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1. Introduction

A C-deformation of the N = 1 superalgebra corresponding to nonanticommutative Grass-

mann coordinates θα has been shown to arise in string theory in a graviphoton back-

ground [1]–[2]. Prompted by this result, nonanticommutative versions of supersymmetric

(SUSY) Yang-Mills theory and Wess-Zumino model have been formulated [3]–[4] and their

renormalizability established [5]–[7]. The deformation preserves the notion of chirality but

only half of the N = 1 supersymmetry is preserved as the supercharges Qα, the generators

of θα translations, are conserved while the Q̄α̇ are broken explicitly.

In order to analyze the vacuum structure of undeformed SUSY chiral models we study

the effective potential V for scalar fields since its critical points correspond to the possible

vacua. Hermiticity of the original theory guarantees that the resulting potential is positive

definite so that the vanishing of V implies the existence of a supersymmetric vacuum. But

in C-deformed SUSY theories hermiticity is lost, V is not positive definite and the analysis

of the critical points should be done at the quantum level using saddle point or steepest

descent methods.

The issue of spontaneous supersymmetry breaking in O’Raifeartaigh models [8] has

recently received much attention after the discovery of meta-stable SUSY breaking vacua

in N = 1 SQCD that can be seen, in the low-energy effective theory, as vacua of an

O’Raifeartaigh-type model [9]–[14]. In connection with this phenomenon, it is the purpose

of this work to analyze the structure of the vacuum for C-deformed O’Raifeartaigh-like

models, discussing in particular the possibility of spontaneous breaking of the surviving

supersymmetry.
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As explained in [6] aN = 1/2 supersymmetric vacuum requires both the |vac〉 state and

its dual 〈vac| to be annihilated by Qα. This is connected to the fact that the vacuum energy

of such state, 〈vac|E|vac〉, vanishes even if the energy associated with the non-Hermitian

deformed Lagrangian is in general complex-valued. Hence, the analysis of the zeroes of the

scalar potential still provides information about symmetry breaking in deformed models

and this is the route we will follow in this investigation.

A discussion of the scalar potential for certain SUSY deformed models has been already

presented in refs. [15]–[18] for deformed Wess-Zumino and sigma models (with canonical

Kähler potentials). Here we will consider O’Raifeartaigh models with more general de-

formed superpotentials and we will also discuss the case of deformed non-canonical Kähler

potentials. The plan of the paper is the following: In section 2 we establish our conven-

tions for nonanticommutative superspace and present general deformed models containing

chiral superfields. In section 3 we analyze the vacuum structure of rather general deformed

O’Raifeartaigh-like models in which the Kähler potential is kept canonical, and in section 4

a similar analysis of deformed models with non-canonical Kähler potential. We summarize

and discuss our results in section 5.

2. Non(anti)commutative superspace and chiral models

2.1 The setting

We consider the deformation of 4 dimensional EuclideanN = 1 superspace parametrized by

superspace bosonic coordinates xµ and chiral and anti-chiral fermionic coordinates θα, θ̄α̇

as proposed in [3]

{θα, θβ} = Cαβ (2.1)

{θ̄α̇, θ̄β̇} = 0 , {θα, θ̄β̇} = 0 (2.2)

Here Cαβ are constant elements of a symmetric matrix. Defining chiral and anti-chiral

coordinates according to

yµ = xµ + iθσµθ̄ (2.3)

ȳµ = yµ − 2iθσµθ̄ (2.4)

we impose

[yµ, yν ] = [yµ, θα] = [yµ, θ̄α̇] = 0 (2.5)

and obtain, as a consequence of (2.1)–(2.5),

[ȳµ, ȳν ] = 4θ̄θ̄Cµν . (2.6)

where Cµν = Cαβ(σµν)αβ is antisymmetric and antiselfdual.

The non(anti)commutative field theory in such a deformed superspace can be defined

in terms of superfields that are multiplied according to the following Moyal product [3]

Φ(y, θ, θ̄) ∗Ψ(y, θ, θ̄) = Φ(y, θ, θ̄) exp

(
−Cαβ

2

←−
∂

∂θα

−→
∂

∂θβ

)
Ψ(y, θ, θ̄) (2.7)
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Supercharges and covariant derivatives in chiral coordinates take the form

Qα =
∂

∂θα
, Q̄α̇ = − ∂

∂θ̄α̇
+ 2iθασµ

αα̇

∂

∂yµ
, (2.8)

Dα =
∂

∂θα
+ 2iσµ

αα̇θ̄α̇ ∂

∂yµ
, D̄α̇ = − ∂

∂θ̄α̇
(2.9)

The D-D algebra is not modified by the deformation (2.1) as it also happens for the Q-D

and Q̄-D algebra. Concerning the supercharge algebra, it is modified according to

{Q̄α̇, Qα} = 2iσµ
αα̇

∂

∂yµ
= 2σµ

αα̇Pµ (2.10)

{Qα, Qβ} = 0 (2.11)

{Q̄α̇, Q̄
β̇
} = −4Cαβσµ

αα̇σν
ββ̇

∂2

∂yµ∂yν
= 4Cαβσµ

αα̇σν
ββ̇

PµPν (2.12)

Then, only the subalgebra generated by Qα is still preserved and this defines the chiral

N = 1/2 supersymmetry algebra [3].

2.2 Chiral models

In this work we will discuss models containing chiral superfields. In deformed superspace,

a chiral superfield Φ satisfying D̄α̇Φ = 0 can be written, as usual, in the form

Φ(y, θ) = φ(y) +
√

2 θψ(y) + θθF (y) (2.13)

Analogously we can define antichiral superfields satisfying

DαΦ̄ = 0 (2.14)

which only depend on θ̄ and ȳµ.

A general action in terms of chiral and antichiral superfields takes the form

S
[
Φ, Φ̄

]
=

∫
d4y

[∫
d2θd2θ̄ K∗

(
Φi, Φ̄j̄

)
+

∫
d2θ W∗

(
Φi

)
+

∫
d2θ̄ W̄∗

(
Φ̄j̄

)]
(2.15)

Here we call K∗, W∗ the Kähler and superpotential functionals with superfields multiplied

using the Moyal product. A very useful formula for handling these quantities has been

derived in [16]–[17]. For example, given the superpotential W∗(Φ), we can define a “diffuse

superpotential”

W̃ (φi, Fi) =

∫ 1

−1

dξ W (φi + ξcFi) (2.16)

where fields φi are multiplied in the r.h.s. with the ordinary product and we have written

c =
√
− detC. As pointed out in [16], non(anti)commutativity induces certain fuzziness

controlled by auxiliary fields Fi.

Using eq. (2.16), we can prove that, in terms of component fields, the scalar potential

can be written

Vscalar

(
φi, φ̄ī

)
=

1

2
FiW̃ ,i

∣∣∣∣
Fi=Fi(φ,φ̄)

(2.17)
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with all products being ordinary products. Analogously, we can define, starting from the

Kähler potential, the following diffuse quantities [17]

Z
(
φ, φ̄, F

)
=

∫ 1

−1

dξK
(
φi + ξcFi, φ̄j̄

)
(2.18)

Y
(
φ, φ̄, F, F̄

)
= F̄p̄Z,p̄−

1

2
(χ̄p̄χ̄q̄Z,p̄q̄ )

+ c

∫ 1

−1

dξξ
[
∂µφ̄p̄∂µφ̄q̄K,ξp̄q̄ +∇2φ̄p̄K

ξ
p̄

]
(2.19)

Now, calling ∫
d4yLK ≡

∫
d4y

∫
d2θd2θ̄K∗

(
Φi, Φ̄j̄

)
(2.20)

it can be shown that

LK =
1

2
FiY,i +

1

2
∂µφ̄p̄∂µφ̄q̄Z,p̄q̄ +

1

2
∇2φ̄p̄Z,p̄−

1

4

(
χiχj

)
Y,ij

− 1

2
i
(
χiσµχ̄p̄

)
∂µφ̄q̄Z,ip̄q̄ −

1

2
i
(
χiσµ∂µχ̄p̄

)
Z,ip̄ (2.21)

2.3 Vacuum properties in deformed theories

The choice of deforming the anticommutator of θα (2.1), without altering that of θ̄α̇ implies

that θ̄α̇ are not the complex conjugate of θα, which is only possible in Euclidean space.

Moreover, hermiticity of the theory is lost because of the deformation and then the usual

analysis of the the potential minima should be replaced by a careful analysis of the critical

points of the resulting complex expression. At the quantum level, saddle point or steepest

descent methods should be applied as usual, but taking into account that trajectories are

in principle complex and that space is Euclidean.

As shown in ref. [6] taking the deformed Wess-Zumino model as a prototype of N = 1/2

theories with chiral superfields, the vacuum energy, computed from the effective action for

constant bosonic fields, vanishes

〈vac|E|vac〉 = 〈vac|QαQ̄α̇ + Q̄α̇Qα|vac〉 = 0 (2.22)

Then, in order to have a supersymmetric vacuum Qα, the generator of the surviving su-

persymmetry, should annihilate both |vac〉 and 〈vac|,

Qα|vac〉 = 0 , 〈vac|Qα = 0 (2.23)

since, being Q̄α̇ the generator of the explicitly broken supersymmetry, Q̄α̇|vac〉 does not

vanish in general.

Vanishing of the vacuum energy for supersymmetric vacua is not a consequence of any

specific choice of the deformed superpotential. As explained in ([6]), supersymmetric vacua

in deformed models with chiral fields impose the condition ∂W̄∗(Φ̄)/∂Φ̄ = 0 which in turn

imply the vanishing of the corresponding scalar potential.
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3. Deformed O’Raifeartaigh models

We discuss here how the landscape of extrema of the scalar potential in O’Raifeartaigh

models is affected by the deformation of superspace defined in eq. (2.1).

3.1 Two specific cases

Consider three chiral superfields fields Φi (i = 1, 2, 3) and a canonical Kähler potential

K = Φ̄i ∗ Φi. Concerning the superpotential, we choose

W = Φ1 ∗
(

h

2
Φ3 ∗Φ3 + f

)
+ mΦ2 ∗ Φ3 + ST (3.1)

which has the typical O’Raifeartaigh potential form, extended to non(anti)commutative

space. Here ST includes all necessary symmetrizing terms so that the potential is sym-

metrized with respect to the ∗ product. For simplicity, we take all parameters (f,m, . . .)

as real numbers. In order to compute the scalar potential for component fields φ we use

eq. (2.17). In view of the form of the superpotential,W (φi + ξcFi) as defined in (2.16) will

only have terms with powers ξn, n = 0, 1, 2, 3. Moreover, since integrals with odd powers

in ξ vanish we end with

W (φi + ξcFi) = φ1

(
h

2
(φ3)

2 + ξ2c2 (F3)
2 + f

)
+ ξ2c2hφ3F3F1

so the diffuse superpotential W̃ becomes

W̃ (φi, Fi) = 2φ1

(
h

2
(φ3)

2 + f

)
+

2

3
c2

[
(F3)

2 + hφ3F3F1

]

leading to a scalar potential

VE = F1

(
h

2
(φ3)

2 + f

)
+ m (F2φ3 + F3φ2) + hF3φ1φ3 −

detC

2
hF1 (F3)

2 (3.2)

The subscript E indicates that we are dealing with the Euclidean potential which is minus

the Minkowski potential.

Using the equations of motion to replace auxiliary fields Fi and putting all fermion

fields to zero we end with

VE =−
(

h

2
(φ3)

2 + f

)(
h

2

(
φ̄3̄

)2
+ f

)
− (hφ1φ3 + mφ2)

(
hφ̄1̄φ̄3̄ + mφ̄2̄

)

−m2φ3φ̄
3̄ +

h

2
detC

(
h

2

(
φ̄3̄

)2
+ f

)(
hφ̄1̄φ̄3̄ + mφ̄2̄

)2
(3.3)

For C = 0 we recover the ordinary superspace result with a real potential provided φ∗ = φ̄.

For detC 6= 0 the potential becomes complex not only because the term proportional to

det C is not accompanied by its complex conjugate but also because in principle φ̄ is not

the complex conjugate of φ.
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The equations for the extrema of potential (3.3) read

0 =hφ3

(
hφ̄1̄φ̄3̄ + mφ̄2̄

)
(3.4)

0 =m
(
hφ̄1̄φ̄3̄ + mφ̄2̄

)
(3.5)

0 =hφ3

(
h

2

(
φ̄3̄

)2
+ f

)
+ m2φ̄3̄ + hφ1

(
hφ̄1̄φ̄3̄ + mφ̄2̄

)
(3.6)

0 = (hφ1φ3 + mφ2) hφ̄3̄

− detCh

(
h

2

(
φ̄3̄

)2
+ f

)(
hφ̄1̄φ̄3̄ + mφ̄2̄

)
hφ̄3̄ (3.7)

0 =m (hφ1φ3 + mφ2)− detChm

(
h

2

(
φ̄3̄

)2
+ f

)(
hφ̄1̄φ̄3̄ + mφ̄2̄

)
(3.8)

0 =

(
h

2
(φ3)

2 + f

)
hφ̄3̄ + (hφ1φ3 + mφ2) hφ̄1̄ + m2φ3

− detC
h

2

(
hφ̄3̄

(
hφ̄1̄φ̄3̄ + mφ̄2̄

)2
+ 2

(
h

2
(φ̄3̄)

2 + f

)(
hφ̄1̄φ̄3̄ + mφ̄2̄

)
hφ̄1̄

)
(3.9)

Let us first consider the case m 6= 0. In this case, eq. (3.5) implies

hφ̄1̄φ̄3̄ + mφ̄2̄ = 0 (3.10)

The l.h.s of this equation appears as a factor in all terms containing det C and hence

all dependence on Cαβ disappears. Field configurations corresponding to extrema of the

potential are not affected by the deformation. Moreover, the value of the potential at

the extrema is also unaffected by non(anti)commutativity since terms containing detC are

multiplied by the same vanishing factor. The only difference with an ordinary superspace

theory is that, in principle, φ̄ī does not necessarily coincide with φ∗
i . For the particular

field configurations where φ̄ī = φ∗
i , the results for the undeformed case [10] apply, and

we can conclude that there is symmetry breaking, no runaway directions, and a classical

pseudomoduli space with degenerate non supersymmetric vacua (arbitrary φvac
1 ).

Concerning the general case in which φ̄ī 6= φ∗
i , we find extrema with similar properties

as those with φ̄ī = φ∗
i discussed above except that the pseudomoduli is spanned here by φ1

and φ̄1 and hence its dimension is doubled. We conclude the discussion of the m 6= 0 case

noting that the theory above corresponds to a generic supersymmetry breaking potential

because the equation V = 0 cannot be generically solved.

We will show that the situation changes when the coefficient m in (3.1) vanishes. In

that case the φ2 field decouples and the scalar potential takes the form

VE =−
(

h

2
(φ3)

2 + f

)(
h

2

(
φ̄3̄

)2
+ f

)
− h2φ1φ3φ̄1̄φ̄3̄

+
h3

2
detC

(
h

2

(
φ̄3̄

)2
+ f

)(
φ̄1̄φ̄3̄

)2
(3.11)

In the undeformed case we can easily see that there exist two supersymmetric vacua which

correspond to φvac
1 = 0 and φ3 = ±

√
−2f/h and a supersymmetry breaking flat direction

for φvac
3 = 0, φvac

1 arbitrary, for which V = f2 (in Minkowski space).
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In the deformed model there are also six families of supersymmetric configurations

which do not depend on det C. Namely

φ̄1̄ = 0 , φ̄3̄ = ±
√
−2f

h
, (3.12)

φ3 = 0 , φ̄3̄ = ±
√
−2f

h
(3.13)

φ̄3̄ = 0 , φ3 = ±
√
−2f

h
(3.14)

All other fields not included in each line are arbitrary.

Concerning non-supersymmetric extrema, they are the same for the undeformed and

the deformed case,

φ3 = φ̄3̄ = 0 , φ1 and φ̄1̄ arbitrary (3.15)

and for these configurations VE = −f2.

There are also four solutions for which the fields at the extrema depend on detC

φ1 = φ3 = 0 , φ̄1̄ = ± 1

h
√
− detC

, φ̄3̄ = ±
√
−2f

h
(3.16)

For these configurations V = 0 and hence they correspond to supersymmetric vacua. A

remarkable feature of these extrema can be seen by taking detC ∈ R. Indeed, in that case,

in the detC → 0+ limit, they correspond to runaway directions which do not satisfy the

extrema conditions of the undeformed potential. Hence, they have emerged entirely as a

consequence of the deformation.

Let us now consider the vacua structure of another potential which results from the

following superpotential

W = hΦ1 ∗ Φ3 ∗ (Φ3 −m1) + mΦ2 ∗ (Φ3 −m1) + ST (3.17)

In contrast with the superpotential (3.1), the form of this superpotential allows for the

existence of critical points ∂W/∂φ1 = ∂W/∂φ2 = 0.

A completely analogous calculation to that presented above leads to the following

expression for the scalar potential

VE =− (hφ3 (φ3 −m1))
(
hφ̄3̄

(
φ̄3̄ −m1

))
−m (φ3 −m1) m

(
φ̄3̄ −m1

)

− [hφ1 (2φ3 −m1) + mφ2]
[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

]

+ det C h
[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

]2 (
hφ̄3̄

(
φ̄3̄ −m1

))
(3.18)

The equations for the extrema of potential (3.18) read

0 =
∂V

∂φ1

=h (2φ3 −m1)
[
hφ̄1̄

(
2φ̄3̄ + m1

)
+ mφ̄2̄

]
(3.19)

0 =
∂V

∂φ2

=m
[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

]
(3.20)

– 7 –
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0 =

∂V

∂φ3

=(2hφ3 − hm1)
(
hφ̄3̄

(
φ̄3̄ −m1

))
+ m2

(
φ̄3̄ −m1

)
(3.21)

+ 2hφ1

[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

]

0 =
∂V

∂φ̄1̄

=h
(
2φ̄3̄ −m1

)
[hφ1 (2φ3 −m1) + mφ2]

− detC 2h
[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

]
h

(
2φ̄3̄ −m1

) (
hφ̄3̄

(
φ̄1̄ −m1

))
(3.22)

0 =
∂V

∂φ̄2̄

=m [hφ1 (2φ3 −m1) + mφ2]

− detC 2hm
[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

] (
hφ̄3̄

(
φ̄3̄ −m1

))
(3.23)

0 =
∂V

∂φ̄3̄

=(2hφ̄3̄ − hm1) (hφ3 (φ3 −m1)) + (m)2 (φ3 −m1) (3.24)

+ 2hφ̄1 [hφ1 (2φ3 −m1) + mφ2]

− detC h2
[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

]
2hφ̄1hφ̄3̄

(
φ̄3̄ −m1

)

− detC h
[
hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄

]2 (
2hφ̄3̄ − hm1

)

As in the previous example, let us first consider the case m 6= 0. In that case, eq. (3.20)

implies

hφ̄1̄

(
2φ̄3̄ −m1

)
+ mφ̄2̄ = 0 (3.25)

Again, the l.h.s of this equation appears as a factor in all terms containing det C and hence

all dependence on Cαβ disappears and field configurations corresponding to extrema of

the potential are not affected by the deformation. Moreover, the value of the potential is

also unaffected by non(anti)commutativity since terms containing det C are multiplied by

the same vanishing factor. As explained in [10] there are supersymmetric vacua φS
i which

corresponds to

φS
3 = m1 , φS

2 = −hm1

m
φS

1 (3.26)

(in the deformed case we should have identical values for fields φ̄ī which, in the deformed

case are not automatically related to φi).

As in the undeformed case, there are also extrema φM for which V [φM ] 6= 0. In fact,

the Euclidean V [φM ] is a real negative number which in Minkowski undeformed superspace

would lead to the metastable vacua. The explicit form of the solutions is the same as in

the undeformed case.

Let us now consider the m = 0 case. In the undeformed (Minkowski) space, the non-

supersymmetric (metastable) vacua present for m 6= 0 are lost but, as we will see, the

situation changes in the deformed case. Indeed for vanishing m the scalar potential takes

the form

VE =− hφ3 (φ3 −m1)hφ̄3̄

(
φ̄3̄ −m1

)

− hφ1 (2φ3 −m1) hφ̄1̄

(
2φ̄3̄ −m1

)

+ det Ch2
[
hφ̄1̄

(
2φ̄3̄ −m1

)]2
φ̄3̄

(
φ̄3̄ −m1

)
(3.27)

– 8 –
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Let us compare the supersymmetric vacuum states between the undeformed and the de-

formed case. In the undeformed case, we have four supersymmetric vacuum states:

φ1 = φ̄1̄ = φ3 = φ̄3̄ = 0

φ1 = φ̄1̄ = φ3 = 0 , φ̄3̄ = m1

φ1 = φ̄1̄ = φ̄3̄ = 0 , φ3 = m1

φ1 = φ̄1̄ = 0 , φ3 = φ̄3̄ = m1 (3.28)

In the deformed case, the vacua (3.28) are still present. In addition, there are other four

supersymmetric vacua:

φ1 = φ̄3̄ = 0 , φ̄1̄ = ± i

2h
√
− detC

, φ3 = m1/2

φ1 = φ̄3̄ = 0 , φ̄1̄ = ± i

2h
√
− detC

, φ3 = m1 (3.29)

As in the case of the extrema (3.16) of the previous example, in the limit detC → 0+ these

extrema correspond to runaway directions which do not exist in the case of the undeformed

potential det C = 0.

Concerning the supersymmetry breaking vacua, there is no difference between the

undeformed and deformed case, having in both the pseudomoduli space:

φ3 = φ̄3 = m1/2 (3.30)

for which V = (m1/2)
4h2 in the undeformed case and VE = −(m1/2)

4h2 in the deformed

one.

3.2 A more general superpotential

We end this section discussing conditions on a general cubic superpotential under which

the vacuum structure remains unaffected by the deformation. Consider n chiral superfields

Φi (i = 1, 2, . . . , n), a canonical Kähler potential and a deformed superpotential of the form

W (Φp) = C + CqΦq + CqrΦq ∗ Φr + CqrsΦq ∗Φr ∗ Φs (3.31)

with C,Cq, Cqr, y Cqrs arbitrary coefficients, symmetric in all their indices. As before, in

view of the form of the superpotential, the functional W (φi + ξcFi), as defined in (2.16),

will just contain terms with powers 0, 1, 2, and 3 of ξ. Only even powers will contribute

to W̃ obtaining

W (φi + ξcFi) =C + Cqφq + Cqrφqφr + Cqrsφqφrφs

+ ξ2c2
(
CqrFqFr + 3Cqrs (φqFrFs)

)
(3.32)

W̃
(
φi, Fi

)
=2 (C + Cqφq + Cqrφqφr + Cqrsφqφrφs)

+
2c2

3

(
CqrFqFr + 3Cqrs (φqFrFs)

)
(3.33)
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Using the equations of motion for auxiliary fields F̄j̄ we find Fi = −∂W̄/∂φ̄i and then

W̃ ,i = 2 (Ci + 2Cirφr + 3Cirsφrφs) + 2c2CirsFrFs (3.34)

With this

V = Fi

[
Ci + 2Cirφr + 3Cirsφrφs + c2CirsFrFs

]∣∣
Fi=Fi(φj ,φ̄j̄)

(3.35)

The extrema conditions are

0 =
∂V

∂φj
= 2 Fi [Cij + 3Cijrφr]|Fi=Fi(φj ,φ̄j̄)

(3.36)

0 =
∂V

∂φ̄j̄

= Fi,j̄
[
Ci + 2Cirφr + 3Cirsφrφs + 3 c2CirsFrFs

]∣∣
Fi=Fi(φj ,φ̄j̄)

(3.37)

Suppose that the following relations among coefficients Cij and Cijr hold

(
Cij + 3Cijrφr

)
= δia Mj + δja Mi (3.38)

for some value a (Mi is an arbitrary, field dependent, vector). Such conditions imply that

Fa = 0 (unless, for all i, the pairs of coefficients (Ci, Ciaa) are proportional to each other,

cf. (3.36)). If we still impose a more restrictive condition on Cijr, namely that it vanishes

unless it has two indices a, we see that the extrema conditions (3.37) are independent of

det C and also the potential at the extrema is unaffected by the deformation.

Is easy to see that the above mentioned conditions force the potential to take the form

W =
∑

i6=a

Φi ∗ gi(Φa) + ST (3.39)

with gi quadratic functions, not all proportional to each other.

By the above arguments, the vacuum structure of this superpotential is not deformed.

Note that the explicit examples previously discussed in subsection 3.2 belong (for m 6= 0)

to this class of potentials, insensitive to the deformations.

4. Noncanonical deformed Kähler potentials

As a first simple example of noncanonical Kähler potential we consider

K =
(
Φ ∗ Φ̄

)2
(4.1)

In this case eqs. (2.18) and (2.19) take the form

Z
(
φ, φ̄, F

)
=

∫ 1

−1

dξ
(
φφ̄ + ξcF φ̄

)2
= 2

(
φφ̄

)2
+

2

3
c2

(
φ̄F

)2

Y
(
φ, φ̄, F, F̄

)
=F̄

(
4φ2φ̄ +

4

3
c2F 2φ̄

)
− 1

2
(χ̄χ̄)

(
4φ2 +

4

3
c2F 2

)

+ c

∫ 1

−1

dξξ
[
∂µφ̄∂µφ̄

(
2φ2 + 4ξcφF + 2ξ2c2F 2

)

+ 2�φ̄
(
φφ̄ + ξcF φ̄

)
(φ + ξcF )

]

– 10 –
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=F̄

(
4φ2φ̄ +

4

3
c2F 2φ̄

)
− 1

2
(χ̄χ̄)

(
4φ2 +

4

3
c2F 2φ̄

)

+

(
4

3
c2φF

) [
2∂µφ̄∂µφ̄ + φ̄�φ̄

]

so that the kinetic part of the component field Lagrangian reads

LK =− 4F̄Fφφ̄ + 2F (χ̄χ̄) φ +
2

3
detCF 2

[
2∂µφ̄∂µφ̄ + φ̄�φ̄

]
(4.2)

− 1

2
∂µφ̄∂µφ̄

(
4φ2 − 4

3
detCF 2

)
− 1

2
�φ̄

(
4φ2φ̄ +

4

3
c2F 2φ̄

)

− 1

4
χχ

(
8F̄ φ̄− 4χ̄χ̄

)
+

1

2
i (χσµχ̄) ∂µφ̄8φ +

1

2
i (χσµ∂µχ̄) 8φφ̄

Since detC only affects kinetic energy terms for φ̄, the scalar potential for this noncanonical

Kähler potential could only be deformed by contributions arising from the superpotential.

Because LK is a linear functional of the Kähler potential, the discussion above

K = Φ ∗ Φ̄ + λ
(
Φ ∗ Φ̄

)2
(4.3)

Such a Kähler potential can be though as resulting from the approximation of a general

potential K∗

(
Φ, Φ̄

)
= f

(
Φ ∗ Φ̄

)
for Φ ≈ 0. Then, in the weak-field regime we have to

expect that only the deformation of the superpotential would affect the vacuum structure.

Modifications arise for Kähler potentials with higher powers, namely
(
Φ̄Φ

)n
with n > 2.

Consider the simplest case n = 3,

K3 =
(
Φ̄ ∗Φ

)3
(4.4)

Since we are interested in purely bosonic contributions with no derivatives, we will restrict

our analysis to these type of terms which will be indicated with the subscript “boson”. We

have,

Z
(
φ, φ̄, F

)
=

∫ 1

−1

dξ
(
φφ̄ + ξcF φ̄

)3
= 2

[(
φφ̄

)3 − detCφ̄3φF 2
]

Yboson

(
φ, φ̄, F, F̄

)
= 6F̄

[
φ3φ̄2 − detCφ̄2φF 2

]

∂Yboson

∂φ
= 6F̄

[
3φ2φ̄2 − detCφ̄2F 2

]

The corresponding contribution to the Lagrangian is,

LK3
|
boson

= 3FF̄ φ̄2
(
3φ2 − detCF 2

)
(4.5)

so the relevant parts of the equations of motion for the auxiliary fields are

3Fφ̄2
(
3φ2 − detCF 2

)
+

∂W̄
∂φ̄

= 0 (4.6)

9F̄ φ̄2φ2 − 9 det CF 2F̄ φ̄2 +
∂W
∂φ

= 0 (4.7)

– 11 –



JHEP07(2008)084
We then conclude that both F and F̄ will depend on detC independently of the choice of

the superpotential, so that for a Kähler potential cubic in Φ̄ ∗ Φ the scalar potential and,

a fortiori, the vacuum structure will be affected by the deformation.

Let us consider a simple example that illustrates the discussion above. It corresponds to

superpotentialsW and W̄ (recall that in Euclidean space, they are independent functionals)

W =
1

2
fΦ ∗ Φ , W̄ = g (4.8)

and the Kähler potential defined in (4.4).

Given superpotentials (4.8) we get for the auxiliary fields, using eqs. of motion (4.6)

and (4.7),

F =
i
√

3φ

detC
(4.9)

F̄ =
f

36φφ̄2
(4.10)

It can be seen from eq. (2.17) that, as expected, the scalar potential is affected by the de-

formation of the Kähler potential through the dependence of F on det C as given by (4.9).

Let us end this section by pointing that a completely analogous behavior can be found

for a Kähler potential of the form Kn = (Φ̄ ∗Φ)n. For example, for odd n we find, instead

of eq. (4.6), that the auxiliary field F obeys the equation

n

2
√
− det C

φ̄n−1
(
(φ +

√
− det CF )n − (φ−

√
− detCF )n

)
+

∂W̄

∂φ̄
= 0 (4.11)

This is a degree n polynomial equation for F , with coefficients depending on detC as a

result of the deformation in the Kähler potential. The solution for F will be in general

det C-dependent (as we have explicitly seen for the particular case n = 3) and hence the

scalar potential as given by (2.17) will in turn be deformed.

5. Discussion

In this work we have discussed the vacuum structure of N = 1/2 supersymmetric theories

of chiral superfields in deformed superspace. We have analyzed O’Raifeartaigh models

with general deformed superpotentials, including the case in which the Kähler potential is

non-canonical. The question we intended to clarify was how the landscape of extrema of

the classical scalar potential is affected by a deformation of superspace.

As explained in section 2.3, although hermiticity of the theory is lost because of the

deformation, the analysis of the critical points of the resulting complex potential allows to

decide whether the N = 1/2 supersymmetry surviving the deformation is spontaneously

unbroken. In fact, as we have seen, loss of hermiticity implies that the scalar potential is

in principle complex and, moreover, because superfields Φ̄i are not the complex conjugate

of Φi, scalars φ̄ī do not in general coincide with φ∗
i . This of course complicates the analysis

of extrema of the potential unless we impose some restrictions on fields and potentials.

– 12 –
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Restricting the analysis to the case of field configurations such that φ̄ī = φ∗

i , we have

seen in section 3.2 that the vacuum configurations for superpotentials (3.1) and (3.17)

described in [9]–[10] for undeformed superspace, are also present in the deformed case

when the coefficient m 6= 0. Hence in both cases there is symmetry breaking and a classical

pseudomoduli space with degenerate non supersymmetric vacua. The difference between

the two cases is that in the latter there can be metastable (for an appropriate choice of

coefficients) vacua which are absent in the former.

An interesting phenomenon takes place for m = 0: in the limit det C → 0, in which

the deformation vanishes, there are additional extrema, eqs. (3.16) and (3.29), that corre-

spond to runaway directions which do not exist in the case of the undeformed potential

det C = 0. This phenomenon is resemblant of what happens with solitons in θ-deformed

noncommutative space: apart from those that reproduce the ordinary regular solitons in

the θ → 0 limit, there are “fluxon” solutions with no regular counterpart in ordinary space

(see [19] and reference therein).

In section 3.3 we considered a general cubic superpotential (which encompasses the two

previous examples) and found the conditions under which the vacuum structure remains

unaffected by the deformation.

We also considered non-canonical deformed Kähler potentials which, being non-

quadratic, could be expected to induce a C-dependence on the vacuum structure. The

case K = (Φ̄ ∗ Φ)2 is a counterexample of this possibility since we proved that only the

kinetic energy is affected by the deformation. Hence, in a weak-field approximation, the

vacuum dependence on the C-deformation will only enter through the deformed superpo-

tential. We need higher powers (n > 2) of Φ̄ ∗ Φ in order to change the vacuum structure

as we have explicitly shown at the end of section 4.

The discussion in this work is valid at tree-level, and should be corrected by including

leading quantum corrections to the potential. Being the theory non-hermitian, one should

resort to complex saddle point or steepest descent methods. We hope to report on this

issue in a following investigation. O’Raifeartaigh-type models, as those considered here,

can arise naturally and dynamically in the low-energy limit of simple SUSY gauge theories.

In this respect, the extension of the analysis we have presented to the case of deformed

super Yang-Mills theory is also a subject we hope to address in the future.
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