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[1] The problem of a conducting body moving in a magnetized plasma when the
electronic pressure and Hall terms in Ohm’s law cannot be neglected is analyzed in the
magnetohydrodynamic approximation. Since Alfvén wings are closely related to Alfvén
waves, the influence of these terms in the propagation of Alfvénic perturbations of large
amplitude is studied. Instead of linearizing the magnetohydrodynamic equations and
searching monochromatic waves, the conditions that the group velocity be parallel to the
background magnetic induction field, in the reference system in which the plasma is
locally at rest, that the perturbation be incompressible, that the perturbations in velocity
and the magnetic induction field be related, and that a magnitude connected to the
pressure remain constant are imposed. It is shown that large-amplitude Alfvén waves can
propagate in homogeneous plasmas if a ‘‘polarization condition’’ on the current density is
fulfilled. The value of their group velocity is different from the value that it takes
when simple Ohm’s law is used. On the other hand, the methodology of stream functions
is used for the analysis of Alfvén wings. Their existence, when the Hall term in Ohm’s law
is relevant, is proved, and the relations among the plasma pressure, induction magnetic
field, velocity, and electric current density in the wing are found. The present results can
be applied, as an approximation, to spacecraft or space tethers moving in a circular orbit if
one can consider that the density and the magnetic induction field do not change as the
source is orbiting and if the influence of partial ionization can be neglected. INDEX
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1. Introduction

[2] Alfvén waves have been detected in a variety of
space plasmas like the solar wind [Denskat and Neubauer,
1982] and the Earth’s magnetosphere [Drell et al., 1965;
Mallinckrodt and Carlson, 1978]. The density and magnetic
induction field in some of these systems are such that the
electronic pressure and Hall terms in Ohm’s law cannot be
neglected [Ovenden et al., 1983;Wolf-Gladrow et al., 1987].
The main characteristic of Alfvén waves in the magneto-
hydrodynamic approximation (MHD) and in uniform plas-
mas, when the Ohm’s law reduces to E + (V � B)/c = 0, is
that they propagate without distortion with a group velocity
parallel to the background magnetic induction field. More-
over, Alfvén waves are incompressible perturbations, there
exists a relation between the velocity and magnetic induction
field disturbances, and the total pressure (plasma plus mag-
netic) is constant [Priest, 1982]. Another interesting charac-
teristic of Alfvén waves is that they can build up structures in
the plasma, called Alfvén wings. These are produced when a

conducting source moves uniformly in a magnetized plasma.
From the beginning of the space age, Alfvén wings were a
center of interest for space plasma physics researchers in
the quest for understanding interactive plasma-source
systems. They have analyzed the cases of the Io-Jupiter
system [Goertz, 1980; Acuña et al., 1981; Wright, 1987;
Wolf-Gladrow et al., 1987; Hastings et al., 1988;Wright and
Schwartz, 1990], the Europa and Callisto-Jupiter system
[Neubauer, 1999], satellites moving through the Earth’s
ionosphere [Drell et al., 1965; Dobrowolny and Veltri,
1986], and tethered probes [Sanmartı́n and Estes, 1997].
The Alfvén wings problem, supposing simple Ohm’s law,
was studied by Neubauer [1980] using a nonlinear analytic
model, by McKenzie [1991] using Green functions, and for
nonuniform plasmas by Sallago and Platzeck [2000, 2002]
using the methodology of stream functions. The aim of this
paper is to analyze the influence of electronic pressure and
Hall terms on the construction of Alfvén wings in a perfectly
conducting plasma in the magnetohydrodynamic approxi-
mation. Since Alfvén wings are closely related to Alfvén
waves, we start by searching the existence, in this case, of
Alfvénic perturbations. Alfvén waves with a Hall term have
been studied by other authors [Mattei, 1969; Ovenden et al.,
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1983; Woodward and McKenzie, 1994a, 1994b; Pokhotelov
et al., 1996], but they linearize the magnetohydrodynamic
equations or impose particular dependencies for the pertur-
bations. In a similar way as it is done by Sallago and Platzeck
[2000], instead of linearizing the magnetohydrodynamic
equations and searching monochromatic waves, we impose
the conditions that the perturbation propagate without dis-
tortion with a group velocity parallel to the background
magnetic induction field, in the reference system in which
the plasma is locally at rest, the perturbation be incompress-
ible, there exist a relation between the velocity and induction
magnetic field perturbations, and a magnitude called total
generalized pressure remain constant in the disturbed region.
It is proved in section 2 that large-amplitude Alfvén waves
can propagate, when the electronic pressure and Hall terms
are taken into account, if a condition on the spatial depen-
dence of the current density is fulfilled. This condition,
called the ‘‘polarization condition,’’ relates the current den-
sity and its curl. In the linearized case for small perturbations
and monochromatic waves, this condition means that the
perturbation on magnetic induction field must be circularly
polarized [Mattei, 1969; Pokhotelov et al., 1996]. Owing to
this condition it is not possible to impose the adiabaticity
condition because the system would result overdetermined;
as a result, the plasma pressure is not constant in the
perturbed region. It is a known fact that linearized incom-
pressible waves with Hall term are dispersive. Our result is
discussed in connection with this fact finding that there is not
any contradiction: one can construct wave packets with
monochromatic waves in such a way that their group velocity
be independent of the wave vector direction.
[3] For the analysis of Alfvén wings we consider in

section 3 that the problem of a source moving with constant
velocity in a uniformly magnetized plasma is a stationary
one in the source rest frame. Dividing the space in two
regions, one containing the source and one containing the
wing, an invariant direction can be defined in the latter
region. This direction coincides with the wing’s axis.
Stationary problems in MHD when an ignorable coordinate
is present can be treated with a methodology based on
stream functions [Tsinganos, 1982; Agim and Tataronis,
1985; Palumbo and Platzeck, 1998]. The stream function
methodology when the electronic pressure and Hall terms in
Ohm’s law cannot be neglected was developed by Palumbo
[1993]. In the present paper we apply this methodology
when analyzing the Alfvén wings. We find the relations
among the different fields in the wing. These results can be
applied to spacecraft or space tethers moving in a circular
orbit, if one can consider that the density and the magnetic
induction field do not change as the source is orbiting and if
the influence of partial ionization can be neglected.
[4] Finally, we want to remark that other perturbations

produced by a conducting source moving uniformly in a
magnetized plasma cannot build up wings, in the sense
given above, or may not be studied in the magnetohydro-
dynamic approximation.

2. Alfvén Waves in Hall Magnetohydrodynamics
(HMHD)

[5] If Hall term in Ohm’s law cannot be neglected, the
magnetohydrodynamic equations system is often called

HMHD [Turner, 1986]. The generalized Ohm’s law for an
electrically neutral fully ionized plasma results in [Boyd and
Sanderson, 1969; Rossi and Olbert, 1970]

J

s
¼ Eþ V

c
� B� 1

enþc
J� Bþ 1

enþ
rrrpe; ð1Þ

where e is the proton charge, n+ is the proton density number,
and pe is the electronic pressure. The Hall term is relevant if
Wetei � 1, where We is the electron girofrequency, and tei
the electron-ion collision time [Priest, 1982].
[6] The HMHD equations for a perfectly conducting

plasma, in the absence of gravitational and viscous forces,
are

@r
@t

þ V 	 rrrð Þrþ rrrr 	 V ¼ 0; ð2Þ

r
@V

@t
þ V 	 rrrð ÞV

� �
¼ �rrrpþ J

c
� B; ð3Þ

rrr 	 B ¼ 0; ð4Þ

@B

@t
¼ rrr� V� mþ

er
J

� �
� Bþ mþc

er
rrrpe

� �
; ð5Þ

the energy and state equations.
[7] Let us consider a perfectly conducting plasma with

uniform and constant density r0, plasma pressure p0, veloc-
ity V0, and magnetic induction field B0. We search solutions
of nonlinearized HMHD equations under the Alfvénic
conditions imposed to perturbations:
[8] 1. The perturbations r1, p1, V1, B1 are functions of

(r � V0
A
Ht), where V0

A
H is the group velocity

V0H
A ¼ V0 � aB0; ð6Þ

where a is a constant to be determined in order to show the
influence of the Hall term. V0

A
H is parallel to the background

magnetic induction field in the reference system in which
the plasma is locally at rest.
[9] 2. The disturbance is incompressible:

rrr 	 V1 ¼ 0: ð7Þ

[10] 3. There exists a relation between the perturbations
on velocity and magnetic induction fields:

V1 ¼ aB1 þA; ð8Þ

where A must vanish if the Hall term has not influence or if
the disturbance is null.
[11] Under these conditions, from the continuity equation

(2), the perturbation on density is null:

r1 ¼ 0: ð9Þ

The induction equation (5) takes the form

@B

@t
¼ rrr� V� �

cr0
J

� �
� B

� �
; ð10Þ
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where

� ¼ mþc

e
: ð11Þ

The last term in equation (5) is zero, because the
background density is uniform and the perturbation on
density is null. Notice that for Alfvénic perturbations the
electronic pressure does not modify the induction equation,
whereas Hall’s effect appears explicitly; the terms including
� will denote its influence in what follows.
[12] Replacing the relation between the perturbations on

velocity and magnetic induction field (condition 3), the
induction equation (10) results in

rrr� A� �

cr0
J

� �
� B

� �
¼ 0; ð12Þ

the only value of A satisfying equation (12) that is
independent of the background magnetic induction field
B0 is

A ¼ �

cr0
J: ð13Þ

Moreover, since the perturbation is incompressible, from
equations (8) and (13) the equation rrrr 	 B = 0 is
fulfilled.
[13] Finally, after replacing equations (6), (8), and (13) in

the equation of motion, one gets

r0
�

cr0
J1 þ aB

� �
	 rrr

� �
�

cr0
J1 þ aB

� �
¼ �rrrpþ J1

c
� B ð14Þ

or, using vectorial identities,

r0 rrr� �

cr0
J1 þ aB

� �� �
� �

cr0
J1 þ aB

� �

¼ �rrr pþ r0
2

�

cr0
J1 þ aB

����
����
2

 !
þ J1

c
� B: ð15Þ

[14] After taking the curl of equation (15), one gets

rrr� a24p� 1

r0

� �
J1 þ

�a

r0
rrr� J1ð Þ

� �
� �

car0
J1 þ B

� �� 	
¼ 0;

ð16Þ

the only possible solution for J1 satisfying equation (16)
that is independent of the background magnetic induction
field B0 is

a24p� 1

r0

� �
J1 þ

�a

r0
rrr� J1ð Þ ¼ 0: ð17Þ

It means that the electric current density and its curl are
parallel:

rrr� J1 ¼ b J1: ð18Þ

This is the ‘‘polarization condition.’’ After replacing it in
equation (17), one gets the following relation between the
constants a and b:

a ¼ � b�

8pr0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4pr0
þ b�

8pr0

� �2
s

: ð19Þ

Then, from equation (6), the group velocity results in

V0H
A ¼ V0 þ

�b B0

8pr0
� B0

B0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0j j2

4pr0
þ �b B0j j

8pr0

� �2
s

: ð20Þ

[15] Returning to the motion equation (15), after replac-
ing the ‘‘polarization condition’’ and the value of a, it
results that there is a magnitude P*, called the generalized
total pressure, that remains uniform and constant in the
perturbed region:

P* ¼ pþ r0a
2

2
Bþ �

car0
J1

����
����
2

: ð21Þ

A relation between the vorticity and the current density,

w1 ¼
J1

car0
; ð22Þ

is obtained immediately by taking the curl on equation (8)
and using equation (18); a similar relation also exists for
Alfvén waves in MHD. Furthermore, due to the fact that the
plasma pressure must be always positive, the amplitude of
the perturbation cannot be arbitrary.
[16] Notice that for finite wave packets the ‘‘polarization

condition’’ implies a similar relation for B1; however, it is
not a force free solution since there is a nonnull Lorentz’s
force J1 � B0/c. The meaning of the ‘‘polarization condi-
tion’’ for the current density is analyzed in the linearized
limit when the perturbation is developed in monochromatic
waves. If the perturbation on magnetic induction field can
be written

B1 ¼ b1 exp i k 	 r� wtð Þ½ �; ð23Þ

the current density fulfills the conditiongivenbyequation (18)
if

b1 ¼
ib

kj j2
k � b1: ð24Þ

Thus defining two versors �e1 and �e2 perpendicular to k, the
phase between the two components of the perturbation on the
magnetic induction field must be p/2:

B1 ¼
b1ffiffiffi
2

p �e1 � i�e2ð Þ exp i k 	 r� wtð Þ½ �; ð25Þ

being, in this case b = ±jkj. The fact that linearized Alfvén
waves in HMHD are circularly polarized was pointed out by
Mattei [1969]. Moreover, the dispersion relation obtained, if
V0 is null and for right polarization, is

w ¼ � kj j k 	 B0ð Þ
8pr0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 	 B0ð Þ2

4pr0
þ � kj j k 	 B0ð Þ

8pr0

� �2
s

: ð26Þ
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In the limit for short wavelengths (k� wpi/c, where wpi is
the ion plasma frequency) one obtains the whistler mode. Its
dispersion relation is w = �jkj(k 	 B0)/4pr0 [Goldston and
Rutherford, 1995; Biskamp, 2000].
[17] We want to remark that, in spite of being dispersive,

one can build up wave packets with linearized Alfvén
waves in such a way that the group velocity results
independent of the direction of k, this can be attained by
considering only wave vectors with the same modulus.
Under these conditions, the group velocity results in

Vg ¼ rrrk w
��
jkj¼const:

¼ � kj jB0

8pr0
� B0

B0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0j j2

4pr0
þ � kj j B0j j

8pr0

� �2
s

:

This group velocity coincides with V0
A
H, equation (20), for

V0 = 0 and b = jkj. As a result these wave packets propagate
without distortion in the direction of the background
magnetic induction field. Notice that by considering only
monochromatic waves with the same value of jkj, each one
satisfying equation (18) with b = jkj, the superposition of
these waves also satisfies equation (18).
[18] Summarizing, one of the effects of Hall term on the

propagation of Alfvén waves is to modify the group
velocity; it depends on the proportionality constant between
the current density and its curl. We want to remark that if the
influence of Hall term is important, the direction of the
group velocity for Alfvén waves (compare equation (20))
can be too different from the direction that results if the Hall
term is not taken into account. On the other hand, V0

A
H tends

to V0 ± B0/
ffiffiffiffiffiffiffiffiffiffi
4pr0

p
if Hall term is negligible. The relation

between the perturbations on velocity and induction mag-
netic field also changes, including the perturbation on
current density, (compare equation (8)). Finally, if Hall term
is not taken into account, the generalized total pressure P*
(compare equation (21)) tends to the total pressure P, the
sum of the plasma pressure plus the magnetic pressure.
[19] It is interesting to remark that if the Hall term can be

neglected, the Alfvén waves in HMHD tend to the circularly
polarized Alfvén waves in MHD. The energy conservation
law shows the existence of a heat flux when circularly
polarized Alfvén waves propagate.

3. Alfvén Wings in HMHD

[20] Suppose now that in the plasma previously described
there exists a conductor which is moving with constant
velocity. It generates Alfvén waves that build up Alfvén
wings. The wings are cylindrical regions which section
depends on the source’s shape, characterized by intense
electric currents where the disturbed fields are different
from zero. In the conductor’s rest frame the problem is a
stationary one. Let us consider the plus sign in the expres-
sion of V0

A
H.

[21] Defining a separation surface in such a way that one
can divide the space into two regions, one containing the
source and one containing the wing, in the latter the
direction of V0

A
H is invariant. Choosing orthogonal Cartesian

coordinates (x, h, z) with z in the direction of V0
A
H, z

becomes an ignorable variable and

V 0H
Ax ¼ V 0H

Ah ¼ 0: ð27Þ

[22] In these conditions, we can define stream functions
for all the magnitudes of null divergence. The methodology
of stream functions for stationary problems with a symmetry
in magnetohydrodynamics, when the electronic pressure
and Hall terms are considered, was developed by Palumbo
[1993]. There exists two independent stream functions in
this case: y, the current function of B, often called the
magnetic flux, and c, the current function of rV. These
functions are defined in such a way that B and rV can be
written

B ¼ rrry� �ez þ Bz�ez ð28Þ

rV ¼ rrrc� �ez þ rVz�ez: ð29Þ

[23] From the HMHD equations (equations (2), (4), and
(10)), and taking the curl of equation (3), Palumbo [1993]
obtained an equivalent system of equations written as
relations among the jacobians of different physical magni-
tudes. In the particular case of cartesian or cylindrical
coordinates and constant density, these equations can be
integrated giving

c� �Bz

4p
¼ G1 yð Þ; ð30Þ

yþ �Vz ¼ G2 cð Þ; ð31Þ

�Vz þ
G 0

1Bz

r0
þ �Jz
cr0

¼ G3 yð Þ; ð32Þ

�G 0
2Vz þ

Bz

r0
þ �wz

r0
¼ G4 cð Þ: ð33Þ

Here G1, G2, G3, and G4 are arbitrary functions. Different
functional relations correspond to different physical situa-
tions [Palumbo, 1993]. In what follows we will analyze the
case of Alfvén wings.
[24] Let us suppose that the background fields are uniform,

B0 = (B0x, B0h, B0z), V0 = (V0x, V0h, V0z), the x and h
components can be derived from the stream functions
y0(x, h) and c0(x, h), according to equations (28) and (29).
Taking the derivativeswith respect toh and xof equations (30)
and (31), and considering equations (28) and (29), one
obtains

r0Vx �
�Jx
c

¼ G 0
1 yð ÞBx; ð34Þ

r0Vh �
�Jh
c

¼ G 0
1 yð ÞBh; ð35Þ

Bx þ �wx ¼ G 0
2 cð Þr0Vx; ð36Þ

Bh þ �wh ¼ G 0
2 cð Þr0Vh: ð37Þ
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Since the functional dependence for G1(y), G2(c), G3(y)
and G4(c) must be the same for perturbed and unperturbed
fields, first are analyzed the equations (34)–(37) for the
background fields:

r0V0x ¼ G 0
1 y0ð ÞB0x; ð38Þ

r0V0h ¼ G 0
1 y0ð ÞB0h; ð39Þ

B0x ¼ G 0
2 c0ð Þr0V0x; ð40Þ

B0h ¼ G 0
2 c0ð Þr0V0h: ð41Þ

By replacing the first equation in the third or the second in
the fourth, it results in

G 0
1 y0ð ÞG 0

2 c0ð Þ ¼ 1: ð42Þ

The invariant direction coincides with the direction of the
group velocity, so the only nonnull component of the group
velocity is the z component. After considering equation (6),
from equations (38) or (39), one gets

G 0
1 ¼ ar0: ð43Þ

[25] Using these results, equations (34)–(37) are rewrit-
ten for the perturbations:

V1x ¼ aB1x þ
�J1x
cr0

; ð44Þ

V1h ¼ aB1h þ
�J1h
cr0

; ð45Þ

V1x ¼ aB1x þ a�w1x; ð46Þ

V1h ¼ aB1h þ a�w1h: ð47Þ

From these relations one obtains that

w1x ¼
J1x

car0
ð48Þ

w1h ¼
J1h

car0
: ð49Þ

[26] Let us now analyze equations (32) and (33); for the
background fields one obtains

G3 y0ð Þ ¼ �V0z þ aB0z ¼ �V 0H
A ð50Þ

G4 c0ð Þ ¼ �V0z

ar0
þ B0z

r0
¼ �V 0H

A

ar0
; ð51Þ

while for the perturbations one gets

V1z ¼ aB1z þ
�J1z
cr0

ð52Þ

w1z ¼
J1z

car0
: ð53Þ

Equations (44), (45), and (52) and equations (48), (49), and
(53) can be written in vectorial form:

V1 ¼ aB1 þ
�J1
cr0

ð54Þ

w1 ¼
J1

car0
: ð55Þ

The first expression states a relation between the perturba-
tions on velocity and magnetic induction field, and the
second a relation between the vorticity and the current
density; they coincide with the corresponding relations for
Alfvén waves with Hall term (compare equations (8) and
(22)). Taking the curl of the first of these equations and
using the second, it is evident that rrr � J1 is proportional to
J1, in agreement to what happens for waves (compare
equation (18)). Owing to the fact that for Alfvén wings z is
ignorable, from this proportionality, one obtains

J1z ¼
bcB1z

4p
: ð56Þ

Notice that, given b, all the perturbed magnitudes in the
wing can be obtained from the value of J1z. This comes
from the above relations and from the fact that

r2y1 ¼ � 4pJ1z
c

ð57Þ

r2c1 ¼ �r0w1z: ð58Þ

However, J1z cannot be arbitrarily taken, the proportionality
of J1 and its curl gives the following equation:

r2J1z þ b2J1z ¼ 0: ð59Þ

The constant b is related to the source’s size. As the
convective derivative of c is zero the value of c for a given
plasma element is the same before and after entering the
wing. As a consequence, the intensity of J1z is bounded.
[27] The equation of motion remains to be analyzed.

Using the stream functions, it can be written [Palumbo,
1993]

r
rrrV 2

2
� rVzrrrVz þ wzrrrc ¼ �rrrp� Bz

4p
rrrBz þ

Jz

c
rrry: ð60Þ

After replacing the values of w1z, J1z, rrry, and rrrc for
Alfvén wings it results in

rrr pþ a2r0
2

Bþ �

car0
J1

����
����
2

" #
¼ 0; ð61Þ
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this means that the generalized total pressure P* (compare
equation (21)) remains constant in the wing. In order to the
boundary conditions on the edge of the wing be fulfilled, a
current density appears on the surface. This also occurs on
the surface of the wave packets.
[28] Finally, since we have supposed a perfectly conduct-

ing plasma, the electric field can be determined from
equation (1). After replacing the pressure from equation
(21), if pe = p/2, the electric field takes the form

E ¼ G3

c
rrry� r0

2
rrr aB0 þ

1

4par0
B1

����
����
2

;

the second term is due to the electronic pressure.
[29] In the remainder of this section we give a simple

example, in order to show the construction strategy for
Alfvén wings when Hall term is taken into account. We
propose the following background fields:

B0 ¼ B0x; 0;B0z
� �

V0 ¼ V0x; 0;V0z
� �

;

where B0z and V0z are positive constants, and B0x and V0x
are taken in such a way that V 0

Ax
H = 0. For these fields the

nonnull component of the group velocity V0
A
H is

V0H
Az ¼ V0z þ

b�

8pr0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4pr0
þ b�

8pr0

� �2
s2

4
3
5B0z:

From the values of B0x and V0x it is possible to obtain the
values of y0(h) and c0(h). Let us suppose that the wing is a
circular cylinder and that the z component of the current
density in the wing due to the perturbations, a solution of
equation (59), can be written

J1z ¼ a0J0 brð Þ þ a1J1 brð Þ cos jþ a1ð Þ;

where r, j, z are cylindrical coordinates, and J0 and J1 are
Bessel functions. If the perturbed region lies in r < R, in
order that the electric current across the wing be null, bR
must be one zero of J1.
[30] From J1z, one can get the perturbation on magnetic

flux y1 that must satisfy equation (57). After imposing the
condition B1r(R, j) = 0, one gets for y1

y1 ¼ c0 þ
4pa0
cb2

J0 brð Þ þ 4pa1
cb2

J1 brð Þ cos jþ a1ð Þ:

The constants c0, a0, and a1 are not arbitrary taken, they are
bounded by the fact that the convective derivative of c is
zero.
[31] The components B1r, and B1j can be obtained from

y1:

B1r ¼ � 4pa1
cb2

J1 brð Þ
r

sen jþ a1ð Þ

B1j ¼ 4pa0
cb

J1 brð Þ � 4pa1
cb

J0 brð Þ � J1 brð Þ
br

� �
cos jþ a1ð Þ:

Moreover B1z gets its value from its relation with J1z
(compare equation (56)):

B1z ¼
4pa0
cb

J0 brð Þ þ 4pa1
cb

J1 brð Þ cos jþ a1ð Þ;

resulting then in

J1r ¼ � a1

b

J1 brð Þ
r

sen jþ a1ð Þ

J1j ¼ a0J1 brð Þ � a1 J0 brð Þ � J1 brð Þ
br

� �
cos jþ a1ð Þ:

From equation (54), one can get immediately V1.
[32] Finally, the plasma pressure in the wing can be

obtained from the fact that the generalized total pressure
P* is constant in the wing, and that the total pressure P is
continuous on the edge of the wing:

p ¼ P*� r0a
2

2
B0 þ

1

4pr0a2
B1

����
����
2

;

where P* is given by

P* ¼ p0 þ
B0j j2

8p
� Bj j2

8p

�����
R

þ r0a
2

2
B0 þ

1

4pr0a2
B1

����
����
2
�����
R

:

4. Conclusions

[33] In this paper we have proved that if the electronic
pressure and the Hall terms in Ohm’s law cannot be
neglected, Alfvén waves of large amplitude and Alfvén
wings in homogeneous magnetized plasmas also exist in the
magnetohydrodynamic approximation.
[34] It is found that the electronic pressure disappears

from the induction equation for Alfvénic perturbations. The
group velocity V0

A
H depends on the background plasma

velocity, magnetic induction field, and density, and on a
parameter b that enhances the importance of Hall term; if
this term is negligible one recovers the MHD Alfvén
velocity.
[35] In order to satisfy the full set of HMHD equations the

electric current density and its curl must be proportional.
This relation is called ‘‘polarization condition’’ since for
monochromatic waves the perturbation on magnetic induc-
tion field must be circularly polarized. Owing to this
condition, it is not possible to impose the adiabaticity
condition because the system would result overdetermined.
The relation between the perturbations in velocity and
magnetic induction field has to be modified if Hall term
cannot be neglected. Additionally, a magnitude P* called
generalized total pressure is uniform in the region perturbed
by Alfvén waves.
[36] Taking advantage of the fact that one can define an

ignorable coordinate, we apply the methodology of stream
functions in HMHD when analyzing Alfvén wings. The
Alfvén wing’s axis coincides with the direction of the group
velocity V0

A
H. The ‘‘polarization condition’’ implies that the

component of the current density due to perturbations in the
direction of the wing axis, J1z, has to satisfy a differential
equation. All the other physical magnitudes in the wing can
be obtained from J1z. These results can be applied to
tethered satellites moving in the Earth’s ionosphere as an
approximation, if the influence of partial ionization can be
neglected.

[37] Acknowledgments. Arthur Richmond thanks Amitava
Bhattacharjee, Oleg A. Pokhotelov, and another reviewer for their
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