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Abstract

Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on
H, a min–max representation of the shorted operator (or Schur complement) of B to S is obtained under
compatibility hypotheses. Also, an extension of Pekarev’s formula is given.
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1. Introduction

Let H be a (complex) Hilbert space and L(H) be the algebra of bounded linear operators
on H. Given a positive (semidefinite) operator A ∈ L(H), the shorted operator of A to a closed
subspace S of H is defined as

A/S = max{X ∈ L(H) : 0 6 X 6 A, R(X) ⊆ S⊥},
where the maximum is taken in the natural order of positive operators.
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Although the above definition is due to Anderson Jr. and Trapp [2], Krein proved the existence
of this maximum previously, in his work about the theory of extensions of Hermitian operators
[13]. Also in [2] the shorted operator A/S was characterized as the greatest lower bound of a set:

A/S = inf
N(Q)=S

Q∗AQ,

where Q ∈ L(H) is a projection. Later, Pekarev [16] obtained an explicit formula for A/S in
terms of the square root of A and the orthogonal projection onto M⊥:

A/S = A1/2PM⊥A1/2,

where M is the closure of the subspace A1/2(S).
There are definitions of shorted operators (or Schur complements) for broader classes of

bounded operators, see for example [3,4]. In particular, given a closed subspace S of H, Ando
[3] defined the Schur complement of S-complementable bounded operators. Then, Corach et
al. [8] shown that a selfadjoint operator B ∈ L(H) is S-complementable if and only if the pair
(B,S) is compatible, i.e. there exists a projection P ∈ L(H) with range S which is selfadjoint
respect to the sesquilinear form induced by B:

hx, yiB = hBx, yi, x, y ∈ H.

Under this hypothesis, the Schur complement of B to S is given by B/S = B(I − P). Fur-
thermore, they shown that, if A ∈ L(H) is positive, the pair (A,S) is compatible if and only
if

A/S = min
N(Q)=S

Q∗AQ,

where Q ∈ L(H) is a projection.
Following these ideas, Massey and Stojanoff [15] showed that, given a selfadjoint operator

B ∈ L(H) and a B-nonnegative closed subspace S of H (i.e. hBx, xi ≥ 0 for every x ∈ S), if
(B,S) is compatible then

B/S = min
N(Q)=S

Q∗BQ,

where Q ∈ L(H) is a projection.
The purpose of this work is to show that, given a selfadjoint operator B ∈ L(H) and a closed

subspace S of H such that (B,S) is compatible,

B/S = min
N(Q+)=S+

�
max

N(Q−)=S−
Q∗+(Q∗−BQ−)Q+

�
,

where Q± are projections in L(H), S = S+ u S− is a suitable decomposition of S with
B-definite subspaces S± and the natural order induced by the cone L(H)+ is considered.

We also obtain an extension of Pekarev’s formula for selfadjoint operators: if (B,S) is com-
patible then

B/S = JA1/2PJ(M⊥)kMA1/2,

where B = JA is the polar decomposition of B (with A positive and J = J ∗ = J−1) and
PJ(M⊥)kM is the (possibly unbounded) projection with range J (M⊥) and nullspace M.

Section 2 contains the preliminaries; mostly results concerning compatibility conditions and
the definition of the shorted operator of a bounded operator given by Ando. For the proof of these
results see [7–9,14].
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Section 3 is devoted to prove the above mentioned min–max representation of the shorted of
a selfadjoint operator B to a B-indefinite subspace S. It is divided in three subsections. The
first one deals with extremal characterizations of the shorted operator to B-definite subspaces. In
Section 3.2 conditions for shorting a shorted operator are given and the shorted operator B/S to a
B-indefinite subspace S is shown to be equal to (B/S+)/S− , where S = S+ ⊕ S− is a suitable
decomposition of the subspace S. Finally, the min–max representation of the shorted operator is
presented.

Given a selfadjoint operator B ∈ L(H) and a closed subspace S of H which are compatible,
a generalization of Pekarev’s formula is developed in Section 4. Also, this formula allows to
extend Ando’s definition of shorted operators to a broader class of selfadjoint operators, namely,
those for which the operator given by the formula is well defined and bounded. Furthermore, it is
shown that the sharper descriptions of the range and nullspace of the shorted operator obtained
in [9] hold only under compatibility hypothesis.

2. Preliminaries

Along this work H denotes a (complex, separable) Hilbert space with inner product h, i. Given
two Hilbert spaces H and K, L(H,K) is the algebra of bounded linear operators from H into
K and L(H) = L(H,H). If T ∈ L(H) then T ∗ denotes the adjoint operator of T , R(T ) stands
for the range of T and N(T ) for its nullspace.

Given a Hilbert space H, let L(H)+ be the cone of (semidefinite) positive operators in L(H),
L(H)s be the (real) vector space of selfadjoint operators in L(H) and denote by Q the set of
projections in L(H), i.e., Q = {Q ∈ L(H) : Q2 = Q}. If S and T are two (closed) subspaces
of H, denote by S u T the direct sum of S and T, S ⊕ T the (direct) orthogonal sum of
them and S 	 T = S ∩ (S ∩ T)⊥. If H = S u T, the oblique projection onto S along T,
PSkT, is the projection with R(PSkT) = S and N(PSkT) = T. In particular, PS = PSkS⊥ is
the orthogonal projection onto S.

Given B ∈ L(H)s consider the sesquilinear form in H × H defined by

hx, yiB = hBx, yi, for x, y ∈ H.

If S is a closed subspace of H and B ∈ L(H)s , the B-orthogonal subspace to S is given by

S⊥B :={x ∈ H : hx, siB = 0 for every s ∈ S}.
It holds that S⊥B = B−1(S⊥) = B(S)⊥.

A vector x ∈ H is B-positive if hx, xiB > 0. A subspaceS ofH is B-positive if every x ∈ S,
x /= 0 is a B-positive vector. B-nonnegative, B-neutral, B-negative and B-nonpositive vectors
(and subspaces) are defined analogously.

An operator T ∈ L(H) is B-selfadjoint if hT x, yiB = hx, T yiB for every x, y ∈ H. It is easy
to see that T satisfies this condition if and only if BT = T ∗B. The operator T ∈ L(H) is B-
positive if hT x, xiB > 0 for every x ∈ H, i.e. BT is a (semidefinite) positive operator. B-neutral
and B-negative operators are defined in a similar way.

Definition 2.1. Let B ∈ L(H)s andS be a closed subspace ofH. The pair (B,S) is compatible
if there exists a B-selfadjoint projection with range S, i.e. if the set

P(B,S) = {Q ∈ Q : R(Q) = S, BQ = Q∗B}
is not empty.
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A projection Q is B-selfadjoint if and only if its nullspace satisfies the inclusion N(Q) ⊆
R(Q)⊥B . Then, (B,S) is compatible if and only if

H = S + B−1(S⊥).

In this case it holds that S ∩ B(S)⊥ = S ∩ N(B). Given a compatible pair (B,S), define
N = S ∩ N(B). Since H = S u (B(S)⊥ 	 N), consider the oblique projection

PB,S :=PSkB(S)⊥	N. (2.1)

Observe that PB,S ∈ P(B,S) because R(PB,S) = S and N(PB,S) ⊆ B(S)⊥. Moreover, if
N = {0} then P(B,S) = {PB,S}.

Lemma 2.2. LetB ∈ L(H)s ,Sbe a closed subspace ofHandN = S ∩ N(B).Then, (B,S 	
N) is compatible if and only if (B,S) is compatible.

See [14] for the proofs of these facts. An operator T ∈ L(H) is a B-contraction if hT x, T xiB 6
hx, xiB . It is easy to see that T is a B-contraction if and only if T ∗BT 6 B. An operator T ∈ L(H)

is a B-expansion if hT x, T xiB > hx, xiB (i.e. T ∗BT > B) and T is a B-isometry if hT x, T xiB =
hx, xiB (i.e. T ∗BT = B).

Hassi and Nordström characterized those projections which are B-contractive (see [11, Section
3, Proposition 5]). A similar result holds for B-expansive projections.

Proposition 2.3. If Q ∈ Q then the following conditions are equivalent:

(1) Q is B-contractive;
(2) Q is B-selfadjoint and N(Q) is B-nonnegative;
(3) I − Q is B-positive.

The following paragraphs introduce the notion of shorted operator for selfadjoint operators
acting on a Hilbert space H.

Definition 2.4 (Ando). Given an operator T ∈ L(H) and a closed subspace S of H, T is S-
complementable if there exist operators Ml, Mr ∈ L(H) such that:

(1) MlP = Ml and MlT P = T P ;
(2) PMr = Mr and PT Mr = PT ;

where P = PS is the orthogonal projection onto S.

In this case, T Mr only depends on T and S. Therefore, the compression of T to S is defined
as TS = T Mr and the generalized Schur complement of T to S as T/S = T (I − Mr), see [3].

In [8] it was shown that, if B ∈ L(H)s and S is a closed subspace of H, B is S-comple-
mentable if and only if the pair (B,S) is compatible. Moreover, it was proved that, if (B,S)

is compatible and Q ∈ P(B,S), then Mr = Q and Ml = Q∗ satisfy the S-complementability
definition. Therefore,

BS = BQ and B/S = B(I − Q). (2.2)

Observe that these operators are selfadjoint because Q is a B-selfadjoint projection.
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3. A min–max representation for shorted operators

If A is a positive operator, the shorted operator of A to S satisfies that

A/S = inf{Q∗AQ : Q ∈ Q, N(Q) = S}
(see [2]). Furthermore, given B ∈ L(H)s and a B-nonnegative closed subspace S of H, it was
shown in [15] that, if (B,S) is compatible then

B/S = min{Q∗BQ : Q ∈ Q, N(Q) = S}.
The aim of this section is to generalize this formula for any closed subspace S of H such that
(B,S) is compatible.

3.1. Extremality of the shorted operator for definite subspaces

Along this section S is a B-definite subspace. Propositions 3.1 and 3.5 were partially stated
in [15]. Although the results in this section are announced for every B-definite subspace, we only
present the proof of the B-positive case.

Proposition 3.1. Let (B,S) be compatible. Then,

(1) B/S = min6{Q∗BQ : Q ∈ Q, N(Q) = S} if and only if S is B-nonnegative.
(2) B/S = max6{Q∗BQ : Q ∈ Q, N(Q) = S} if and only if S is B-nonpositive.

Proof. Suppose that (B,S) is compatible andS isB-nonnegative. By Eqs. (2.1) and (2.2),B/S =
B(I − PB,S) = (I − PB,S)∗B(I − PB,S), then it is clear thatB/S ∈ {Q∗BQ : Q ∈ Q, N(Q) =
S}.

Given Q ∈ Q with N(Q) = S, consider E = I − Q. Then, if x ∈ H,

hBQx, Qxi = hx − Ex, x − ExiB
= hPB,Sx + (I − PB,S)x − Ex, PB,Sx + (I − PB,S)x − ExiB
= h(I − PB,S)x, (I − PB,S)xiB + hPB,Sx − Ex, PB,Sx − ExiB
> hB/Sx, xi.

Therefore, Q∗BQ > B/S.
Conversely, suppose that B/S = min6{Q∗BQ : Q ∈ Q, N(Q) = S}. Then, given x ∈ H\S

and s ∈ S, there exists E ∈ Q with R(E) = S such that Ex = s so that

hB/Sx, xi 6 hB(I − E)x, (I − E)xi = hB(x − s), x − si
= hB((x − PB,Sx) + (PB,Sx − s)), (x − PB,Sx) + (PB,Sx − s)i
= hB(x − PB,Sx), x − PB,Sxi + hB(PB,Sx − s), PB,Sx − si
= hB/Sx, xi + hB(PB,Sx − s), PB,Sx − si for every s ∈ S,

i.e. hB(PB,Sx − s), PB,Sx − si > 0 for every s ∈ S, or equivalently, S is B-nonnegative. �
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Proposition 3.2. Let B ∈ L(H)s and suppose that the pair (B,S) is compatible. Then, the
following conditions are equivalent:

(1) B/S ∈ L(H)+;
(2) N(Q) is B-nonnegative for some Q ∈ P(B,S);
(3) B−1(S⊥) is a B-nonnegative subspace of H.

Proof. (1) ⇔ (2): Let Q ∈ P(B,S), by Eq. (2.2) we have that B/S = B(I − Q). If x ∈ H,

hB/Sx, xi = hB(I − Q)x, xi = h(I − Q)x, (I − Q)xiB. (3.1)

Therefore, B/S ∈ L(H)+ if and only if R(I − Q) = N(Q) is B-nonnegative.
(2) ⇔ (3): Observe that, for any projection Q ∈ P(B,S), N(Q) ⊥B N, B−1(S⊥) =

N(Q) u N and N is a B-neutral subspace of H. Therefore, N(Q) is B-nonnegative if and
only if B−1(S⊥) is B-nonnegative. �

The following is a consequence of Propositions 3.1 and 3.2.

Corollary 3.3. Let S be a closed subspace of H and B ∈ L(H)s such that the pair (B,S) is
compatible. Then, B ∈ L(H)+ if and only if B/S ∈ L(H)+ and S is B-nonnegative.

Remark 3.4. Given a Hermitian block matrix M =
�

A C

C∗ D

�
(with A ∈ Ck×k , C ∈ Ck×m and

D ∈ Cm×m) the Schur complement of M in A is defined as M/A = D − C∗A†C, where A†

stands for the Moore–Penrose inverse of A. In [1], Albert showed that M is semidefinite positive
(which we denote by M > 0) if and only if A > 0, M/A > 0 and N(A) ⊆ N(C∗) (or equivalently,
R(C) ⊆ R(A)). See also [6, Section 2.1] and [10, Theorem 1.10].

Since shorted operators are an infinite dimensional generalization of Schur complements, the
above corollary can be understood as an extension of [1, Theorem 1] (recall that, in [7], it was
proven that (B,S) is compatible if and only if R(b) ⊆ R(a), where

B =
�

a b

b∗ c

�

is the matrix representation of B induced by S). See Corollary 2 (to Theorem 1.7) in [17] for a
similar result in this direction.

If A ∈ L(H)+ and S is a closed subspace of H, the shorted operator of A to S was defined as

AS = max
6

{X ∈ L(H)+ : X 6 A, R(X) ⊆ S⊥}
(see [13,2]). Given B ∈ L(H)s and a closed subspace S of H, consider the sets

M−(B,S⊥) = {X ∈ L(H)s : X 6 B, R(X) ⊆ S⊥},
M+(B,S⊥) = {X ∈ L(H)s : B 6 X, R(X) ⊆ S⊥}.

Proposition 3.5. Let (B,S) be a compatible pair. Then,

(1) S is B-nonnegative if and only if B/S = max6 M−(B,S⊥).

(2) S is B-nonpositive if and only if B/S = min6 M+(B,S⊥).
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Proof. Suppose that S is B-nonnegative. Then, if Q = I − PB,S it follows, by Proposition 2.3,
that Q is B-contractive. Therefore, by Eq. (2.2), B/S = BQ = Q∗BQ 6 B and R(B/S) ⊆ S⊥,
i.e. B/S ∈ M−(B,S⊥). Furthermore, if X ∈ M−(B,S⊥) then X = Q∗X = XQ = Q∗XQ 6
Q∗BQ = BQ = B/S. Thus, B/S = max6 M−(B,S⊥).

Conversely, suppose that B/S = max6 M−(B,S⊥). Then, since R(B/S) ⊆ S⊥, B/S =
Q∗B/SQ 6 Q∗BQ, for every Q ∈ Qwith N(Q) = S. On the other hand, B/S = (I − PB,S)∗B
(I − PB,S). Therefore,

B/S = min
6

{Q∗BQ : Q ∈ Q, N(Q) = S}.
Applying Proposition 3.1 it follows that S is B-nonnegative. �

3.2. Shorting shorted operators

Given a selfadjoint operator B ∈ L(H) and two closed subspaces S1 and S2 of H, we are
interested in obtaining (whenever it is possible) the shorted operator to S2 of B/S1 and compare
it with the shorted operator to S1 of B/S2 .

First, we need to prove that B/T = B/S	N for a family of subspaces of H.

Lemma 3.6. Let B ∈ L(H)s and S be a closed subspace of H. If (B,S) is compatible and T
is a closed subspace of H such that

S 	 N ⊆ T ⊆ S + N(B)

then (B,T) is compatible and B/T = B/S	N.

Proof. Suppose that (B,S) is compatible. Then, by Lemma 2.2, (B,S 	 N) is compatible. Ob-
serve that H = S 	 N + B(S)⊥ ⊆ T + B(T)⊥ because B(T) = B(S 	 N). Therefore,
(B,T) is compatible.

It only remains to prove that B/T = B/S	N. Notice that R(I − PB,S	N) = N(PB,S	N) =
B(S 	 N)⊥ = B(T)⊥ = N(PB,T) u T ∩ N(B). Then, BPB,T(I − PB,S	N)=0 and BT=
BPB,T = BPB,TPB,S	N = BPB,S	N = BS	N. Therefore, B/T = B/S	N. �

Proposition 3.7. Let B ∈ L(H)s and consider two closed subspaces S1,S2 of H such that
S1 ⊥B S2 and (B,Si ) is compatible for i = 1, 2. Then, (B/Si

,Sj ) is compatible and

P(B,Sj ) = P(B/Si
,Sj ) (f or i /= j).

Proof. Suppose that (B,Si ) is compatible and consider Qi ∈ P(B,Si ), for i = 1, 2. Since
S1 ⊥B S2 it follows that BQiQj = Q∗

i BQj = 0 if i /= j . Therefore,

B/Si
Qj = B(I − Qi)Qj = BQj(I − Qi) = Q∗

jB/Si
,

i.e. Qj ∈ P(B/Si
,Sj ). The other inclusion follows in a similar way. �

Proposition 3.8. Let B ∈ L(H)s and consider two closed subspaces S1,S2 of H such that
S1 ⊥B S2,S = S1 u S2 is closed and (B,Si ) is compatible for i = 1, 2. Then, (B,S) is
compatible and

B/S = (B/S1)/S2 = (B/S2)/S1 .
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Proof. Consider N1 = S1 ∩ N(B). Observe that N1 ∩ S2 = {0} and N1 + S2 is a closed
subspace of B(S1)

⊥. If T1 = B(S1)
⊥ 	 (N1 + S2), then T1 + S2 is closed and T1 +

N1 + S2 = B(S1)
⊥. Let Q1 = PS1kT1+S2 , notice that Q1 ∈ P(B,S1) and Q1P = 0 for

every P ∈ Q with R(P ) = S2.
Analogously, consider N2 = S2 ∩ N(B), T2 = B(S2)

⊥ 	 (N2 + S1) and Q2 =
PS2kT2+S1 ∈ P(B,S2). Therefore, Q = Q1 + Q2 ∈ Q satisfies BQ = Q∗B and R(Q) = S,
i.e. (B,S) is compatible. Noticing that I − Q = (I − Q1)(I − Q2), it holds that

B/S=B(I − Q)=B(I − Q1)(I − Q2)=B/S1(I − Q2)=B/S1(I − Q2)=(B/S1)/S2 .

Analogously, B/S = (B/S2)/S1 . �

To obtain a representation of B/S for a general closed subspace S, we decompose S as
S = S+ u S−, where S+ is a B-nonegative subspace and S− is a B-nonpositive subspace.

The following theorem is a rewriting of the decomposition of B-selfadjoint projections given
in [14]. See [14, Theorem 5.1 and Proposition 5.2] for the proof.

Theorem 3.9. Let S be a closed subspace of H. Then, (B,S) is compatible if and only if
there exists a (unique) decomposition of S 	 N as S 	 N = S+ ⊕ S−, where S+ is a
(closed) B-positive subspace,S− is a (closed) B-negative subspace, (B,S±) is compatible and
S+ ⊥B S−.

The following is a corollary of Proposition 3.8 (considering the decomposition of Theorem
3.9).

Proposition 3.10. Let S be a closed subspace of H and B ∈ L(H)s . If (B,S) is compatible
then

B/S = (B/S+)/S− = (B/S−)/S+ ,

where S 	 N = S+ ⊕ S− is the decomposition given in Theorem 3.9.

Proof. If (B,S) is compatible then, by Lemma 3.6, B/S = B/S	N. If S 	 N = S+ ⊕ S− is
the decomposition given in Theorem 3.9 then (B,S±) is compatible andS+ ⊥B S−. Therefore,
applying Proposition 3.8 we get that

BS = (BS+)S− = (BS−)S+ . �

Suppose that (B,S) is compatible and consider the decomposition of Theorem 3.9. Then,
Proposition 3.5 says that

B/S+ 6 B 6 B/S− .

The following corollary shows that B/S also belongs to this interval of selfadjoint operators.

Corollary 3.11. Let B ∈ L(H)s and S be a closed subspace of H. If (B,S) is compatible then

B/S+ 6 B/S 6 B/S− , (3.2)

where S 	 N = S+ ⊕ S− is the decomposition given in Theorem 3.9.
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Proof. If (B,S) is compatible consider the decomposition given in Theorem 3.9. Then, applying
Propositions 3.10 and 3.5, it follows that B/S = (B/S−)/S+ = max6 M−(B/S− ,S⊥+) 6 B/S− .
Analogously, B/S = (B/S+)/S− = min6 M+(B/S+ ,S⊥−) > B/S+ . �

3.3. A min–max representation for B-indefinite subspaces

Theorem 3.12. Let B ∈ L(H)s and S be a closed subspace of H. If (B,S) is compatible then

B/S = min
N(Q+)=S+

max
N(Q−)=S−

Q∗+Q∗−BQ−Q+ = max
N(Q−)=S−

min
N(Q+)=S+

Q∗−Q∗+BQ+Q−,

(3.3)

where S 	 N = S+ ⊕ S− is the decomposition given in Theorem 3.9.

Proof. If (B,S) is compatible then, by Theorem 3.9, S 	 N = S+ ⊕ S−, where S+ is a
(closed) B-positive subspace, S− is a (closed) B-negative subspace, (B,S±) is compatible and
S+ ⊥B S−. Therefore, applying Propositions 3.10 and 3.1, it follows that

B/S = (B/S−)/S+ = min
N(Q+)=S+

Q∗+B/S−Q+

= min
N(Q+)=S+

Q∗+
�

max
N(Q−)=S−

Q∗−BQ−
�

Q+

= min
N(Q+)=S+

�
max

N(Q−)=S−
Q∗+Q∗−BQ−Q+

�
.

Analogously, B/S = (B/S+)/S− = maxN(Q−)=S−(minN(Q+)=S+ Q∗−(Q∗+BQ+)Q−). �

Corollary 3.13. Let B ∈ L(H)s and S be a closed subspace of H. If (B,S) is compatible
then, for every x ∈ H,

hB/Sx, xi = min
s∈S+

max
t∈S−

hB(x − (s + t)), x − (s + t)i, (3.4)

where S 	 N = S+ ⊕ S− is a decomposition as in Theorem 3.9.

Proof. By Theorem 3.12 it holds that

B/S = min
N(Q+)=S+

max
N(Q−)=S−

Q∗+(Q∗−BQ−)Q+ = min
N(Q+)=S+

Q∗+B/S−Q+.

Then, given x ∈ H,

hB/Sx, xi =
��

min
N(Q+)=S+

Q∗+B/S−Q+
�

x, x

�
= min

N(Q+)=S+
hQ∗+B/S−Q+x, xi

= min
N(Q+)=S+

hB/S−(x − (I − Q+)x), x − (I − Q+)xi
= min

s∈S+
hB/S−(x − s), x − si.

By Proposition 3.1, B/S− = maxN(Q−)=S− Q∗−BQ− and a similar argument shows that

hB/Sx, xi = min
s∈S+

hB/S−(x − s), x − si
= min

s∈S+
max
t∈S−

hB(x − (s + t)), x − (s + t)i for every x ∈ H. �
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4. A formula for the shorted operator

In [16, Theorem 1.4], Pekarev proved that the shorted operator of an operator A ∈ L(H)+ to
a closed subspace S of H can be represented by the following formula:

A/S = A1/2PM⊥A1/2, (4.1)

where PM⊥ is the orthogonal projection onto M⊥ and M = A1/2(S).
Along this section we are going to prove that, given B ∈ L(H)s and a closed subspace S of

H such that (B,S) is compatible, there is a natural generalization of Pekarev’s formula (4.1) for
the shorted operator of B to S. More generally, we will show that, if the given formula defines a
bounded operator, then it can be used as the definition of B/S and its basic properties are obtained.

In the following, if B ∈ L(H)s we use the polar decomposition of B given by B = JA, where
A = |B| ∈ L(H)+ and J = J ∗ = J−1 satisfies that Jx = x for every x ∈ N(B).

Lemma 4.1. Let B ∈ L(H)s with polar decomposition B = JA. If M = A1/2(S) and (B,S)

is compatible then M ∩ J (M)⊥ = {0} and therefore M u J (M)⊥ is dense in H.

Proof. See [14, Corollary 4.6]. �

Theorem 4.2. Let B ∈ L(H)s with polar decomposition B = JA and S be a closed subspace
of H. Then, if (B,S) is compatible, the S-compression and the Schur complement of B to S
can be written as

BS = JA1/2PMkJ (M)⊥A1/2 and B/S = JA1/2PJ(M)⊥kMA1/2, (4.2)

where M = A1/2(S).

Proof. If (B,S) is compatible then, by Lemma 4.1, PMkJ (M)⊥ is densely defined. Furthermore,
PMkJ (M)⊥A1/2 is well defined, bounded and satisfies

PMkJ (M)⊥A1/2 = A1/2Q,

where Q ∈ P(B,S). Indeed, if x ∈ S = R(Q) then PMkJ (M)⊥A1/2x = A1/2x = A1/2Qx, and
if y ∈ N(Q) it follows that A1/2y ∈ J (M)⊥ and then PMkJ (M)⊥A1/2y = 0 = A1/2Qy. There-
fore, if Q ∈ P(B,S) we have that BS = BQ = JA1/2(A1/2Q) = JA1/2PMkJ (M)⊥A1/2 and

B/S = B − BS = JA1/2PJ(M)⊥kMA1/2. �

In particular, if B ∈ L(H)+, the formula (4.2) for the Schur complement of B to S is just
Pekarev’s formula, see [16, Theorem 1.4].

The next example shows that Eq. (4.2) gives well defined and bounded operators in some cases
where the definition of shorted operator given by Ando in [3] can not be applied.

Example 4.3. LetS andT be closed subspaces of an infinite-dimensional Hilbert space H such
that S + T is not closed. Denote by W the orthogonal complement of T in H. Consider the
Hilbert space H2 = H ⊕ H and the operators A, J ∈ L(H2) defined by

A =
�

PW 0
0 I

�
, J =

�
I 0
0 −I

�
,
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in the matrix representation induced by H ⊕ {0}. Let B = JA. Observe that A ∈ L(H2)
+,

R(A) = W ⊕ H is closed and J = J ∗ = J−1. Since J and A commute, B = JA is the polar
decomposition of B and B ∈ L(H2)

s .
Given the closed subspace S2 = S ⊕ {0} of H2 we show that the operators given in Eq. (4.2)

are defined but (B,S2) is not compatible. Observe that M = A1/2(S2) = PW(S) ⊕ {0} ⊆
H ⊕ {0} is invariant under J and PJ(M)⊥kM = PM⊥ ∈ L(H2). Therefore, B/S2 (as in Eq. (4.2))
is defined, in fact

B/S2 =
�

PWPZPW 0
0 −I

�
,

where Z is the orthogonal complement of PW(S) in H. On the other hand, A1/2(S2) =
PW(S) ⊕ {0} is not closed (because S + T is not closed, see [5,12]) and by [14, Proposition
4.11] the pair (B,S2) is not compatible.

Definition 4.4. Let B ∈ L(H)s with polar decomposition B = JA and S be a closed subspace
of H. Consider M = A1/2(S) and suppose that the operator PJ(M)⊥kMA1/2 is well defined and
bounded. Then the shorted operator of B to S is defined as

B/S = JA1/2PJ(M)⊥kMA1/2

and the S-compression as BS = JA1/2PMkJ (M)⊥A1/2.

Remark 4.5. Observe that, if PJ(M)⊥kMA1/2 is well defined and bounded, then R(A1/2) ⊂ M +
J (M)⊥ andM ∩ J (M)⊥ = {0}. Therefore, PJ(M)⊥kM is a densely defined (possibly unbounded)
operator and admits an adjoint.

Proposition 4.6. Let B ∈ L(H)s with polar decomposition B = JA andS be a closed subspace
of H. If B/S is given by Definition 4.4 then B/S and BS are selfadjoint operators.

Proof. If P = PJ(M)⊥kM it is easy to see that JP is a symmetric operator with domain M +
J (M)⊥. Therefore, for every x, y ∈ H,

hB/Sx, yi = hJPA1/2x, A1/2yi = hA1/2x, JPA1/2yi = hx, B/Syi,
because R(A1/2) is contained in the domain of JP . Then, B/S ∈ L(H)s . �

Proposition 4.7. Let B ∈ L(H)s with polar decomposition B = JA and suppose that B/S and
BS are given by Definition 4.4. Then,

(1) B(S) ⊆ R(BS) ⊆ B(S) and N(BS) = B(S)⊥;
(2) R(B) ∩ S⊥ ⊆ R(B/S) ⊆ R(A1/2) ∩ S⊥ and N(B/S) = A−1/2(M).

Proof. (1) It is easy to see that B(S) = JA1/2(A1/2(S)) = BS(S) ⊆ R(BS) ⊆ JA1/2(M) ⊆
B(S). SinceM⊆N(A)⊥, then N(BS)=N(PMkJ (M)⊥A1/2) = A−1/2(J (M)⊥) = B−1(S⊥) =
B(S)⊥.

(2) If y ∈ R(B) ∩ S⊥ then there exists x ∈ H such that y = Bx ∈ S⊥. Notice that A1/2x ∈
J (M)⊥ and B/Sx = JA1/2PJ(M)⊥kM(A1/2x) = Bx = y. Thus, R(B) ∩ S⊥ ⊆ R(B/S). On the

other hand, R(B/S) ⊆ JA1/2(J (M)⊥) = A1/2(A−1/2(S⊥)) = S⊥ ∩ R(A1/2). As in item (1),
notice that N(B/S) = N(PJ(M)⊥kMA1/2) = A−1/2(M). �
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In general, the inclusions in items (1) and (2) of the above proposition are strict. See the
examples in [2] and [8].

Let A ∈ L(H)+ andS be a closed subspace ofH. The range and the nullspace of A/S and AS

had been initially studied in [2,13,16]. Under compatibility hypothesis, G. Corach et al. [9] obtain
a sharper description, say, R(AS) = A(S), R(A/S) = R(A) ∩ S⊥ and N(A/S) = N(A) + S.
Moreover, these characterizations of the range and nullspace of A/S and AS are attained if and
only if (A,S) is compatible. The following theorem shows that the same result holds in the
selfadjoint case.

Lemma 4.8. Let S be a closed subspace of H, and B ∈ L(H)s with polar decomposition
B = JA. Suppose that B/S is given by Definition 4.4 and consider M = A1/2(S). Then, the
following inclusions hold:

J (M)⊥ ∩ R(A1/2) ⊆ R(PJ(M)⊥kMA1/2) ⊆ J (M)⊥ ∩ R(A1/2).

Proof. Let P = PJ(M)⊥kM. Suppose that PA1/2 is everywhere defined and bounded. Hence, the
first inclusion is trivial. If y ∈ R(PA1/2), then y ∈ J (M)⊥ and there exists x ∈ H such that
y = PA1/2x. It is easy to see that M⊥ + J (M) is dense in H, it is contained in dom(P ∗)
and P ∗u = PM⊥kJ (M)u for every u ∈ M⊥ + J (M). Then, since N(A1/2) ⊆ M⊥, hy, zi =
hA1/2x, P ∗zi = hA1/2x, zi = 0 for every z ∈ N(A1/2). Therefore, y ∈ R(A1/2) ∩ J (M)⊥. �

Theorem 4.9. Let B ∈ L(H)s with polar decomposition B = JA and S be a closed subspace
of H. Suppose that B/S is given by Definition 4.4. Then, the following conditions are equivalent:

(1) (B,S) is compatible,
(2) R(B/S) = S⊥ ∩ R(B) and N(B/S) = S + N(B);
(3) R(BS) = B(S).

Proof. (1) ⇒ (2) admits the same proof given in [8, Proposition 3.4].
(2) ⇒ (3): Let P = PJ(M)⊥kM. If A−1/2(M) = S + N(B) = N(B/S) then M ∩ R(A1/2) =

A1/2(S + N(B)) = A1/2(S) and we have that A1/2(S) is closed in R(A1/2). If R(B/S) =
S⊥ ∩ R(B) then A1/2(R(JPA1/2)) = S⊥ ∩ R(A). Taking the counterimage of A1/2 on the
equation, we obtain R(JPA1/2) + N(A1/2) = A−1/2(S⊥ ∩ R(A)) = M⊥ ∩ (R(A1/2) +
N(A1/2)), and applying J we obtain R(PA1/2) + N(A1/2) = J (M)⊥ ∩ (R(A1/2) + N(A1/2)).

Since N(A1/2) ⊆ J (M)⊥, it follows that

R(PA1/2) + N(A1/2) = J (M)⊥ ∩ R(A1/2) + N(A1/2)

and, by Lemma 4.8, we get that J (M)⊥ ∩ R(A1/2) = R(PA1/2). Using this fact it is easy to
show that R((I − P)A1/2) = M ∩ R(A1/2) and

R(A1/2) = R(PA1/2) + R((I − P)A1/2) = J (M)⊥ ∩ R(A1/2) + A1/2(S).

Thus, R(BS) = JA1/2PMkJ (M)⊥(R(A1/2)) = JA1/2(A1/2(S)) = B(S).
(3) ⇒ (1): The identity R(BS) = B(S) implies that

H = B−1
S (R(BS)) = B−1

S (B(S)) = B−1
S (BS(S)) = S + N(BS) = S + B−1(S⊥),

because, by Proposition 4.7, N(BS) = B−1(S⊥). Therefore, (B,S) is compatible. �



J.I. Giribet et al. / Linear Algebra and its Applications 428 (2008) 1899–1911 1911

Remark 4.10. Some of the results of Section 3, stated for compatible pairs (B,S), remain valid
when the new definition of shorted operator is considered. For instance, it is not difficult to prove
that, given B ∈ L(H)s and a closed subspaceS ofH such that B/S is well defined, the following
conditions are equivalent:

(1) (B,S) is compatible and S is B-nonnegative;
(2) B/S = min6{Q∗BQ : Q ∈ Q, N(Q) = S};
(3) B/S = max6{X ∈ L(H)s : X 6 B, R(X) ⊆ S⊥}.
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