretion 
of  GH  or low somatomedin activity ( Hokken-Koelega 
 et al. , 1995 ). 

   
 Figure 2  �     Plots of estimated differences in the neurocranial and facial volumetric indices between   sham-operated (SH)   –
 intrauterine growth retardation (IUGR) and SH   – IUGR + growth hormone (GH) groups. Continuous line: SH group compared 
with IUGR group;   dashed line: SH group compared with IUGR + GH group; VNI  , volumetric neurocranial index; VFI  ,  
volumetric facial index.    

  Table 5  �    Principal   components analysis for neurocranial and 
facial variables on postnatal day 84 .   

  Males Females 

 Axis 1 Axis 2 Axis 1 Axis 2  

  Eigenvalue 1.187 0.589 1.032 0.661 
 Percentage 50.002 24.817 47.76 30.607 
 Cumulative percentage 50.002 74.819 47.76 78.367 
 PCA variable loadings 
   �  Neurocranial length 0.913  − 0.115 0.902  − 0.393 
   �  Neurocranial width 0.199 0.131 0.187 0.187 
   �  Neurocranial height 0.194  − 0.014 0.137 0.135 
   �  Facial length  − 0.013 0.921 0.329 0.861 
   �  Facial width 0.184 0.311 0.020  − 0.176 
   �  Face height 0.234 0.156 0.155 0.140  
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  Discussion 

 Functional cranial components can be differentially altered 
by environmental factors. As a result, the facial component 
appears to be more susceptible than the neurocranial one 
( Pucciarelli, 1981 ;  Fields, 1991 ). Accordingly, previous 
reports have indicated that IUGR rats, whose mothers had 

their uterine vessels ligated at the beginning of gestation, 
showed more signi cant facial than neurocranial growth 
retardation ( Oyhenart  et al. , 1998 ). In this case, the ligation 
was made during the last third of gestation, and growth 
retardation affected both these major components. Thus, 
this discrepancy might have arisen as a consequence of 
differences in timing of the prenatal stress period. 

  Table 3  �    Mean and standard deviation  (SD)  of neurocranial and facial volume from the day 1 at 84 day. IUGR, Intrauterine growth retardation.  

  Edad Neurocranial volume Facial volume 

 Sham IUGR IUGR + growth 
hormone (GH)

IUGR + Ca Sham IUGR IUGR + GH IUGR + Ca 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD  

  Males 
   �  1 30.94 0.73 29.75 1.05  —  —  —  — 16.21 0.77 15.31 1.44  —  —  —  —  
   �  21 48.53 0.98 46.85 1.06 47.42 1.43 46.94 1.18 27.25 0.73 26.20 0.98 26.24 0.98 26.14 1.37 
   �  42 54.41 0.91 52.90 1.06 53.19 1.34 53.19 0.86 34.99 1.25 34.24 1.03 34.07 1.38 33.34 0.92 
   �  63 57.89 0.75 56.40 1.38 57.01 1.18 56.74 0.66 39.86 1.16 39.08 0.80 39.30 1.01 38.24 1.28 
   �  84 60.29 0.81 58.06 1.52 59.32 1.31 58.40 0.88 42.51 1.10 42.05 1.41 41.47 0.97 40.83 1.18 
 Females 
   �  1 31.11 0.65 29.28 1.12  —  —  —  — 16.21 0.85 14.89 1.52  —  —  —  —  
   �  21 48.46 0.87 45.88 1.59 46.38 1.20 46.87 1.02 27.09 1.08 26.01 1.33 25.33 0.88 24.45 1.41 
   �  42 53.53 0.78 51.96 0.75 52.76 0.61 53.03 1.12 34.78 0.99 33.79 0.90 33.99 0.80 33.83 1.12 
   �  63 55.90 1.16 54.06 0.69 55.35 0.49 55.87 1.15 38.42 1.19 37.83 1.15 38.19 0.82 38.43 0.88 
   �  84 57.39 1.20 55.59 0.92 57.48 0.89 57.72 0.89 40.51 1.43 40.21 0.78 40.27 0.83 40.87 1.00  

  Table 4  �    Non-linear   regression analysis of neurocranial and facial volumes on postnatal day      84 .   

  Neurocranial volume Facial volume 

 Residual standard error: 0.02995  −  multiple  R  2 : 0.9826, 
adjusted  R  2 : 0.9822  −   F. : 2455 ( P  value: < 2.2 × 10  − 16 )

Residual error standard: 0.05171  −  multiple  R  2 : 0.9807, 
adjusted  R  2 : 0.9803  −   F. : 2209 ( P  value: < 2.2 × 10  − 16 ) 

 Estimate Standard error  T  value Pr (>| t |) Estimate Standard error  T  value Pr (>| t |)  

  Intercept (volume) 3043 0.006 471 � 978 <2 × 10  − 16 *** 2823 0.011 253 � 580 <2 × 10  − 16 *** 
 Gender 0.041 0.009 4551 6.78 × 10  − 6 *** 0.040 0.015 2559 0.010* 
 Growth rate  − 0.721 0.011  − 60 � 493 <2 × 10  − 16 ***  − 1186 0.020  − 57 � 660 <2 × 10  − 16 *** 
 Maximum volume  
   �   Intrauterine growth 

retardation (IUGR)
 − 0.024 0.009  − 2641 0.008** 0.001 0.016 0.069 0.945 

   �   IUGR + growth 
hormone (GH)

 − 0.009 0.008  − 1065 0.287 0.003 0.015 0.259 0.795 

 Gender  
   �  Growth rate  − 0.051 0.016  − 3030 0.002**  − 0.043 0.029  − 1490 0.136 
   �  IUGR  − 0.003 0.013  − 0.283 0.777  − 0.008 0.022  − 0.359 0.719 
   �  IUGR + GH  − 0.003 0.012  − 0.279 0.780  − 0.015 0.020  − 0.738 0.460 
 Growth rate  
   �  IUGR  − 0.024 0.016  − 1517 0.130  − 0.078 0.029  − 2650 0.008** 
   �  IUGR + GH  − 0.034 0.017  − 2000 0.046   *  − 0.083 0.028  − 2950 0.003** 
 Interaction  
   �   Gender + IUGR + 

growth rate
0.022 0.024 0.917 0.359 0.026 0.041 0.645 0.519 

   �  Gender + IUGR + 
GH + growth rate

0.005 0.022 0.242 0.809 0.039 0.038 1016 0.310  

  R 2  (R squared) = coef cient of determination; F = F-statistic - goodness of  t.  
   *  P  > 0.01,  **  P  > 0.001,  ***  P  > 0.000.   
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 According to  Woodall  et al.  (1996)  and  Oyhenart  et al.  
(2002) , neurofacial proportions evidence a strong effect 
of IUGR. Our results agree with earlier  ndings reported 
by  Quintero  et al.  (2005)  in which intrauterine  growth-
 retarded rats showed signi cant cranial allometric 
effects. Because the skull size of IUGR animals does 
not reach normal values, it is assumed that it does not 
recover by itself. The lack of growth recovery in IUGR 
has been associated with multiple causes, including 
growth rate during the very  rst months of life ( Karlberg 
and Albertsson-Wikland, 1995 ), individual variability, 
nutritional circumstances ( Stanley and Speidel, 1985 ), 
and endocrine dysfunctions such as insuf cient secretion 
of  GH  or low somatomedin activity ( Hokken-Koelega 
 et al. , 1995 ). 

   
 Figure 2  �     Plots of estimated differences in the neurocranial and facial volumetric indices between   sham-operated (SH)   –
 intrauterine growth retardation (IUGR) and SH   – IUGR + growth hormone (GH) groups. Continuous line: SH group compared 
with IUGR group;   dashed line: SH group compared with IUGR + GH group; VNI  , volumetric neurocranial index; VFI  ,  
volumetric facial index.    

  Table 5  �    Principal   components analysis for neurocranial and 
facial variables on postnatal day 84 .   

  Males Females 

 Axis 1 Axis 2 Axis 1 Axis 2  

  Eigenvalue 1.187 0.589 1.032 0.661 
 Percentage 50.002 24.817 47.76 30.607 
 Cumulative percentage 50.002 74.819 47.76 78.367 
 PCA variable loadings 
   �  Neurocranial length 0.913  − 0.115 0.902  − 0.393 
   �  Neurocranial width 0.199 0.131 0.187 0.187 
   �  Neurocranial height 0.194  − 0.014 0.137 0.135 
   �  Facial length  − 0.013 0.921 0.329 0.861 
   �  Facial width 0.184 0.311 0.020  − 0.176 
   �  Face height 0.234 0.156 0.155 0.140  
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like the facial component, showed a decrease in growth 
rate. These  ndings indicated that both the neurocranial 
and  the  facial functional components displayed different 
potential for growth   recovery, probably linked to GH 
therapy. It has been suggested that depending on the timing 
of GH supplementation, there is potential for change in 
proportions or shape of the craniofacial complex ( Singleton 
 et al. , 2006 ). In this sense,  Vandeberg  et al.  (2004)  reported 
that the relative maturity of different segments was able 
to limit skull growth. Consequently, different craniofacial 
morphologies may result depending on the timing of GH 
supplementation therapy. Also,  Glen  et al . (2008) , in an 
experimental model of early GH supplementation on growth 
of the craniofacial complex, demonstrated that GH normal 
animals respond differently to GH supplementation than 
animals with a GH de ciency. 

 Although the prenatal development of vertebrates consists 
of a highly ordered process, it can become fragmented into 
relatively dissociated processes. This fragmentation, know 
as modularity, allows independent adaptation of different 
functions in the absence of interference with each other 
( Bonner, 1988 ;  Raff, 1996 ;  Polly  et al. , 2001 ). In this way, 
each functional module can be modi ed differentially 
by environmental in uences and exhibits an individual 
potential for recovery. 

 Several authors have proposed that the neurocranium, the 
facial skull, and the cranial base behave as separate modules, 
showing variation with a certain degree of independence 
( Lieberman  et al. , 2000 ;  Hallgrímsson  et al. , 2004 ). Both 
the allometric effect observed in the skull of IUGR rats and 
the differing responses of the two major components in 
relation to the application of GH could be regarded as the 
result of a complex adaptive process. Each module shows 
a different developmental phenotypic reaction to early 
intrauterine injury and GH treatment. The effect of GH is 
also known to be different in different regions of the skull 
( Ramirez Yañez  et al. , 2005 ). 

 Accordingly, it is proposed that the phenotypic plasticity 
of prenatal development allows mammals to delay or 
accelerate development depending on environmental 
conditions ( Amiel Tison  et al. , 2004 ). Postnatal development 
exhibits greater capacity than  in utero  development for 
varying over time. Nevertheless, changes  in utero  are very 
important since the adverse intrauterine environment results 
in prenatal  re programming due to epigenetic mechanisms 
( Krause  et al. , 2009 ;  Vehaskari, 2010 ). This capacity to 
modulate development in response to the environment is 
considered an early acquisition in evolutionary terms 
( Amiel Tison  et al. , 2004 ). 

 We conclude that a reduction of placental blood  ow in 
rats modi es the cranial growth and its functional neurocranial 
and facial components. The skull of IUGR animals exhibits 
modular  behaviour  with different recovery strategies. 
Neurocranial growth exhibits a catch-up response only 
through the action of GH, changing the timing of growth. 

   
 Figure 3  �     Plots of principal component scores for males. First and second 
components. Control animals (triangles)  ,   sham animals (  squares)  , and 
intrauterine growth retardation (IUGR) animals (circles).     

   
 Figure 4  �     Plots of principal component scores for females. First and 
second components. Control animals (triangles)  ,   sham animals (  squares)  , 
and intrauterine growth retardation (IUGR) animals (circles).     

 Analysis of the pattern of cranial dimensions in this 
experiment revealed the occurrence of differential catch-up 
in the volumes of the two functional components. The 
volume of the facial component was recovered in both 
IUGR and IUGR   +   GH groups. However, they both showed 
a decrease in the growth rate and a change in the timing 
of growth. The volume of the neurocranial component, 
however, was only regained after GH supplementation, but 
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Facial growth, in contrast, displays a catch-up development 
in IUGR animals, treated and untreated with GH, changing 
the growth rate. Furthermore, these results are relevant 
for pediatrics, orthodontics, and biological anthropology 
among other areas, in relation to the regulatory mechanisms 
of craniofacial growth and  growth- retarded children treated 
with GH. 
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like the facial component, showed a decrease in growth 
rate. These  ndings indicated that both the neurocranial 
and  the  facial functional components displayed different 
potential for growth   recovery, probably linked to GH 
therapy. It has been suggested that depending on the timing 
of GH supplementation, there is potential for change in 
proportions or shape of the craniofacial complex ( Singleton 
 et al. , 2006 ). In this sense,  Vandeberg  et al.  (2004)  reported 
that the relative maturity of different segments was able 
to limit skull growth. Consequently, different craniofacial 
morphologies may result depending on the timing of GH 
supplementation therapy. Also,  Glen  et al . (2008) , in an 
experimental model of early GH supplementation on growth 
of the craniofacial complex, demonstrated that GH normal 
animals respond differently to GH supplementation than 
animals with a GH de ciency. 

 Although the prenatal development of vertebrates consists 
of a highly ordered process, it can become fragmented into 
relatively dissociated processes. This fragmentation, know 
as modularity, allows independent adaptation of different 
functions in the absence of interference with each other 
( Bonner, 1988 ;  Raff, 1996 ;  Polly  et al. , 2001 ). In this way, 
each functional module can be modi ed differentially 
by environmental in uences and exhibits an individual 
potential for recovery. 

 Several authors have proposed that the neurocranium, the 
facial skull, and the cranial base behave as separate modules, 
showing variation with a certain degree of independence 
( Lieberman  et al. , 2000 ;  Hallgrímsson  et al. , 2004 ). Both 
the allometric effect observed in the skull of IUGR rats and 
the differing responses of the two major components in 
relation to the application of GH could be regarded as the 
result of a complex adaptive process. Each module shows 
a different developmental phenotypic reaction to early 
intrauterine injury and GH treatment. The effect of GH is 
also known to be different in different regions of the skull 
( Ramirez Yañez  et al. , 2005 ). 

 Accordingly, it is proposed that the phenotypic plasticity 
of prenatal development allows mammals to delay or 
accelerate development depending on environmental 
conditions ( Amiel Tison  et al. , 2004 ). Postnatal development 
exhibits greater capacity than  in utero  development for 
varying over time. Nevertheless, changes  in utero  are very 
important since the adverse intrauterine environment results 
in prenatal  re programming due to epigenetic mechanisms 
( Krause  et al. , 2009 ;  Vehaskari, 2010 ). This capacity to 
modulate development in response to the environment is 
considered an early acquisition in evolutionary terms 
( Amiel Tison  et al. , 2004 ). 

 We conclude that a reduction of placental blood  ow in 
rats modi es the cranial growth and its functional neurocranial 
and facial components. The skull of IUGR animals exhibits 
modular  behaviour  with different recovery strategies. 
Neurocranial growth exhibits a catch-up response only 
through the action of GH, changing the timing of growth. 

   
 Figure 3  �     Plots of principal component scores for males. First and second 
components. Control animals (triangles)  ,   sham animals (  squares)  , and 
intrauterine growth retardation (IUGR) animals (circles).     

   
 Figure 4  �     Plots of principal component scores for females. First and 
second components. Control animals (triangles)  ,   sham animals (  squares)  , 
and intrauterine growth retardation (IUGR) animals (circles).     

 Analysis of the pattern of cranial dimensions in this 
experiment revealed the occurrence of differential catch-up 
in the volumes of the two functional components. The 
volume of the facial component was recovered in both 
IUGR and IUGR   +   GH groups. However, they both showed 
a decrease in the growth rate and a change in the timing 
of growth. The volume of the neurocranial component, 
however, was only regained after GH supplementation, but 
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Facial growth, in contrast, displays a catch-up development 
in IUGR animals, treated and untreated with GH, changing 
the growth rate. Furthermore, these results are relevant 
for pediatrics, orthodontics, and biological anthropology 
among other areas, in relation to the regulatory mechanisms 
of craniofacial growth and  growth- retarded children treated 
with GH. 
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