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ABSTRACT

Aims. By means of numerical simulations and different recipes, we test the efficiency of thermohaline mixing as a process to alter the
surface abundances in low-mass giant stars.
Methods. We compute full evolutionary sequences of red giant branch stars close to the luminosity bump by including state-of-the-art
composition transport prescriptions for the thermohaline mixing regimes. In particular, we adopt a self-consistent double-diffusive
convection theory that allows handling both instabilities that arise when thermal and composition gradients compete against each
other and a very recent empirically motivated and parameter-free asymptotic scaling law for thermohaline composition transport.
Results. In agreement with previous works, we find that, during the red giant stage, a thermohaline instability sets in shortly after
the hydrogen burning shell (HBS) encounters the chemical discontinuity left behind by the first dredge-up. We also find that the
thermohaline unstable region, which initially appears on the exterior wing of the HBS, is unable to reach the outer convective envelope,
with the consequence that no mixing of elements occurs that produces a noncanonical modification of the stellar surface abundances.
Also in agreement with previous works, we find that artificially increasing the mixing efficiency of thermohaline regions makes
it possible to connect both unstable regions, thus affecting the photospheric composition. However, we find that to reproduce the
observed abundances of red giant branch stars close to the luminosity bump, thermohaline mixing efficiency has to be artificially
increased by about four orders of magnitude from what is predicted by recent 3D numerical simulations of thermohaline convection
close to astrophysical environments. From this we conclude that the chemical abundance anomalies of red giant stars cannot be
explained on the basis of thermohaline mixing alone.
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1. Introduction

After leaving the main sequence, low-mass stars move in the HR
diagram towards the red giant branch (RGB). During the RGB,
nuclear reactions take place in a thin shell surrounding the he-
lium core and moving outwards in mass. The material pro-
cessed by H-burning is kept hidden inside the core until the
inner boundary of the convective envelope penetrates deeply
inwards, reaching the freshly synthethized nucleides. When this
happens, the material processed by nuclear reactions is dredged
up to the surface (in the so-called first dredge up), thereby mod-
ifying the photospheric composition of red giant stars. Standard
stellar evolution theory (Iben 1967) predicts that no further sur-
face abundance variation will take place. However, observational
evidence strongly suggests there are noncanonical mixing pro-
cesses on the RGB (Gilroy 1989; Gilroy & Brown 1991; Luck
1994; Charbonnel 1994; Charbonnel et al. 1998; Charbonnel &
Do Nascimento 1998; Gratton et al. 2000; Smith et al. 2002;
Shetrone 2003; Geisler et al. 2005; Spite et al. 2006; Recio-
Blanco & de Laverny 2007; Smiljanic et al. 2009). This ex-
tra mixing seems to be related to the RGB luminosity-function
bump, i.e., the phase of the evolution when the narrow hydrogen-
burning shell reaches the chemical discontinuity caused by the
deep penetration of the convective envelope, leading to a transi-
tory drop in the luminosity of the star and producing a peak in
the giant-branch luminosity distribution.

In past years considerable effort has been devoted to iden-
tifying the noncanonical physical processes that could be re-
sponsible for modifying the photospheric composition of low-
mass giant stars at the luminosity bump stage. One important
clue was first provided by Eggleton et al. (2006) by detect-
ing the appearence of a mean molecular weight (μ) inversion
in a region just above the HBS when the burning shell reached
the uniform composition layers left behind by the first dredge-
up phase. Using the classic Rayleigh-Taylor criterion, Eggleton
et al. (2006) find this region to be hydrodynamically unsta-
ble. The μ-inversion detected was identified to come from the
3He(3He, 2p)4He reaction, a process that takes two nuclei and
transforms them into three, producing a local depression in the
mean molecular weight per nuclei. This depression is very tiny
and becomes evident just when it takes place in a background of
homogeneous chemical composition like the one found by the
external wing of the HBS at the luminosity bump region.

Charbonnel & Zahn (2007, CZ07) point out that, as the in-
verse μ-gradient builds up in a star, it is a double diffusive insta-
bility (known in the literature under the name of thermohaline
instability) what first occurs, rather than a dynamical instabil-
ity (Rayleigh-Taylor). This thermohaline instability takes place
when the stabilizing agent (heat) diffuses away faster than the
destabilizing agent (μ), leading to a slow mixing process that
might provide the extra mixing sought.

Since thermohaline instability was identified as taking place
at the luminosity bump, several efforts have been conducted
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to understand the actual relevance of this process in modify-
ing the surface abundance composition of low-mass giant stars
along the RGB (Denissenkov & Pinsonneault 2008; Cantiello &
Langer 2010; Charbonnel & Lagarde 2010; Denissenkov 2010;
Denissenkov & Merryfield 2011; Stancliffe 2010). The thermo-
haline mixing has therefore been studied by means of numeri-
cal simulations either by considering it as an isolated process or
by combining it with other mechanisms that might contribute to
the turbulence of the material (e.g., rotation, internal magnetic
fields).

Previous investigations are uncertain about the consequences
and relevance of the setting in of thermohaline instability at the
RGB: while some authors find the mixing rate generated by this
process to be enough to reproduce the surface abundances ob-
served, others consider this mechanism to be insufficient and
propose the interaction of more than one process to explain the
observations. Surely a realistic scenario should consider all pos-
sible physical processes present and study how they contribute
and interact among themselves. However, there are still strong
doubts in the current treatment of the thermohaline mixing as an
isolated process, and they should be addressed before we con-
sider the role of this mechanism as actually understood.

One important source of uncertainty comes from calibrating
the degree of turbulence generated by each instability. In partic-
ular, the thermohaline instability gives rise to a slow mixing of
the material that is usually treated as a diffusive process char-
acterized by a coefficient that determines the efficiency of the
mixing. This parameter, the diffusion coefficient, has to be set
beforehand in order to solve the corresponding diffusion equa-
tion. To this end, a prescription based on the work of Ulrich
(1972) and Kippenhahn et al. (1980) has usually been adopted,
where the diffusion coefficient was found to be proportional to
the square of the (unknown) aspect ratio α (length/width) of fluid
elements. Unfortunately, this leads to a strong uncertainty in its
value, since the linear theory does not reliably estimate the max-
imum length of salt fingers relative to their diameter.

Laboratory experiments that simulate oceanic conditions
(e.g., Krishnamurti 2003) suggest a geometry of slender fin-
gers for the convective elements, and therefore some authors
adopt high values of α(≥5) in order to reproduce the sur-
face abundances of low-mass stars after the luminosity bump.
However, physical conditions inside a star are very different
from those in the laboratory, and it is not clear if elongated struc-
tures can be stable, especially when shear and horizontal turbu-
lence is present. In view of these concerns, other authors (e.g.,
Kippenhahn et al. 1980; Cantiello & Langer 2010) adopt “blobs”
(α ≈ 1) as the preferred fluid-element morphology. This freedom
in the choice of the aspect ratio has an evident impact on the
diffusion coefficient that has been reported to affect the results
(CZ07, Cantiello & Langer 2010).

Very recently, Denissenkov (2010) and Traxler et al. (2011)
have presented the first numerical simulations of thermohaline
(fingering) convection close to the astrophysical regime: i.e.,
Prandtl number Pr ∼ 10−6 and inverse Lewis number τ ∼ 10−6.
In fact, Traxler et al. (2011) used high-performance, 3D simu-
lations to derive asymptotic scaling laws for thermohaline com-
position transport. These asymptotic scaling laws are, then, the
first empirically motivated and parameter-free recipe available
for treating thermohaline mixing in an astrophysical regime.
Both Denissenkov (2010) and Traxler et al. (2011) suggest that
their results imply that the thermohaline mixing is not efficient
enough to account for the changes in the surface abundances of
red giants close to the luminosity bump, but no stellar evolution
computations have been performed.

In the present work we test these suggestions by means of
full evolutionary simulations of the development of thermoha-
line convection in RGB stars. Specifically we study the relevance
of thermohaline mixing in RGB stars when more sophisticated
and physically sounding prescriptions than that of Kippenhahn
et al. (1980) are adopted in a stellar evolutionary code. In partic-
ular, we adopt the very recent prescription of Traxler et al. (2011)
and the double diffusive mixing-length theory of Grossman &
Taam (1996). While the former is based on realistic 3D nu-
merical experiments and is essentially parameter free, the lat-
ter successfully reproduces most previously known results about
convection in astrophysics and, when composition gradients are
considered, it establishes its own stability conditions, thus pro-
viding a new perspective for studying thermohaline instability
problem.

2. GNA convection theory

As an effort to provide a better nonlocal theory of convection,
Grossman et al. (1993) developed a flexible and powerful for-
malism, which was designed to make unbiased, self-consistent
predictions about complex phenomena associated to the trans-
port of energy in stars. Here we use this formalism and follow
the prescription of Grossman & Taam (1996) to get the local
theory of convection in a composition-stratified fluid.

Basically, the theory allows the mixing rate of the fluid to
be found in the convective, thermohaline and semiconvective
regimes by solving two equations simultaneously: the first of
these equations corresponds to the turbulent velocity σ,

σ2

"
(A + D + 2Bσ)

gα

Hp
(∇ − ∇ad) − (A + F + 2Bσ)

gφ

Hp
∇μ

−(A + D + 2Bσ)(A + F + 2Bσ)(D + F + 2Bσ)
�

×
"
(F + Bσ)

gα

Hp
(∇ − ∇ad) − (D + Bσ)

gφ

Hp
∇μ

−(A + Bσ)(D + Bσ)(F + Bσ)
�
= 0, (1)

where ∇ = ∂ ln T/∂ ln P, ∇ad = (∂ ln T/∂ ln P)ad is the adiabatic
gradient,∇μ = ∂ lnμ/∂ ln P is the molecular weight gradient, g is
the local acceleration due to gravity,α = −(∂ ln ρ/∂ ln T )P,μ is the
coefficient of thermal expansion, φ = (∂ ln ρ/∂ lnμ)P,T, Hp is the
pressure scaleheight, D, F, and A are the diffusion rates of heat,
composition, and momentum, respectively, and B = 2/l, with
l the unique mixing length considered by Grossman & Taam
(1996). The other equation involves the flux conservation

∇Rad − ∇ad = (∇ − ∇ad) + Hp

�
ρCP

KT

�
wθ, (2)

where ∇Rad is the temperature gradient that would be needed
to transport the whole flux by radiation, ρ is the density, CP is
the specific heat, K is the radiative diffusive conductivity, and
wθ is the correlation between turbulent velocity and turbulent
temperature excess given by

wθ =

�
X

D+F+2Bσ − A − F − 2Bσ − Y
F+Bσ

�
(A + Bσ) − Y

X
D+F+2Bσ − A − F − 2Bσ − Y

F+Bσ + Y

Tσ2

αg
(3)

where, for simplicity, we have set X = gα(∇ − ∇ad)/Hp and Y =
gφ∇μ/Hp. Our Eq. (3) differs from Grossman & Taam’s Eq. (17)
because we have fixed some sign errors present in the original
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Fig. 1. Regions of different stability regimes for diffusion rates A = 0,
D = 0.001, and F = 0.

expression. It is worth mentioning that for realistic cases D � A,
D � F and D goes to zero.

Equations (1) and (2) have to be solved simultaneously for
σ and (∇ − ∇ad). The leading factor of Eq. (1) shows that σ = 0
is always a solution, but it corresponds to a stable equilibrium
only if no other real and non-negative root exists. In general,
the fluid will seek out the most turbulent equilibrium state; thus,
if more than one root is positive, the system will evolve to the
largest root, because the σ = 0 solution is unstable. Figure 1
shows the regions of different stability regimes for a realistic
choice of the diffusion rates. Note the convective region with
∇−∇ad < 0 for which the standard mixing length approach (∇μ =
0) cannot provide mixing velocities and which have sometimes
been misidentified with the thermohaline regime.

In the present work the mixing of nuclear species of mass
fraction Xi is performed by solving the diffusion equation

dXi

dt
=

 
∂Xi

∂t

!
nuc

+
∂

∂Mr

"
(4πr2ρ)2Dc

∂Xi

∂Mr

#
(4)

with the diffusion coefficient Dc defined in terms of the turbulent
velocity σ and the mixing length l by (Weaver et al. 1978)

Dc =
1
3
σl. (5)

Appendix A contains a few additional details about the proce-
dure followed by us to solve GNA’s equations.

3. An empirical scaling law for compositional
transport by fingering convection

Although double-diffusive processes have been studied by sev-
eral authors by means of hydrodynamics codes (see, e.g.,
Merryfield 1995; Biello 2001; Bascoul 2007; Zaussinger &
Spruit 2010), it was Traxler et al. (2011) who performed the
first 3D simulations to address the question of double-diffusive
transport by fingering convection in astrophysics. It is important

to note that Traxler et al. (2011) conducted their simulations at
Pr ∼ O(10−2), while the true astrophysical regime occurs at Pr ∼
O(10−6). Therefore, their empirical scaling law relies on the va-
lidity of the asymptotic behavior suggested by their results. They
model a finger-unstable region using a local Cartesian frame
(x, y, z) oriented so that its vertical axis z has a direction oppo-
site to that of the gravitational acceleration. Also the Boussinesq
approximation is used and, consequently, it is assumed that low
density, temperature, and compositional perturbations (ρ̃, T̃ , μ̃)
are related by the following linearized equation

ρ̃

ρ0
= αT̃ + βμ̃, (6)

where ρ0 is a reference density, α = −ρ−1
0 ∂ρ/∂T , and β =

ρ−1
0 ∂ρ/∂μ. Expressing the velocity, temperature, and composi-

tional fields as a background component, plus a perturbation, it
is found that

u(x, y, z, t) = ũ(x, y, z, t), (7)

T (x, y, z, t) = T0(z) + T̃ (x, y, z, t), (8)

μ(x, y, z, t) = μ0(z) + μ̃(x, y, z, t), (9)

with T0(z) = z ∂T/∂z and μ0 = z ∂μ/∂z. By scaling the time (t),
the temperature, and the composition adequately by means of
the expected finger scale (see Traxler et al. 2011, for details), the
final set of equations to solve turns out to be

1
Pr

 
∂ũ
∂t
+ ũ · ∇ũ

!
= −∇p̃ + (T̃ − μ̃)ez + ∇2ũ, (10)

∇ · ũ = 0, (11)

∂T̃
∂t
+ w̃ + ũ · ∇T̃ = ∇2T̃ , (12)

∂μ̃

∂t
+
w̃

R0
+ ũ · ∇μ̃ = τ∇2μ̃, (13)

where w̃ is the z component of ũ, Pr the Prandtl number, p̃ the
nondimensional pressure perturbation from hydrostatic equilib-
rium, R0 = (∇ − ∇ad)/∇μ and τ = κμ/κT , with κμ the composi-
tional diffusivity (see below) and κT the thermal diffusivity given
by

κT =
4acT 3

3κCPρ2
· (14)

In this last equation, a stands for the radiation density constant,
c is the speed of light and κ the Rosseland mean opacity.

Traxler et al. (2011) solved Eqs. (10–13) in a triply periodic
box of size (Lx, Ly, Lz) and carried out simulations for moder-
ately low values of the Prandtl number and diffusivity ratio of
order O(10−2).

As a result of numerical experiments, it turns out that the tur-
bulent compositional transport by fingering convection follows a
simple law for the diffusion coefficient, namely

Dμ = 101
√
κμν e−3.6r(1 − r)1.1, (15)

A139, page 3 of 7

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117029&pdf_id=1


A&A 533, A139 (2011)

where r = (R0 − 1)/(τ−1 − 1) and ν is the total viscosity given by
the sum of the molecular and radiative viscosities (Denissenkov
2010)

ν = νmol + νrad, (16)

with

νrad =
4aT 4

15cκρ2
(17)

and

νmol ≡ κμ = 1.84 × 10−17(1 + 7X)
T 5/2

ρ
[cm2 s−1], (18)

where X is the hydrogen mass fraction. Based on the asymptotic
behavior shown by their results, Traxler et al. (2011) suggest the
possibility of applying Eq. (15) to the more extreme astrophysi-
cal regime, provided Pr is of order τ.

4. Numerical simulations

To study the effects of thermohaline instability in low-mass gi-
ant stars, we performed simulations using a 1D evolution code
(LPCODE, Althaus et al. 2005) incorporating GNA’s convec-
tion theory to compute the mixing rates of the different sta-
bility regimes defined by this formalism. In our numerical ex-
periments, we adopted the following choice for the parameters:
A = 0, F = 0, D = 3K/(ρCPl2), α = 1, φ = 1, and l = 1.35 (ap-
proximately equivalent to a mixing length parameter of 1.61 in
the usual Kippenhahn & Weigert 1990 prescription), and imple-
mented the same nuclear reaction network as described at length
in Althaus et al. (2005).

We computed stellar models of 0.9 M�, 1.3 M�, and 1.6 M�,
each one with three different initial metallicities, namely Z =
3.17×10−4, 1×10−3, and 6.32×10−3, and let them evolve from the
main sequence until after the luminosity bump. For each model,
we paid special attention to the detailed stellar structure of the re-
gion between the HBS and the base of the convective envelope,
contrasting the situation given before the star enters the lumi-
nosity bump region and after that stage of its evolution. The re-
sults obtained in all cases were qualitatively very similar, thus we
show here just one case, namely the 0.9 M�, Z = 1×10−3 model,
which is representative of what happens to the others. Figure 2
shows the abundance profiles of some elements and the mean
molecular weight gradient for the 0.9 M�, Z = 1 × 10−3 model,
before and after the luminosity bump. Before the luminosity
bump (lefthand panel in Fig. 2), the mean molecular weight
gradient ∇μ shows two peaks, corresponding to the hydrogen-
burning shell (left peak) approaching the molecular weight dis-
continuity (right peak) left behind by the first dredge-up. When
the hydrogen-burning shell reaches the discontinuity, the reac-
tion 3He(3He, 2p)4He produces a molecular weight inversion in
the external tail of the HBS, destabilizing the region and pro-
ducing thermohaline convection. The destabilized zone (shown
by plus signs in the righthand panel of Fig. 2) never reaches the
convective envelope in our simulations, because both regions are
separated by a radiative zone that prevents any change in the sur-
face composition of the star. This result clearly differs from the
main result presented by CZ07 when the slender-finger geometry
of Ulrich (1972) was adopted. This should not come as a surprise
because our assumption of a unique mixing length in GNA the-
ory is far from a slender-finger geometry. In fact, our results are
consistent with those of CZ07 when blobs, rather than slender
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Fig. 2. Profiles of the abundances of H, 3He, 12C, 13C, 14N, 16O and of
the mean molecular weight gradient ∇μ as a function of mass coordi-
nate. The full line stands for ∇μ > 0 and the plus signs otherwise. Left
and right panels correspond to the situation before and after the bump,
respectively, for a 0.9 M� model with 1×10−3. The abscissa ranges from
the bottom of the hydrogen-burning shell to the base of the convective
envelope.

fingers, are assumed. As shown by CZ07, different blob/finger
geometries can affect the diffusion coefficient by more than two
orders of magnitude. In this connection, we performed additional
simulations that artificially increase GNA’s diffusion coefficient
of thermohaline unstable layers by a factor of 103 in order to test
the eventual relation between the more rapid mixing rate and
the surface abundance variations. Figure 3 shows the abundance
profile of the same elements included in Fig. 2, as well as the run
of the molecular weight gradient in the region comprised by the
HBS and the base of the convective envelope, for this new exper-
iment. Now the thermohaline zone expands outwards (in mass)
occupying all the former radiative region that separated it from
the convective envelope. The contact between both convective
regions allows for the noncanonical extra mixing to take place,
thus modifying the photospheric chemical composition after the
luminosity bump.

Given the contrast between the diffusion coefficients com-
puted as given by the GNA and those reported by CZ07, we
decided to perform further simulations that combine the GNA
theory with other prescriptions used to estimate the diffusion co-
efficient. Only very few different prescriptions for the computa-
tion of the diffusion coefficient in thermohaline unstable regions
exist in the literature. Ulrich (1972) was the first to derive an
expression for the turbulent diffusivity produced by that instabil-
ity, whereas Kippenhahn et al. (1980) extended previous works
to the case of an imperfect gas. The linear theory used by these
early works yield a solution for the diffusion coefficient that is
proportional to the square of the unknown aspect ratio (length
to diameter) of the fluid elements, which is still a matter of de-
bate. Indeed, the diffusion coefficients may differ by about two
orders of magnitude depending on the form factor adopted by
different authors. Thus, the implementation of the linear theory
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Fig. 3. Same as Fig. 2 for an artificially increased diffusion coefficient
(see text).

has the drawback of containing a high intrinsic uncertainty. On
the other hand, more recently, Traxler et al. (2011) successfully
derived empirically determined transport laws for thermohaline
unstable regions by means of 3D simulations performed at pa-
rameter values approaching those relevant for astrophysics. This
represents an alternative and more physically sound approach
that helps us to avoid the problems of the classical linear theory
and that supplies an independent way to address the question of
the actual role of mixing in thermohaline unstable regions.

Since GNA convection theory may be implemented to deter-
mine the regime of energy transport of any layer with the advan-
tage of leaving the computation of the diffusion coefficient as an
independent task, which might adopt different prescriptions, we
decided to study the system’s response combining GNA formal-
ism with two independent recipes. On the one hand, we com-
puted the thermohaline diffusion coefficient by means of the ex-
pression obtained by Kippenhahn et al. (1980)

DK = αth
3K

2ρCP

φ
δ∇μ

(∇ − ∇ad)
, (19)

where αth is a efficiency parameter that depends on the geometry
of the fluid elements, ρ the density, K = 4acT 3/(3κρ) the ther-
mal conductivity, and CP = (dq/dT )P the specific heat capacity.
We set αth = 2, which roughly corresponds to the prescription of
Kippenhahn et al. (1980). On the other hand, we computed diffu-
sion coefficients by adopting the Traxler et al. (2011) empirical
law given by Eq. (15).

Thus, we performed a few additional simulations for the
0.9 M�, Z = 1×10−3, and 1 M�, Z = 0.02, sequences in order to
investigate the response of the system when we solely vary the
recipe to compute diffusion coefficients. Figure 4 shows the evo-
lution of the thermohaline region along the RGB when the pre-
scription of Kippenhahn et al. (1980) is adopted. The convective
envelope never enters into contact with the thermohaline region.
Consequently, for this model and mixing treatment, the photo-
spheric abundances of the star remain constant throughout this
phase. A similar behavior is shown by Fig. 5, corresponding to

Fig. 4. Evolution of the region between the HBS and the convective
envelope, when the prescription of Kippenhahn et al. (1980) is adopted
to compute the diffusion coefficient in the thermohaline zone. The time
interval spans from the instant when the stars luminosity reaches L ≈ 96
(i.e., before the luminosity bump) until L ≈ 1826, close to the top of the
RGB. The figure corresponds to the 0.9 M�, Z = 1 × 10−3, model.

Fig. 5. Same as Fig. 4, but when the prescription of Traxler et al. (2011)
is adopted to compute the diffusion coefficient in the thermohaline zone.
The figure corresponds to the 0.9 M�, Z = 1 × 10−3, model.

the implementation of the recipe of Traxler et al. (2011). In this
case, the thermohaline zone is much narrower than before. We
see in the next section that this fact is closely related to the mag-
nitude of the diffusion coefficients computed using different pre-
scriptions. Finally, it is worth noting that in our 1 M� , Z = 0.02,
sequence, we did not find any contact between the bottom of the
convective envelope and the thermohaline region. This result is
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Fig. 6. Relation between diffusion coefficients computed using the pre-
scriptions of Kippenhahn et al. (1980), DKip, Traxler et al. (2011), DTrx,
and Grossman et al. (1993), DGNA.

at variance with the simulations presented by Cantiello & Langer
(2010), which shows that this contact occurred in 1 M� mass
stars even for the prescription of Kippenhahn et al. (1980) with
αth = 2. We suspect that this different behavior may be due to
the different microphysics assumed in both stellar codes.

5. Summary and discussion

We have studied the impact of thermohaline mixing in red gi-
ants close to the luminosity bump in the light of two nonstan-
dard and physical sounding mixing prescriptions: the GNA and
the Traxler et al. (2011) prescription. To the best of our knowl-
edge, this is the first time that the empirically based thermoha-
line mixing prescription of Traxler et al. (2011) has been tested
in the context of detailed evolutionary simulations. In the case
of the double diffusive mixing length theory of Grossman et al.
(1993), it allowed us to include thermohaline mixing in a consis-
tent way with the other unstable regimes that are possible when
∇μ , 0, selfconsistently solving the temperature gradients and
turbulent mixing rates.

For the sake of completeness let us mention that in the case
of GNA theory, we find the thermohaline mixing efficiency to be
very similar to that of Kippenhahn et al. (1980). In fact our com-
putations show that at almost all layers the value predicted by
Grossman & Taam (1996) is DGNA ∼ DKip/6, a difference that
is just a consequence of different choices in the adimensional
coefficients of both prescriptions. The similarities between these
two prescriptions should not come as a surprise since the GNA
theory is a sophisticated version of the mixing length theory, but
it still relies on a very similar picture to the standard MLT, on
which Kippenhahn et al. (1980) prescription is based. We con-
sider our results as an actual validation of the GNA theory for
the cases where the Kippenhahn et al. (1980) prescription is ap-
plicable.

Both the Traxler et al. (2011) and Grossman et al. (1993) pre-
scriptions have identified thermohaline mixing as developing in

RGB stars close to the luminosity bump, in agreement with all
previous works that have adopted more simplified approaches
(Charbonnel & Zahn 2007; Cantiello & Langer 2010). However,
in agreement with Denissenkov (2010) and Traxler et al. (2011),
our full evolutionary calculations confirm that thermohaline
mixing is not efficient enough for fingering convection to reach
the bottom of the convective envelope of red giants. Thus,
no changes in the surface chemical abundances of red giants
are obtained when either Traxler et al. (2011) or Grossman
et al. (1993) prescriptions are adopted. Interestingly enough, be-
cause the value of (∇ − ∇ad)/∇μ in the thermohaline zone is
(∇ − ∇ad)/∇μ ∼ 103... ∼ 104, it falls in a regime in which
the standard prescription of Kippenhahn et al. (1980) strongly
overestimates the thermohaline mixing efficiency (see Fig. 3 of
Traxler et al. 2011). As can be seen in Fig. 6, the standard pre-
scription is ∼100 to 1000 times more efficient than the empirical
Traxler et al. (2011) law. However, we know from Cantiello &
Langer (2010) that the standard prescription is still not enough
to account for the surface abundances of RGBs. Thus, in order
to allow contact between the thermohaline region and the con-
vective envelope, the diffusion coefficient should be about four
orders of magnitude higher than predicted by realistic thermo-
haline transport laws (Denissenkov 2010; Traxler et al. 2011).
Since hydrodynamics codes have been shown to be consistent,
yielding similar results between different implementations, they
should be trusted in the physical regime studied (Pr ≥ 10−2),
which due to computational limitations, is not the actual astro-
physical regime (Pr ∼ 10−6). While the prescriptions used here
still rely on an asymptotic scaling, it seems unlikely that the dif-
fusion coefficients are off by this much. Thus, we can conclude
that thermohaline mixing alone is very unlikely to be the expla-
nation for the chemical abundance anomalies of red giants.
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Appendix A: Solving GNA’s equations

GNA theory of convection provides us with a set of equations
that have to be solved in order to find the values of the tem-
perature gradient ∇ and the turbulent velocity σ of the system
in regions of different energy transport regimes. In practice, this
means we have to solve Eqs. (1) and (2) simultaneously. Because
it is impossible to express any of these variables in terms of
the others, we followed an iterative procedure and adopted the
Newton-Raphson method to this end. To avoid eventual numer-
ical instabilities associated to the divergence of Eq. (3) when
the denominator becomes small, we elementarily transformed
Eq. (2) by multiplying it by that denominator. By rearranging
the flux conservation equation we obtain

X2 + a1(σ, Y, XRad) X + a2(σ, Y, XRad) = 0, (A.1)

where we adopted the following nomenclature

X = gα(∇ − ∇ad)/Hp, (A.2)

XRad = gα(∇Rad − ∇ad)/Hp, (A.3)

Y = gφ∇μ/Hp, (A.4)

where a1 and a2 are the coefficients of the quadratic equation
in X (i.e., ∇), which depend explicitly on the turbulent velocity
σ, the composition gradient ∇μ, and the total radiation gradient
∇Rad.
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Thus, given a set of diffusion rates of heat (D), composition
(F), and momentum (A), and once XRad and Y are known, we first
determine whether the total radiation might be transported in a
nonconvective way. If radiative transport is insufficient, convec-
tion has to carry some fraction of the energy flux, so we start the
iterative procedure mentioned above. We adopt an initial (guess)
value for X and solve Eq. (1) for σ. As stated before, the system
will seek out the most turbulent equilibrium state, so we solve
both cubic equations and pick up the largest positive root. The
adopted values for X and σ are then introduced in Eq. (A.1), and
the Newton-Raphson method is used to find the correction to be
applied to X. By iterating this process it is possible to obtain the
values of X and σ that satisfy Eqs. (1) and (A.1). Numerical ex-
periments have shown that X = XRad is a good starting value for
the Newton-Raphson process, while other choices resulted in the
false roots found by the algorithm.

Finally, it is worth mentioning that factors in brackets in
Eq. (1) are cubic in σ, and since both cubics are different,
the conditions that separate the real roots’ region from the real
one plus two complex conjugate roots region are also different.
Despite this difference, for the stellar astrophysics case we find
D � A and D � F, and both conditions tend to the same
curve, making it unnecessary in practice to compute both lim-
iting curves.
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