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Abstract

Given a n × n positive semidefinite matrix A and a subspace S of Cn, R(S, A) denotes
the shorted matrix of A to S. We consider the notion of spectral shorted matrix

ρ(S, A) = lim
m→∞ R(S, Am)1/m.

We completely characterize this martix in terms of S and the spectrum and the eigenspaces of
A. We show the relation of this notion with the spectral order of matrices and the Kolmogorov’s
complexity of A to a vector ξ ∈ Cn.
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1. Introduction

Consider a fixed n × n (Hermitian semidefinite) positive matrix A and a sub-
space S of Cn. In this paper we define and study the properties of a positive mat-
rix ρ(S, A) associated to the pair (A,S) which is related to the shorted matrix
R(S, A) of Anderson [1] by means of a spectral radius-type formula.

Denote by Mn(C)+ the set of all positive semidefinite matrices. Given a matrix C

denote by R(C) the subspace spanned by the columns of C (i.e. the range of C).
The shorting R(S, A) can be defined as follows. Suppose, for simplicity, that

S is the subspace spanned by the first s canonical vectors and consider the parti-
tioned matrix A = ¡

a b

b∗ c

¢
where a ∈ Ms(C)+, b ∈ M(n−s)×s(C) and c ∈ Mn−s(C)+.

Then, R(S, A) =
³

a − bc†b∗ 0
0 0

´
is the biggest element D of Mn(C)+ such that D 6 A

(i.e. A − D is a positive matrix) and R(D) ⊆ S (where c† is the Moore–Penrose
pseudoinverse of c). This result and many others were proved by Anderson in [1]
and applied to electrical circuit theory. Observe that R(S, A) can also be seen as an
s × s-matrix (or, which is the same, as a linear transformation on S). Observe also
that there is no canonical notation for R(S, A). Anderson [1] denotes S(A), Ando
[3] denotes A/S and Pekarev [17] uses AS.

Later on, Anderson and Trapp [2] extended the concept to a Hilbert space context;
indeed, it was Krein [11] in 1946 who first defined and used this construction in his
study of extensions of selfadjoint operators, see also Smul’jan [19]. Many general-
izations and applications came later. The reader is referred to the papers by Ando
[3], Cottle [7], Carlson [6], Mitra [15], Butler and Morley [5], Pekarev [17], Pekarev
and Smul’jan [18] and Li and Mathias [13,14] to have a complete panorama on these
matters.

For a positive number t , consider the power matrix At and its shorted matrix
R(S, At ). It turns out that the map t → R(S, At )1/t is decreasing for t > 1. Its
limit

ρ(S, A) = lim
m→∞ R(S, Am)1/m,

which we call the spectral shorted matrix of A to S, is the main subject of the present
paper. The limit should be understood respect to any matrix norm, for instance, the
operator norm induced by the Euclidean norm of Cn.

Suppose that S = {ξ ∈ Cn : ξ1 = · · · = ξn−1 = 0}. Denote by P = PS, the
orthogonal projection onto S. Then, for every non-negative definite matrix A, we
can identify R(S, A) and ρ(S, A) with non-negative numbers, because dimS = 1.
With this convention, if A is invertible, then

R(S, A) = det A

det Ann

,

where Ann = (1 − P)A(1 − P) acts on S⊥ (i.e. it is identified with the (n − 1) ×
(n − 1) principal submatrix of A obtained by deleting the last column and the last
row of A). Indeed, it follows from the well known formula det A = det Ann det R
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(S, A), which is in the origin of the study of Schur complements (see [3,6,7,10]).
Therefore

R(S, At )1/t = det A

[det(At )nn]1/t
,

so that

ρ(S, A) = det A

limt→∞[det(At )nn]1/t
.

This relation can be used in the following way: if µ1(B) > · · · > µn(B) are the
eigenvalues of the selfadjoint n × n matrix B, then, by interlacing, µi(A)t > µi

((At )nn) > µi+1(A)t , for i = 1, . . . , n − 1. Therefore, for every t ∈ [1, ∞),

[det(At )nn]1/t 6 det A

µn(A)
, so that ρ(S, A) > µn(A).

Conversely, in this paper we completely characterize the matrix ρ(S, A) in terms
of the subspace S and the eigenspaces of A. Then the limt→∞[det(At )nn]1/t , and
the corresponding limit for every one dimensional subspace S, can be described as
in formulae (6), (7) and (12). For instance, from these formulae we can deduce that
limt→∞[det(At )nn]1/t = det A

µn(A)
if and only if ker(A − µn(A)I) 6⊆ S⊥.

In [9], Fujii and Fujii consider the Kolmogorov’s complexity

K(A, ξ) = lim
n→∞

log(hAnξ, ξi)
n

for an invertible positive matrix A and a unit vector ξ and show several properties of
K . In Section 6 we show that, if S is the subspace generated by ξ , then

K(A, ξ) = log ρ(S, A−1/2)−2 = log ρ(S, A−1)−1,

where we are identifying the rank one spectral shorted matrices with the positive
number which characterizes it. With this identification, several results of [9] can
be deduced from the properties of the spectral shorted operator, see Remark 6.2.
Moreover, it shows that ρ(S, A) can be seen as a higher dimensional version of K .

Section 2 contains preliminaries and a brief account of the main properties of the
shorting operation. In Section 3 the properties of ρ are compared to those of R. On
one side, several properties of both operations are analogous. For instance, we prove
that for every positive number t it holds that

ρ(S, At ) = ρ(S, A)t . (1)

A key property of the spectral shorted operator, similar to a property satisfied by the
usual shorted operator is the following (see Corollary 3.9): given A ∈ Mn(C)+ and
two subspaces S and T of Cn, it holds

ρ(S ∩ T, A) = ρ(T, ρ(S, A)).

On the other side, to get the monotonicity (0 6 A 6 B implies R(S, A) 6 R(S, B))
for ρ we are forced to change the order relation, because in general it is not true that
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ρ(S, A) 6 ρ(S, B) (see Example 7.2). Recall the definition of the spectral order
4 in Mn(C)+: given A, B ∈ Mn(C)+, we write A 4B if Am 6 Bm for all m > 1.
This order provides the following link with Krein’s definition of the shorted operator:
ρ(S, A) is the biggest (in both orders 6 and 4) element D of Mn(C)+ such that
D 4 A and R(D) ⊆ S (see Proposition 5.5).

The spectral order was studied by Olson in [16], where the following character-
ization is proved: given A, B ∈ Mn(C)+, then A 4B ⇐⇒ f (A) 6 f (B) for every
monotone non-decreasing map f : [0, +∞) → R. In Section 5 the properties of the
spectral shorted operator are used to prove a new characterization of the spectral
order. For A, B ∈ Mn(C)+, the following statements are equivalent:

1. A 4 B.
2. For every subspace S, it holds ρ(S, A) 6 ρ(S, B).
3. For every one dimensional subspace S, it holds ρ(S, A) 6 ρ(S, B).
4. If λ ∈ σ(A), µ ∈ σ(B) and λ > µ, then ker(A − λ) ⊆ (ker(B − µ))⊥.
5. There is a positive integer k 6 n and a sequence of positive matrices {Di}06i6k

such that, D0 = A, Dk = B, Di 6 Di+1 and DiDi+1 = Di+1Di (i = 0, . . . , k −
1).

Using this result, formula (1) can be generalized as follows: for every non-decreasing
function f defined on [0, +∞) it holds

f (ρ(S, A)) = ρ(S, f (A)) (2)

if both ρ(S, A) and ρ(S, f (A)) are considered as acting on S. Moreover, a
complete characterization of the spectrum of ρ(S, A) (which is contained in the
spectrum of A) and the eigenspaces of ρ(S, A) are given in terms of S and the
eigenspaces of A. For example:

1. min σ(ρ(S, A)) = min{λ ∈ σ(A) : ker(A − λI) 6⊆ S⊥}, where ρ(S, A) is con-
sidered as acting on S. In particular, if A is invertible, then ρ(S, A) : S → S
is invertible too.

2. kρ(S, A)k = max σ(ρ(S, A)) = min{λ ∈ σ(A) : ⊕µ>λ ker(A−µI) ∩ S= {0}}.
In particular, kρ(S, A)k = kAk ⇐⇒ ker(A − kAkI ) ∩ S /= {0}.

3. For λ ∈ R,M
µ>λ

ker(ρ(S, A) − µI) = S ∩
M
µ>λ

ker(A − µI).

In Section 6, we study the particular case of one dimensional subspaces and show
that several results by Fujii and Fujii [9] on what they call Kolmogorov’s complexity,
become corollaries of our results. We should mention, however, that Fujii and Fujii
have proven a one dimensional version of Theorem 4.3. The last section contains
several examples.
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Several results of this paper remain valid, with almost the same proofs, for opera-
tors on a separable Hilbert space H and a closed subspace S of H; in particular, the
spectral shorted operator ρ(S, A) can be defined in this setting. However, a complete
characterization of ρ(S, A) in this case is still an open problem. These matters will
be discussed elsewhere.

We wish to acknowledge Professor T. Ando for several useful comments about
the properties of the spectral order.

2. Preliminaries

For a matrix A ∈ Mn(C), we denote by R(A) the range of A, ker A the kernel of
A, σ(A) the spectrum (i.e. the set of eigenvalues) of A, A∗ the adjoint matrix of A,
ρ(A) the spectral radius of A, kAk the spectral norm (i.e. the operator norm induced
by the Euclidean norm of Cn) of A and A† the Moore–Penrose pseudoinverse of A.
If A = A∗, we denote by λmin(A) = min σ(A) = minkξk=1hAξ, ξi.

Given a subspace S of Cn, we denote by PS the orthogonal (i.e. selfadjoint) pro-
jection onto S. If B ∈ Mn(C) satisfies PSBPS = B, we consider the compression
of B to S, (i.e. the restriction of B to S as a linear transformation form S to S),
and we say that we think B as acting on S. Several times this is done in order to
consider σ(B) just in terms of the action of B on S. For example, if B > λPS for
some λ > 0, then we can deduce that 0 /∈ σ(B), if we think B as acting on S.

Along this note we use the fact that every subspace S of Cn induces a represen-
tation of elements of Mn(C) by 2 × 2 block matrices, that is, we shall identify each

A ∈ Mn(C) with a 2 × 2-matrix, let us say
¡

A11 A12
A21 A22

¢
S

S⊥ . Observe that
³

A∗
11 A∗

21
A∗

12 A∗
22

´
is the

matrix which represents A∗.

2.1. Shorted operator

Anderson [1] showed that if A = ¡
B C

C∗ D

¢
is a n × n positive matrix and B is a

square k × k submatrix, then the matrix

R(S, A) =
µ

B − CD†C∗ 0
0 0

¶
,

where D† is the Moore–Penrose pseudoinverse of D and S the subspace of Cn gen-
erated by the first k canonical vectors, has the following interpretation in electrical
network theory: if A is the impedance matrix of a resistive n-port network, then
R(S, A) is the impedance matrix of the network obtained by shorting the last n − k

ports. In his paper, Anderson proved that

R(S, A) = max{X ∈ Mn(C)+ : X 6 A and R(X) ⊆ S}. (3)

Although the existence of this maximum has already been observed by Krein [11]
in an infinite demensional context, this result has been widely used only after it was
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rediscovered by Anderson [1] and Anderson and Trapp [2]. In this note, we use Eq.
(3) as the definition of shorted matrices.

Definition 2.1. Let A ∈ Mn(C)+ and S a subspace of Cn. Then, the shorted matrix
of A to S is defined by

R(S, A) = max{X ∈ Mn(C)+ : X 6 A and R(X) ⊆ S},
where the maximum is taken for the natural order relation in Mn(C)+ (see [2]).

In the next theorem we state some results on shorted operators proved by Ander-
son and Trapp [2], Krein [11] and Pekarev [17] which are relevant in this paper.

Theorem 2.2. Let S and T be subspaces of Cn and let A, B ∈ Mn(C)+. Then

1. For every c ∈ R+ we have that R(S, cA) = cR(S, A).
2. If S ⊆ T, then R(S, A) 6 R(T, A).
3. R(S ∩ T, A) = R(S, R(T, A)).
4. If A 6 B, then R(S, A) 6 R(S, B).
5. R(S, A2) 6 R(S, A)2.
6. R(S, A) = inf{QAQ∗ : Q2 = Q, R(Q) = S}.

There is also a result about the continuity of the shorting operation (see [2], Cor-
ollary 2).

Theorem 2.3. Let An (n ∈ N) be a sequence of positive matrices such that
An &

n→∞
A. Then, for every subspace S it holds

R(S, An) &
n→∞

R(S, A).

3. Definition of ρ(S, A) and basic properties

Proposition 3.1. Let A ∈ Mn(C)+ and let S be a subspace of Cn. Then, for every
t > 1, it holds

R(S, At )1/t 6 R(S, A).

Moreover, if 1 6 s 6 t then R(S, As)1/s > R(S, At )1/t .

Proof. Note that R(S, At ) 6 At . Since 0 6 1/t 6 1, by Löwner’s theorem [12],
it follows that R(S, At )1/t 6 A. On the other hand R(R(S, At )1/t ) ⊆ S. So the
statement follows from the definition of shorted matrix. If t > s > 1, let us denote
u = t/s > 1 and B = As . Note that Bu = At . Then
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R(S, At )s/t = R(S, Bu)1/u 6 R(S, B) = R(S, As).

Therefore, because 1/s 6 1, we get R(S, At )1/t 6 R(S, As)1/s . ¤

Corollary 3.2. Let A ∈ Mn(C)+ and S ⊆ Cn. Then, for every 0 6 r 6 1, it holds
that R(S, A)r 6 R(S, Ar).

Proof. Apply Proposition 3.1 to Ar with t = 1/r . ¤

Consider the map [1, ∞) → Mn(C)+ given by t 7→ R(S, At )1/t . By Proposition
3.1, this map is non-increasing. This fact motivates the following definition:

Definition 3.3. Given A ∈ Mn(C)+, the spectral shorted matrix of A by S is

ρ(S, A) = inf
t>1

R(S, At )1/t = lim
t→+∞ R(S, At )1/t .

In the next proposition we sum up some simple properties of spectral shorted
matrices.

Proposition 3.4. Let A ∈ Mn(C)+ and let S and T be subspaces of Cn. Then:

(a) R(ρ(S, A)) ⊆ R(A) ∩ S.

(b) ρ(S, cA) = cρ(S, A) for every c ∈ [0, +∞).

(c) If S ⊆ T, then ρ(S, A) 6 ρ(T, A).

(d) R(S, ρ(S, A)) = ρ(S, A) and ρ(S, R(S, A)) = R(S, A).

(e) ρ(S, ρ(S, A)) = ρ(S, A).

(f) ρ(S ∩ T, A) 6 ρ(T, R(S, A)).

Proof. (a)–(c) These properties follow from the definition of ρ(S, A) and Proposi-
tion 2.2.

(d) Since R
¡
R(S, At )1/t

¢ ⊆ S for each t > 1, it holds R(ρ(S, A)) ⊆ S, so
R(S, ρ(S, A)) = ρ(S, A).

(e) It is a consequence of the previous equality.
(f) It can be deduced from inequalities

R
¡
S ∩ T, A2m¢

6 R
¡
T, R(S, A2m

)
¢

6 R
¡
T, R(S, A)2m¢ ∀m ∈ N.

¤

Examples 3.5
1. If A is the projection with range T, then ρ(S, A) = R(S, At )1/t = PS∩T for

every t ∈ [1, ∞).
2. If A commutes with the orthogonal projection P = PS, then ρ(S, A) =

R(S, At )1/t = PA for every t ∈ [1, ∞).



204 J. Antezana et al. / Linear Algebra and its Applications 381 (2004) 197–217

The next result exhibites one of the main advantages of the spectral shorting over
the classical shorting.

Theorem 3.6. Let A ∈ Mn(C)+ and S a subspace of Cn. Then, for every t ∈
(0, ∞) it holds

ρ(S, A)t = ρ(S, At ).

In particular, ρ(S, A)t 6 At for every t ∈ (0, ∞).

Proof. Given t ∈ (0, ∞), since st → ∞ as s → ∞ and the map x → x1/t is con-
tinuous, we have that

ρ(S, At )1/t =
³

lim
s→∞ R(S, (At )s)1/s

´1/t = lim
s→∞ R(S, Ast )1/st =ρ(S, A).

¤

Before going on, let us recall the definition of spectral order (see [16]).

Definition 3.7. Let A, B ∈ Mn(C)+. We write A 4 B if for every m ∈ N it holds
that Am 6 Bm. The relation 4 defined on Mn(C)+ is a partial order and it is called
spectral order.

The next result replaces the monotony property (4 of Theorem 2.2) of the classical
shorting operation with respect to the usual order 6.

Proposition 3.8. Given A, B ∈ Mn(C)+ such that A 4 B. Then, for every subspace
S of Cn, it holds

ρ(S, A) 4 ρ(S, B).

Proof. Let S be subspace. Given m > 1, since Am 6 Bm, by Theorem 2.2(4) it
holds R(S, Am) 6 R(S, Bm). Moreover, as the function f (x) = x1/m is operator
monotone (see [4]), we get

(R(S, Am))1/m 6 (R(S, Bm))1/m

and taking limit we obtain

ρ(S, A) 6 ρ(S, B).

On the other hand, note that A 4B implies that Ak 4 Bk for every k > 1. Thus, by
what we have already proved, it holds

ρ(S, Ak) 6 ρ(S, Bk) (∀k > 1).

Using Theorem 3.6, these inequalities can be rewritten as

ρ(S, A)k 6 ρ(S, B)k (∀k > 1),

which is equivalent to ρ(S, A) 4 ρ(S, B). ¤
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In Section 5 there is a deeper study about the relationship between the operator
ρ(S, A) and the spectral order.

Theorem 3.9. Let A ∈ Mn(C)+ and let S and T be subspaces. Then

ρ (S ∩ T, A) = ρ (T, ρ(S, A)) .

Proof. Given t > 1, we get

R(T, ρ(S, A)t )1/t = R(T, ρ(S, At ))1/t = R(S ∩ T, ρ(S, At ))1/t

> R(S ∩ T, ρ(S ∩ T, At ))1/t = ρ(S ∩ T, At )1/t

= ρ(S ∩ T, A)

and taking limit we obtain the following inequality

ρ(T, ρ(S, A)) > ρ(S ∩ T, A).

On the other hand, by Proposition 3.6, for every t > 1, ρ(S, A)t = ρ(S, At ) 6 At ;
then

R(T, ρ(S, A)t )1/t = R(S ∩ T, ρ(S, A)t )1/t 6 (R(S ∩ T, At ))1/t

and taking limit again we get ρ(T, ρ(S, A)) 6 ρ(S ∩ T, A). ¤

Proposition 3.10. Let S be a subspace of Cn and let {Am} be a sequence in Mn(C)+
such that Am −→

m→∞ A and Am+1 4 Am for every m ∈ N. Then

ρ(S, Am) &
m→∞

ρ(S, A).

Proof. Since ρ(S, Am+1) 6 ρ(S, Am) (by Corollary 3.8), there is a positive oper-
ator L such that ρ(S, Am) −→

m→∞ L. Clearly ρ(S, A) 6 L.

On the other hand, for every m, k > 1

L 6 ρ(S, Am) 6 R(S, Ak
m)1/k. (4)

Now fix k > 1. As Ak
m &

m→∞
Ak , by Proposition 2.3 it follows

R(S, Ak
m)1/k −→

m→∞ R(S, Ak)1/k, (5)

hence, joining (4) and (5) we obtain L 6 R(S, Ak)1/k , which implies L 6
ρ(S, A). ¤

Remark 3.11. In Section 7 we show an example for which the statements of Pro-
positions 3.8 and 3.10 fail if the spectral order is replaced by the usual one.
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4. Spectrum of ρ(S, A)

In this section S is a subspace of Cn and P = PS is the orthogonal projection
onto S.

Proposition 4.1. For A ∈ Mn(C)+ let µ = min σ(A). Then

µP 6 ρ(S, A).

In particular, if A is invertible then ρ(S, A) : S → S is invertible.

Proof. Note that µm = min σ(Am) for all m ∈ N. Then µmP 6 µmI 6 Am for all
m ∈ N, so that µP 6 R(S, Am)1/m and the result follows. ¤

Proposition 4.2. Let A ∈ Mn(C)+. Then, if ρ(S, A) is considered as acting on S,

it holds

min σ (ρ(S, A)) = max{λ > 0 : Am − λmP > 0, ∀ m ∈ N}. (6)

Proof. Recall that P is the identity on S, which is the space where ρ(S, A) and
R(S, Am)1/m act. Then, for λ > 0,

λP 6 ρ(S, A) ⇔ λP 6 R(S, Am)1/m ∀ m ∈ N

⇔ λmP 6 R(S, Am) ∀ m ∈ N

⇔ λmP 6 Am ∀ m ∈ N

and the result is proved. ¤

Theorem 4.3. Let A ∈ Mn(C)+. Then

min σ (ρ(S, A)) = min{λ ∈ σ(A) : ker(A − λI) 6⊆ S⊥}, (7)

if ρ(S, A) is considered as acting on S.

Proof. Let µ = min{λ ∈ σ(A) : ker(A − λI) 6⊆ S⊥}. Fix m ∈ N. It is clear that
µm = min{λ ∈ σ(Am) : ker(Am − λI) 6⊆ S⊥}. ThenM

λ<µm

ker(Am − λI) ⊆ S⊥ ⇒ S ⊆
M
λ>µm

ker(Am − λI),

so that µmP 6 Am for all m ∈ N. Therefore µP 6 ρ(S, A) and min σ(ρ(S, A)) >
µ.

On the other hand, if L = ker(A − µI), let ρ be a unit vector in L such that
hPρ, ρi /= 0, and let λ > 0 such that Am − λmP > 0, for every m ∈ N. Then

0 6 h(Am − λmP )ρ, ρi = µm − λmhPρ, ρi.
This implies that λmhPρ, ρi 6 µm, for every m ∈ N. Since hPρ, ρi > 0, it must be
µ > λ. Then, by the above Proposition, we get min σ(ρ(S, A)) 6 µ. ¤
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Corollary 4.4. Let A ∈ M2(C) and suppose that dimS = 1. If AP /= PA, then

ρ(S, A) = min σ(A)P.

Proof. If min σ(A) = µ and A is not diagonal, then ker(A − µI) 6⊆ S⊥. ¤

Proposition 4.5. If A ∈ Mn(C)+, then σ(ρ(S, A)) ⊆ σ(A).

Proof. Given λ ∈ σ(ρ(S, A)), let T = L
µ>λ ker(ρ(S, A) − µ). As T reduce

ρ(S, A) we have that

ρ(T, ρ(S, A)) = PTρ(S, A).

On the other hand, according to Proposition 3.9

ρ(T, ρ(S, A)) = ρ(T ∩ S, A).

Now, the minimum eigenvalue of ρ(T ∩ S, A) belongs to σ(A), as we have shown
in Theorem 4.3. But, by construction, λ = min σ(ρ(T ∩ S, A)). Thus λ ∈
σ(A). ¤

Remark 4.6. Given a matrix A, the condition number of A is defined by means of

cond(A) = kAk kA†k,
where A† denotes the Moore–Penrose pseudoinverse of A. In particular, when A ∈
Mn(C)+, then cond(A) = λmax(A)λ, where λ is the inverse of the smallest eigen-
value of A different from zero. Taking this into account, by the previous Proposition
we obtain

cond(A) > cond(ρ(S, A)).

At the end of the next section we shall give a more detailed description of
σ(ρ(S, A)).

5. Spectral order and the spectral shorted matrix

In this section we profundize the study of the relationship between the spectral
order (recall Definition 3.7) and the properties of the spectral shorting operation. We
begin with the following examples, whose verifications are easy to see.

Examples 5.1. Given A, B ∈ Mn(C)+ such that A 6 B, it holds

1. If AB = BA then A 4 B.
2. If λmax(A) 6 λmin(B) then A 4B.
3. In M2(C)+, A 4B if and only if either λmax(A) 6 λmin(B) or AB = BA. Indeed,

it is an easy consequence of Corollary 4.4.
4. If there is a matrix C such that A 6 C 6 B, AC = CA, and BC = CB, then

A 4 B.
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One of the main results of the paper is the following theorem, which provides
some useful characterizations of the spectral order. Observe that the equivalence
a ⇐⇒ b is related to a similar result of Fujii and Fujii [9].

Theorem 5.2. Let A, B ∈ Mn(C)+. Then, the following statements are equivalent:

(a) A 4 B.
(b) For every one dimensional subspace S, it holds ρ(S, A) 6 ρ(S, B).

(c) If λ ∈ σ(A), µ ∈ σ(B) and λ > µ, then ker(A − λ) ⊆ (ker(B − µ))⊥.

(d) There is a positive integer k 6 n and an sequence of positive matrices {Di}06i6k

such that, D0 = A, Dk = B, Di 6 Di+1 and DiDi+1 = Di+1Di (i = 0, . . . ,

k − 1).

Proof. (a) ⇒ (b) Use Proposition 3.8.
(b) ⇒ (c) Let λ ∈ σ(A) and µ ∈ σ(B) such that λ > µ, and suppose that there

exists ξ ∈ ker(A − λ) \ (ker(B − µ))⊥. Let S be the subspace generated by ξ . Then
ker(B − µI) 6⊆ S⊥ and, by the Theorem 4.3,

ρ(S, A) = λ > µ > ρ(S, B),

which contradicts (b).
(c) ⇒ (d) Let us proceed by induction over the dimension of the space Cn. If

n = 1, it is clearly true.
Now, let n > 1 and suppose that (c) ⇒ (d) for n − 1. Let define

N = {λ ∈ σ(A) : λ > λmin(B)}.
If N = ∅, then, A 6 λmin(B)I 6 B. On the other hand, if N /= ∅, let P be the pro-
jection onto the subspace

L
λ∈N ker(A − λ) and D1 the operator defined by

D1 = λmin(B)(I − P) + PA.

Since PA = AP , it is clear that AD1 = D1A and A 6 D1. On the other hand, the
pair (D1, B) also satisfy (c). D1 and B have a common eigenvector ξ , which corre-
sponds to λmin(B) (because ker(B − λmin(B))jR(I − P)). Let L be the subspace
generated by ξ . Then D1 and B can be represented

D1 =
µ

λmin(B) 0
0 cD1

¶
L

L⊥ and B =
µ

λmin(B) 0
0 bB

¶
L

L⊥.

As (cD1, bB) satisfy (c), applying the inductive hypothesis we find an increasing
sequence {cDj }j=2,...,k (k 6 n), such that cDk = bB and cDj

[Dj+1 = [Dj+1 cDj (j =
1, . . . , k − 1). Finally, the sequence that we are looking for is

D0 = A,

Dj =
µ

λmin(B) 0
0 cDj

¶
(j = 1, . . . , k).
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(d) ⇒ (a) Since DiDi+1 = Di+1Di (i = 0, . . . , k − 1), it holds that A 4D1 4
· · · 4 Dk 4 B. ¤

Remark 5.3. Another proof of the equivalence between (a) and (c) can be found in
[16]. In the following Corollary we give a short proof, using Theorem 5.2, of Olson’s
characterization of spectral order in the finite dimensional case.

Corollary 5.4. Let A, B ∈ Mn(C)+, S a subspace of Cn, and f a non-decreasing
function. If A 4B then f (A) 4 f (B).

Proof. According to Theorem 5.2, there exist an increasing sequence {Di}i=1,...,k

such that D0 = A, Dk = B, Di 6 Di+1 and DiDi+1 = Di+1Di (i = 0, . . . , k).
Therefore the sequence {f (Di)}i=1,...,k is non-decreasing. On the other hand,
f (D0) = f (A), f (Dk) = f (B) and f (Di)f (Di+1) = f (Di+1)f (Di). Thus, again
by Theorem 5.2, f (A) 4 f (B). ¤

Proposition 5.5. Let A ∈ Mn(C)+ and S a subspace of Cn. If

Mρ(S, A) = {D ∈ Mn(C)+ : D 4 A, R(D) ⊆ S},
then

ρ(S, A) = maxMρ(S, A),

where the “maximum” is taken for any of the orders 6 and 4.

Proof. Firstly, note that ρ(S, A) ∈ Mρ(S, A). In fact, ρ(S, A)m 6 Am for every
m ∈ N by Proposition 3.6, and clearly R(ρ(S, A)) ⊆ S by definition.

Next, suppose that D ∈ Mρ(S, A). As Dm 6 Am, it holds that

R(S, Dm)1/m 6 R(S, Am)1/m

and, since R(S, Dm)1/m = D for every m ∈ N, taking limit we have

D 6 ρ(S, A).

Note also that, if D ∈ Mρ(S, A), then for every k ∈ N, Dk 4 Ak and, with the same
proof as before one gets that

Dk 6 ρ(S, Ak) = ρ(S, A)k.

Hence D 4 ρ(S, A). ¤

Corollary 5.6. Let A ∈ Mn(C)+, and S a subspace of Cn. Then R(ρ(S, A)) =
R(A) ∩ S.

Proof. Since 0 6 ρ(S, A) 4A, then ρ(S, A)2 6 A2 and, by Douglas’ majoriza-
tion theorem [8], R(ρ(S, A)) ⊆ R(A) ∩ S. On the other hand, let P be the ortho-
gonal projection onto R(A). Then, there is a constant λ > 0 such that P 6 λA. Since
AP = PA, we have that P 4 λA, and by Proposition 3.8, ρ(S, P )2 6 λ2ρ(S, A)2.



210 J. Antezana et al. / Linear Algebra and its Applications 381 (2004) 197–217

But ρ(S, P ) is the projection on R(A) ∩ S, so that, again by Douglas’ theorem,
R(A) ∩ S ⊆ R(ρ(S, A)). ¤

Proposition 5.7. Let A ∈ Mn(C)+ and S a subspace of Cn. Then, for every non-
decreasing function f : [0, +∞) → [0, +∞), it holds that

f (ρ(S, A)) = ρ(S, f (A)), (8)

where ρ(S, A) and ρ(S, f (A)) are considered as acting on S.

Proof. Let A be the 2 × 2-matrix
¡

A11 A12
A21 A22

¢
, according to the decomposition induced

by S. Sinceµ
A11 A12
A21 A22

¶
<

µ
ρ(S, A) 0

0 0

¶
,

using Corollary 5.4 we get

f

µµ
A11 A12
A21 A22

¶¶
<

µ
f (ρ(S, A)) 0

0 f (0)

¶
<

µ
f (ρ(S, A)) 0

0 0

¶
.

So, by Proposition 5.5µ
ρ(S, f (A)) 0

0 0

¶
<

µ
f (ρ(S, A)) 0

0 0

¶
and we have that ρ(S, f (A))<f (ρ(S, A)).

In order to prove the other inequality we first suppose that f is strictly increasing.
In this case there exist a positive, non-decreasing function g on [0, +∞) such that

g|[f (0),+∞) = f −1.

Since σ(f (A)) ⊆ [f (0), +∞), we can use the part already proved and obtain

g(ρ(S, f (A))) 4 ρ(S, g ◦ f (A)) = ρ(S, A).

But, applying f to both sides and taking into account Corollary 5.4 we get

ρ(S, f (A)) 4 f (ρ(S, A))

Now, consider a general non-decreasing function f defined on [0, +∞). Let {gm}
the sequence of function defined by gm(x) = f (x) + x

m
. Since gm is strictly increas-

ing and gm &
m→∞

f , using what we have already done and Proposition 3.10 we get

f (ρ(S, A)) = lim
m→∞ gm(ρ(S, A)) = lim

m→∞ ρ(S, gm(A)) = ρ(S, f (A)).

¤

Proposition 5.8. Let A ∈ Mn(C)+ and S a subspace of Cn. Then,M
µ>λ

ker(ρ(S, A) − µ) =
M
µ>λ

ker(A − µ) ∩ S and

(9)M
µ>λ

ker(ρ(S, A) − µ) =
M
µ>λ

ker(A − µ) ∩ S.



J. Antezana et al. / Linear Algebra and its Applications 381 (2004) 197–217 211

Proof. Let us consider the function f = ℵ[λ,+∞). By Proposition 5.7 we know that

f (ρ(S, A)) = ρ(S, f (A)).

Therefore, by comparing the ranges of these matrices we obtainM
µ>λ

ker(ρ(S, A) − µ) = R(f (ρ(S, A))) = R(ρ(S, f (A)))

=
M
µ>λ

ker(A − µ) ∩ S.

The other equality can be proved in a similar way by using the function f =
ℵ(λ,+∞). ¤

Now, after proving Proposition 5.8, we have all the technical tools in order to find
the spectrum and the eigenspaces of ρ(S, A) in terms of the spectral decomposition
of A and the subspace S.

Let A ∈ Mn(C)+, let S be a subspace of Cn and suppose that σ(A) = {λ1, . . . ,

λm} (λ1 < · · · < λm). Since, by Proposition 4.5 σ(ρ(S, A)) ⊆ σ(A), we have that
σ(ρ(S, A)) = {λi1 , . . . , λip }. The smallest eigenvalue of ρ(S, A) was character-
ized by Proposition 4.3 in the following way

λi1 = min{λ ∈ σ(A) : ker(A − λI) 6⊆ S⊥}.
The other ones can be identified in this way

λi2 = min

(
λ ∈ σ(A) : λ > λi1 and

M
µ>λ

ker(ρ(S, A) − µ) /=
M
µ>λ

ker(ρ(S, A) − µ)

)
,

...

λik+1 = min

(
λ ∈ σ(A) : λ > λik and

M
µ>λ

ker(ρ(S, A) − µ) /=
M
µ>λ

ker(ρ(S, A) − µ)

)
,

and finally

λip = min

(
λ ∈ σ(A) :

M
µ>λ

ker(ρ(S, A) − µ) = {0}
)

.



212 J. Antezana et al. / Linear Algebra and its Applications 381 (2004) 197–217

These formulae can be rewritten using Proposition 5.8 in the following way

λi2 = min

(
λ ∈ σ(A) : λ > λi1 and

M
µ>λ

ker(A − µ) ∩ S /=
M
µ>λ

ker(A − µ) ∩ S

)
,

...

λik+1 = min

(
λ ∈ σ(A) : λ > λik and

M
µ>λ

ker(A − µ) ∩ S /=
M
µ>λ

ker(A − µ) ∩ S

)
,

...

λip = min

(
λ ∈ σ(A) :

M
µ>λ

ker(A − µ) ∩ S = {0}
)

.

On the other hand, having characterized the eigenvalues of ρ(S, A) and using
Proposition 5.8, the spaces of eigenvectors of ρ(S, A) can be writing in the follow-
ing way

ker(ρ(S, A) − λip ) =
M

µ>λip

ker(A − µ) ∩ S, and

ker(ρ(S, A) − λik ) =
 M

µ>λik

ker(A − µ) ∩ S


∩

 M
µ>λik+1

ker(A − µ) ∩ S

⊥
, k = 1, . . . , p − 1.

We summarized the previous discussion in the next theorem:

Theorem 5.9. Let A ∈ Mn(C)+ and let S be a subspace of Cn. Suppose that
σ(A) = {λ1, . . . , λm} (λ1 < · · · < λm) and let i1, . . . , ip be the subindexes defined
by

(i) λi1 = min{λ ∈ σ(A) : ker(A − λI) 6⊆ S⊥}.
(ii) For k = 2, . . . , p − 1 we define λik as the smallest eigenvalue of A such that

λik > λik−1 andM
µ>λik

ker(A − µ) ∩ S'
M

µ>λik

ker(A − µ) ∩ S /= 0.
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(iii) λip = min

(
λ ∈ σ(A) : L

µ>λ

ker(A − µI) ∩ S = {0}
)

.

Then,

(a) σ(ρ(S, A)) = {λi1 , . . . , λip }.
(b) kρ(S, A)k = λip = min

n
λ ∈ σ(A) : L

µ>λ ker(A − µI) ∩ S = {0}
o

.

(c) If Pp is the (orthogonal) projection onto the subspaceM
µ>λip

ker(A − µ) ∩ S,

and Pk (k = 1, . . . , p − 1) is the (orthogonal) projection onto the subspace M
µ>λik

ker(A − µ) ∩ S

 ∩
 M

µ>λik+1

ker(A − µ) ∩ S

⊥
,

it holds that

ρ(S, A) =
pX

k=1

λikPk. (10)

6. The case dim S = 1

Suppose that dimS = 1 and let P = PS. For every A > 0 there exist λ > 0 such
that ρ(S, A) = λP . In this section we shall study the one dimensional case, and, for
simplicity of the notations, we shall identify ρ(S, A) with this number λ, instead of
λP .

Recall that, using Theorem 4.3, it holds

ρ(S, A) = λmin(ρ(S, A)) = min{λ ∈ σ(A) : ker(A − λI) 6⊆ S⊥}. (11)

Proposition 6.1. Let A ∈ Mn(C)+ and let S be the subspace of Cn generated by
the unit vector ξ. If A is invertible, then

ρ(S, A) = lim
m→∞ kA−mξk−1/m = inf

m∈N
kA−mξk−1/m. (12)

If A is not invertible, then

1. ρ(S, A) = 0 if ker A 6⊆ S⊥,
2. ρ(S, A) = limm→∞ kBmξk−1/m = infm∈N kBmξk−1/m if ker A ⊆ S⊥ and

B = A†.
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Proof. The general case easily reduces to the invertible case by Theorem 4.3, by
taking the restriction of A to R(A). Note that ker A ⊆ S⊥ implies that S ⊆ R(A).

Suppose that A is invertible and write ξ = Pn
k=1 aiξi , where {ξi} is a orthonor-

mal basis of eigenvectors of A such that Aξi = λiξ and λi 6 λi+1, 1 6 i 6 n −
1. Let j the first index such that aj /= 0. By Theorem 4.3, it holds ρ(S, A) = λj .
Therefore

A−mξ

λ−m
j

=
X
i>j

ai

λm
j

λm
i

ξi −→
m→∞

X
λi=λj

aiξi .

and limm→∞ kA−mξk−1/m

λj
= 1, since k P

λi=λj
aiξik−1/m −→

m→∞ 1.

Finally, let us show that the sequence {kA−mξk−1/m} is decreasing. Given k > h,
as

P
i>j |ai |2 = kξk = 1, by Jensen’s inequality, we have

kA−kξk2h/k =
X

i>j

1

λ2k
i

|ai |2
h/k

>
X
i>j

Ã
1

λ2k
i

!h/k

|ai |2

=
X
i>j

1

λ2h
i

|ai |2 = kA−hξk2

and applying the function f (x) = x−1/2h to both sides of the inequality we get
kA−kξk−1/k 6 kA−hξk−1/h. ¤

Remark 6.2. Given an invertible matrix A ∈ Mn(C)+ and ξ a unit vector, Fujii and
Fujii [9] define the Kolmogorov’s complexity:

K(A, ξ) = lim
n→∞

log(hAnξ, ξi)
n

= log lim
n→∞hAnξ, ξi1/n.

Among several results, they prove

1. σ(A) = {exp(K(A, ξ)) : kξk = 1}.
2. K(A, ξ) = min{log λ : λ ∈ σ(A), ξ ∈ L

µ6λ ker(A − µ)}.
3. A 4 B ⇔ K(A, ξ) 6 K(B, ξ) for every ξ .

Let us show that their results can be deduced from the knowledge of the spectral
shorted matrix ρ(S, A−1). Using Propositions 6.1 and 5.7, if S is the subspace
generated by ξ , it is easy to see that

K(A, ξ) = log ρ(S, A−1/2)−2 = log ρ(S, A−1)−1.

With this identification, the above mentioned results of [9] can be deduced from
Proposition 4.5, formula (11) and Theorem 5.2, respectively.
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7. Some examples

Let us show first an example of a pair (A,S) such that ρ(S, A) is explicitely
computed.

Example 7.1. Consider the matrix

A =
 6 −2 2

−2 10 −2
2 −2 6

 ,

and the subspace S generated by the vectors (1, 0, 0) and (0, 1, 0). The eigenvalues
of A are 4, 6 and 12, and their eigenvectors are (−1, 0, 1), (1, 1, 1) and (1, −2, 1)

respectively.
Let us begin calculating the eigenvalues of ρ(S, A). According to Theorem 4.3

the smallest eigenvalue of ρ(S, A) is the minimum element of the spectrum of A

such that

ker(A − λI) 6⊆ S⊥.

As it can be checked easily, this value is 4. Now, as it was explained before Theorem
5.9 the second eigenvalue of ρ(S, A) will be the smallest eigenvalue µ of A such
that

S ∩
M
λ>µ

ker(A − λ) ÃS ∩
M
λ>4

ker(A − λ) = S.

This number is 6. So, by a dimension argument, the spectrum of ρ(S, A) is {4, 6}.
We shall use part (d) of Theorem 5.9 to calculate the eigenvectors associated to

each eigenvalue. An eigenvector for the eigenvalue 6 is any non-zero vector in

S ∩ Span{(1, 1, 1), (1, −2, 1)},
for instance, (0, 1, 0). On the other hand, an eigenvector for the eigenvalue 4 can be
found by looking for a vector in S orthogonal to (0, 1, 0), for instance (1, 0, 0). In
this way we get

ρ(S, A) =
4 0 0

0 6 0
0 0 0

 .

According to Propositions 5.5, it follows that ρ(S, A) 4A. Therefore, by Theorem
5.2 there must be intermediate matrices D1 and D2, such that

(a) ρ(S, A) 6 D1 6 D2 6 A and
(b) ρ(S, A)D1 = D1ρ(S, A), D1D2 = D2D1 and D2A = AD2.

Following the algorithm suggested by the induction used to prove (c ⇒ d) in Prop-
osition 5.2 we get
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D1 =
4 0 0

0 6 0
0 0 4

 and D2 =
5 0 1

0 6 0
1 0 5

 .

Now we are going to exhibit some examples which show that some hypothesis
can not be relaxed. For example, let us begin with Proposition 3.8 where we have
proved that given a subspace S of Cn and A, B in Mn(C)+ such that A 4 B, then
ρ(S, A) 6 ρ(S, B). This proposition may fail if we put A 6 B instead of A 4 B

as the following example shows:

Example 7.2. Let us consider the following matrices:

A =
µ

1 0
0 0

¶
and B =

µ
2 1
1 1

¶
and the one dimensional subspace S generated by the vector (1,0). Clearly, A 6 B;

on the other hand, ρ(S, A) = PS and ρ(S, B) = 3−√
5

2 PS < PS by Corollary 4.4.

In the statement of Proposition 3.10, the hypothesis of being non-increasing re-
spect to the spectral order seems very strong. Nevertheless, the result may fail if the
sequence is only non-increasing respect to the usual order, as the following example
shows:

Example 7.3. Consider the following sequence of matrices:

Am =
µ

1 + 1/m 1/m

1/m 1/m

¶
∈ M2(C), m ∈ N.

It is clear that, for every m ∈ N, 0 6 Am+1 6 Am, and λmin(Am) 6 hAme2, e2i =
1/m. On the other hand, Am −→

m→∞ P , the orthogonal projector onto the subspace

generated by e1.
Let S = R(P ). Then, by Corollary 4.4, ρ(S, Am) = λmin(Am)P 6 1

m
P , so that

ρ(S, Am) −→
m→∞ 0, and ρ(S, P ) = P .

References

[1] W.N. Anderson, Shorted operators, SIAM J. Appl. Math. 20 (1971) 520–525.
[2] W.N. Anderson, G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975) 60–71.
[3] T. Ando, Generalized Schur complements, Linear Algebra Appl. 27 (1979) 173–186.
[4] R. Bhatia, Matrix Analysis, Springer, Berlin–Heildelberg–New York, 1997.
[5] C.A. Butler, T.D. Morley, A note on the shorted operator, SIAM J. Matrix Anal. Appl. 9 (1988)

147–155.
[6] D. Carlson, What are Schur complements, anyway? Linear Algebra Appl., 74 (1986) 257–275.
[7] R.W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974) 189–211.
[8] R.G. Douglas, On majorization, factorization and range inclusion of operators in a Hilbert space,

Proc. Amer. Math. Soc. 17 (1966) 413–416.



J. Antezana et al. / Linear Algebra and its Applications 381 (2004) 197–217 217

[9] J.I. Fujii, M. Fujii, Kolmogorov’s complexity for positive definite matrices, Linear Algebra Appl.
341 (2002) 171–180 (special issue dedicated to Professor T. Ando).

[10] E. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl.
1 (1968) 73–81.

[11] M.G. Krein, The theory of self-adjoint extensions of semibounded Hermitian operators and its appli-
cations, Mat. Sb. (N.S.) 20 (62) (1947) 431–495.

[12] K. Löwner, Über monotone Matrixfunktionen, Math. Zeit. 38 (1934) 177–216.
[13] C.-K. Li, R. Mathias, Extremal characterizations of the Schur complement and resulting inequalities,

SIAM Rev. 42 (2000) 233–246.
[14] C.-K. Li, R. Mathias, Some interlacing theorems on the Schur complement, Linear and Multilinear

Algebra 44 (4) (1998) 373–382.
[15] S.K. Mitra, M.L. Puri, Shorted matrices—An extended concept and some applications, Linear Alge-

bra Appl. 42 (1982) 57–79.
[16] M.P. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete

lattice, Proc. Amer. Math. Soc. 28 (1971) 537–544.
[17] E.L. Pekarev, Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged) 56 (1992)

147–163.
[18] E.L. Pekarev, J.L. Smul’jan, Parallel addition and parallel substraction of operators, Math. USSR

Izvestija 10 (1976) 351–370.
[19] J.L. Smul’jan, A Hellinger operator integral, Mat. Sb. (N.S.) 49 (91) (1959) 381–430 (in Russian);

English transl. AMS Transl. 22 (1962) 289–337.


