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Abstract

We study the Morita equivalence for fermion theories on noncommutative two-tori. For rational values of the & parameter
(in appropriate units) we show the equivalence between an abelian noncommutative fermion theory and a nonabelian theory of
twisted fermions on ordinary space. We study the chiral anomaly and compute the determinant of the Dirac operator in the dual
theories showing that the Morita equivalence also holds at this level.

© 2002 Elsevier Science B.V. Open access under CC BY license,

1. Introduction

Noncommutative Field Theories (NCFT) have attracted much attention in the last years because they naturally
arise as some low energy limit of open string theory and as the compactification of M-theory on the torus [1,2].

A significant feature of the noncommutative field theory is the Morita duality between noncommutative tori.
This duality is a powerful mathematical result that establishes a relation, via an isomorphism, between two
noncommutative algebras. Of particular importance are the algebras defined on the noncommutative torus, where it
can be shown that are Morita equivalent if the corresponding sizes of the tori and the noncommutative parameters
are related in a specific way.

There has been several results in the literature about the Morita equivalence of NCFT but principally focused
on noncommutative gauge theories and describing mostly classical or semiclassical aspects of them [3-14]. In
particular, there has been relatively very little work on other than gauge theories or in the quantum aspects of the
equivalence. Central questions as if there are “Morita anomalies” are still open.

In this Letter we want to fill some gaps on the subject. First, we are going to establish the Morita equivalence for
fermion theories. We are going to show that there is a well-defined isomorphism between the correlation functions
of fermions on a noncommutative torus and those of a nonabelian fermion theory on ordinary space. Also we
are going to analyze the effect of the Morita map on the chiral anomaly and compute and compare the fermionic
determinant of dual theories. Finally, we are going to discuss the bosonization of fermion theories defined on dual
noncommutative tori.
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2. Morita equivalence for fermionic fields

The Morita equivalence is an isomorphism between noncommutative algebras that conserves all the modules
and their associated structures. Let us consider the noncommutative torus T@2 and for simplicity, of radii R. The
coordinates satisfy the commutation rule

[x1, x2] =i6. (D
An associative algebra of smooth functions over T92 can be realized through the Moyal product
i
2

It is convenient to decompose the elements of the algebra in their Fourier components. However, when dealing
with fermions defined on a torus we must be aware that they can have different spin structures associated to any of
the compact directions. For the torus we can have four different spin structures characterized as follows:

Y14 Rox2) = PNy (x1, x3),  Y(x1, x2 + R) = P (x1, x9), (3)

where 1 and oy can take the values 0,1/2. We will call a fermion with boundary conditions (3) as of type
a = (a1, ap) and denote it ;. Fermions with o; = 0(i =1, 2) are called Ramond (R) and with «;; = 1/2 are called
Neveu-Schwarz (NS).

The Fourier expansion of a fermion field of type & has the following form:

&=lef]2U,;+&, with U,;Eexp(Znil?f/R). (4)
k

(2)

J)*gx) = exp( (0x1 8y, — Oy ayl))f(X)g(y)

y=x

The Moyal commutator of the generators can be easily computed to give
(21 o
[U]z+&, U]z/+&/] = —21 Sln<7(k =+ Ol) VAN (k’ + a’)) U/_<‘+12/+5(+5(/’ (5)
where ]3 A é =¢&ijpiq;-
When the noncommutative parameter 9 takes a the value
AM R
0=—:o—, (6)
N 2x
M and N being relatively prime integers, an interesting feature of the algebra generated by the Uy emerges.

First, the infinite-dimensional algebra breaks up into equivalence classes of finite-dimensional subspaces. Indeed,
noticing that the elements U ; /o generates the center of the algebra, we can decompose the momenta in the form

2(k'+ @) =Nk -+, 0<ni,ng<N-—1, (7

and the whole algebra splits into equivalence classes classified by the all possible values of Nk. Each class is itself
a subalgebra generated by the N2 functions U;_ 5 satisfying

. M, - > -
[Uﬁ+5,, Uﬁ”r&/] =2 Sln<n’ﬁ(2k + 20() A (2k + 20[/))[],‘1'+;i/+&+&/. (8)

It is easy to show that the algebra (8) is isomorphic to the (complexification of the) Lie algebra u(N). A N-dimen-
sional representation of this algebra can be constructed with “shift” and “clock” matrices [11,12,15,16]

1 0 1 ... 0

N-1 1



D.H. Correa, E.F. Moreno / Physics Letters B 534 (2002) 185-194 187

where w = exp(27i M /N). Indeed, the matrices J; = w™m2/20m P2 with ny, ny=0,...,N —1, generates an
algebra isomorphic to (8)
. M_
[Jg, J,;,] =2 SlH(n N A m) i (10)

Thus, we have a map (Morita mapping) between the Fourier modes defined on a noncommutative torus and
functions taking values on «(N) defined on a commutative space:

exp(27i (k + @) - X/R) «— exp(2i (k +@) - ¥/R) Jy i 15- (11)

This mapping generates a mapping between fermion fields in the following way. For the sake of simplicity, let us
consider the case N = 2N’ in which the decomposing of the momenta is k = N'g + 7 with 0 < n1, ny < N’. Then,
we write the fermion field on the noncommutative torus TQ2 with spin structure « in the form

N'—1
Yz = Zexp(Zm’N’(} -X/R) Z V" Usy - (12)
t; n=0

Now, using (11) is immediate to see that the Morita correspondence hetween fermion fields is given by

=
Vo < =Y x" i (13)

n=0

and we have defined

X = exp(2mi(i+@) - %/R) Y w7 expQriN'G - %/ R). (14)

q

Notice that the fermion v is defined in the dual torus of size R’ = R/N’ satisfying the boundary conditions
Y+ R, ) =2y x) 21, Y+ R) =25 ¥, x) - 2 (15)
with
21=P°,  2=0YM, (16)
where b is an integer satisfying a N — bM = 1. While the field components x ™ obey twisted boundary conditions

x @ (x1 + R, xg) = 27 10HaD)/N'y @) () 9,
x @ (x1, xg 4+ R') = 27 12+a) /Ny @) () 9, (17)

That is, the spin fields x ™ have (twisted) spin structures

<”1+"”,”2+“2), ni=0.....N'—1., ny=0... N —1. (18)
N’ N’

Let us remark that integrating over the noncommutative torus ng is equivalent to taking trace in the group U (V)
and integrating over the dual torus 72’ simultaneously

/ﬁ(})d%:%tm/r(z)dzx. (19)

2 27
Ih T
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3. Free fermions fields on the torus

Consider, as warm up, a theory of a free Dirac fermion on the noncommutative torus Tez. The action is given by

1 _
S=—gz [ dieGEmu. (20)
8
7}

For the case 276/ R* = 4M/2N’, we can use the Morita map (11), (19) and we get
N'—1 ) )

[ ez m®. 1)
0

n=vr

N/Z

S=_87r

where 7’2 is the commutative torus of radii (R/N’, R/N’). Thus, the Morita equivalence establishes the relation
between a theory of fermions with spin structure & defined on the noncommutative torus Té,2 and a theory of N'?
fermions with spins structures (18), defined on a commutative torus 7’2. Notice that the action (20) is quadratic in
the fields, and consequently independent of 8. Thus the equivalence between actions (20) and (21) is independent
of N'.

At this point we have worked at classical level. We will see that the equivalence also works at quantum level.
First we compute the partition function of both theories. As we stated above, the action (20) is independent of 6,
so the * product can be replaced by the ordinary product. Hence, the partition function is the one of a free Dirac
fermion on an ordinary torus 72, i.e.,

Z = det2 (§ + m). (22)

This determinant can be computed exactly for the case m = 0, where the theory becomes conformally invariant,
and is given by [17,18]3

‘0[051 — 1/2](0’ 0 2

ay —1/2
In(z)|2 ’ =
where
)
ﬁ[z](z’ 7) = Zeizrr(n+a)2+27ri(n+a)(z+b)2, () = ei’ﬁ- 1_[(1 B eZm’nr) (24)
ne n=1

are the Jacobi theta function and the Dedekind eta function, respectively, and = = i, the imaginary unity.
Now we compute the partition function of the theory defined by (21). This theory corresponds to N’2 free
fermions with the spin structures given in Eq. (18). The partition function is given by

. (a1 +n1)/N' =1/2 2
S NHl ? |l +npyyv — 1720 25
ni,ny=0 n(7)

Remarkably the partitions functions (23) and (25) turn out to be identical (we checked this fact numerically but it
seems that the analytical proof'is a generalization of the Riemann’s theta relations). Again, we would like to stress
that the identity Z = Z’ is independent of N.

3 Strictly speaking, this result is valid only for & = (0, 0). If o = (0, 0) the Dirac operator has a zero mode that has to be eliminated. For
simplicity from now on we will only consider the case « # (0, 0).
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Now, let us concentrate on Green functions of both theories. It is interesting to consider Green functions of local

operators in the noncommutative torus and 6-dependent. Thus, consider the following mass operators

S1(x) = Yr(x) % YL (x), $2(x) = Y (x) % Yr(x), (26)
and the v.e.v. of their product can be written in the form

i0 >/ A
(51 (X)Sz(y)>—eXp< 7 (8x13 g = gDy + 0yy 0y — Dy Dy ))(%(x WD)z (VR GHYRE)) y=5 27)
The two-point function is the standard one for fermions on torus of size R with structure spin
L Qi+ @) - G~ /R
(YL@yr())= Z ikt a0 R ,
kez?
B expQri(k+@)- (X — ¥)/R)
- — 2
(VREVRG)) Z Go Fan) /R : (28)
kez?
where k, = k1 — ikp and kz = k1 + ikp. Finally, after a straightforward computation we get
. 21 7oy r Pra 2mi(k—k')-(F—%)/R
(S1(x)S2(y)>=—Z€_RZ_(k+ INK'+a) € (29)

= (ky + ) (k. +az)/R?

Now let us compute the corresponding correlator in the dual torus Téio- Using (13) and (14), the operators (26) are
mapped to

N1 N1
= > 2O @I @ira - e, Z A OxE @I gy - i (30)
}'l m

thus the v.e.v. is mapped to

N -1
2miM
(1) ® $2m)= > exp( N

- =

. >
n,n

x Iy ® Far— (X G G x 8 ). (31)

The two point functions appearing in the r.h.s. of (31) are the same as that of Eq. (28) with a torus size R/N’
and spin structures given by (18). Finally, substituting the two-point functions into Eq. (31) and after a short
computation we get

(100 ® S2(n) = Zexp( +a) A (1?+&)>
k., k'
expQri(k — k) - (& = Y)/R)
(k: + az)(k% +az)/R?

This equation is identical to its noncommutative counterpart (29) after the substitution (11), showing the Morita
equivalence of vacuum expectations values between dual theories. The generalization of this result to more complex
correlation functions is straightforward. But once we have shown the equivalence of correlators in free theory, we
can extend the results, perturbatively, to any “local” interaction of the fields. In fact, it is clear that the structure and
singularities of dual correlators are identical, so the perturbative result to any order in dual theories will coincide.

Sai—iy @ Jai—iy- (32)
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4, Chiral anomaly and fermion determinant

So far we have studied the Morita equivalence between free fermion theories whose actions, being quadratic
in the fields, are independent of 6. Even though this equivalence can be extended to arbitrary interactions in
perturbation theory, one can still think that there is some degree of triviality in the examples arguing that we are
just analyzing equivalences between theories defined around free actions. However, the 6-independence manifests
only at the level of the actions; the “local” operators of the theory, as $; and S, in (26), are, of course, 6-dependent.
In fact, for a fermion theory in noncommutative space, the “space of local interactions” in the sense of Wilson
consists of all “local” star-product functionals of the fields.

Now let us study a less trivial example of the Morita equivalence, the chiral anomaly and its relation to
bosonization. In particular, we are going to show the Morita equivalence between gauge effective actions of
fermions coupled to a gauge field, which is clearly a nonperturbative result.

Consider a theory of fermions in the noncommutative torus T92 coupled minimally to a gauge field A,,. We will
work in the fundamental representation but other cases (anti-fundamental or adjoint representation) are completely
analogous. The action is

SZ_%/dzx‘p*(a-i-A*W"‘S[Au]’ ©9)

2
TH

where S[A,] is the gauge field action.
The gauge field satisfy periodic boundary conditions and can be expanded in Fourier modes defined in (4) as

A=Y Ak (34)
P
The action (33) is invariant under chiral transformations [19,20]
U/ (x) = Us(x) x ¥ = exp, (ysa (x)) * ¥, (35)
and leads to the anomalous conservation of the chiral current
it =A =" x (o) 9T (36)

The chiral anomaly A can be calculated from the Fujikawa Jacobian J[«] associated with an infinitesimal chiral
transformation &/ = 1 + y5a

log J[a] = —Z/deA*Sot, A=1trysé(x —x)|reg. (37)
7
To compute the infinitesimal Jacobian we parametrize the gauge potentials with periodic fields ¢ and 5 as
A= Zpullp.n) < U g )+ A° (38)
with
Ulp, n] =exp,(ys¢ +in) (39)

and Ag constants giving the Wilson phases around the cycles of the torus. We perform a change of the fermion
variables
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and ¢ is a real parameter, 0 < r < 1. In particular, if = 1 the fermions decouple from the gauge fields up to the
constant term Ag. This change of variables has associated a Fujikawa Jacobian J[¢, n; ] through the relation

det.(if +eA) = Jlg, n; r]det.(iPlr]), (41)
where
Pl =+ gl + UL, —iefl. (42)
Differentiating and integrating over  we finally have
1

det.(if + ef) = det (i + eA?) exp(—Z f dt / d®x A1) * (;5), (43)

0 7"92
where we have identified
d
—Zfdzx A@) * ¢ = E(log* J(o, n; t]). (44)
17

Egs. (41) and (43) relate the Fujikawa Jacobian with the determinant of the Dirac operator and the chiral anomaly.
Now, expression (37) has to be regularized in a gauge-invariant way, thus as usual we write [19,20]

. 1
ADreg = lim trys—7 > Ug+a exp, (PLr] % Plr)/M?) Uy, 5. (45)
i

and, after a straightforward calculation we obtain the usual result for the chiral anomaly

A(f)reg = 7 s“”F’ (46)
where Fy,, is the electromagnetic field strength tensor

Fl,=0,A, — 8,A), —ie(A], * A, — A} x A}), (47)

and A, is obtained from

A= St L6 )< U, [ n) (48)
Finally, the fermion determinant takes the form
1
det.(if + ef) = det (i + eA?) exp{—E/dZ /dte’“’F’ *¢>} (49)
7} 0

To compute the first factor of the above expression we note the following. The constant field Ag can be written as

-1
eUﬂ %0, (Up) (50)
with Ug defined as in (4) and B = (R/27)Ao. Then, performing a gauge transformation v — ¢/ = Uj *yr, we
can eliminate the constant gauge field from the determinant at the expense of changing the spin structures of the
fermions & — & + f8. Hence the determinant of the operator i § + eAY is nothing but the partition function of a free
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fermion with spin structure & + 8

2
al+p1—1/2
‘4m+m—wﬂ“”
In(x)[?
At this point, we can compare these results with the corresponding for the Morita-equivalent theory in the dual
torus 7'2’. The action (33) is mapped to the one

et (if + eA”) = (51)

/

5= "16n

trg / XY@+ MY+ S[AL, (52)
TZ/

where the fields v are N x N fermion-valued matrices and satisfy the boundary conditions (15). The U (N) gauge
field A, is defines on the dual torus T62 and is given by [11,12].

N'—-1
Ap= Y Ji Y expQuiN'G-%/R)ALU;. (53)
=0 Gez?
It satisfy the boundary conditions
Ap(er+ R x0) = QT A (1, x) 21, Au(rn,x2 + R) = 25 A, (x1.x2) 22, (54)

with £21 and §2; defined in Eq. (16). Notice that (54) are constant gauge transformations so the action is insensitive
to them.

Using the mapped expressions for fermion fields, gauge fields and the 7-dependent transformation, we can deal
with this fermion determinant analogously. Indeed, by a similar computation to the one used to obtain (43) we have

/dzx .A(t)qb), (55)

1
det(if + ef) = det(ig + eAO) exp<—2 % trg / dt
0

T2/
where
1 N'—1
Alt)reg = lim tr(ys 7 Z ZO exp(—27i (N'G +7i + @)% /R) I 55
G =
x exp<¢A[/I—tg2) exp(27i(N'g +17 + &))?/R)J2,7+2a>, (56)

and ¢ can be written in terms of A,, using Eq. (48). Finally, after a standard computation we get the well-known
result for the nonabelian chiral anomaly in two dimensions, which inserted in Eq. (55) gives

1
det(ia+e¢4)=det(ia+e¢(°)exp<—z\i trG/dZX/dte"”F,ivqﬁ). (57)
T2/ 0

The first factor can be written analogously to the free fermion case as a product of N '2 partition functions of free
fermions with spin structures shifted by an amount g, giving

(014 p1+n1)/N —1/2
ﬂ[(az + By +ny)/N' — 1/2](0’ o)
n(t)

N'—1

det(ig + eA”) = l_[

ni,ny=0

2
: (58)
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As in the case of free fermion partition functions, it can be checked numerically that expressions (51) and (58) are
identical.
Using relation (19) and the Morita mapping for the gauge fields it is immediate to show that the second factor
in Eq. (57) is exactly the same as its noncommutative counterpart in Eq. (49). Thus, both determinants are equal.
We can go farther and perform the integration of the 7-parameter in the anomaly Eq. (49). In fact, this integration
can be done without difficult in the light-cone gauge [19,20]

1
¢ 2 v 1 2 -1
—Z/d x/dte“ F[w*qbz—g/d x(0.877) % (9u8)
T} 0

2
h

1

i

+Eeij/d2x/dtg*1 % (09)x g L (9;8) g Lk (39), (59)
0

2
T

which is the Moyal deformation of the Wess-Zumino-Witten (WZW) action. This action is highly nonlinear and
non-perturbative in nature. It is well known that, in ordinary space, the correlators of the WZW can be computed
exactly, by invoking the infinite-dimensional symmetries of the theory, namely, the Virasoro algebra and the
affine current algebra. However, it is not known how to solve this problem in noncommutative space as the star
deformations of the Virasoro and affine algebras are not fully understood. Some progress in this direction was done
in [20] where it was shown that, through a Seiberg—-Witten mapping, the noncommutative WZW action is mapped
to an ordinary space, U (1) WZW model (a U (1) WZW model in ordinary space is equivalent to a free massless
boson theory). Notice nevertheless that the Seiberg—Witten mapping is not an isomorphism.

But in the noncommutative torus the situation is different; the Morita equivalence give us an isomorphism
between noncommutative algebras and in the special case of a rational 6 parameter, one of the isomorphic theories
is a commutative one. Since we know that the gauge effective action of noncommutative theory of massless Dirac
fermions coupled to a gauge field is a star deformed WZW theory and we have shown that, through the Morita
equivalence, is mapped to an ordinary space WZW theory, we have an actual isomorphism between both theories.
That is, we can give meaning to the concept of a “noncommutative conformal field theory”, as the Morita equivalent
version of an ordinary-space CFT.

Finally, it is not difficult to show [19-21] from Eqs. (57), (59), that the bosonization of a free fermion theory is
a star deformed WZW theory. It would be interesting to perform the Morita mapping to this theory and compare it
with the bosonization of the ordinary space non-abelian fermion theory. We hope to report on this issue in a future
work.
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