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Abstract. A coordinate-free version of the approach to mechanical systems with
non-ideal restrictions developed by Udwadia (2002) and Udwadia and Kalaba (2002) in
a series of articles is introduced. Some of its properties are then reinterpreted in a general
geometric setting in terms of orthogonal projections. A geometric view of other aspects
of constrained systems, inspired by their insight, is also presented.

1. Introduction. Some years ago, F. E. Udwadia and R. E. Kalaba [2], [4] presented
a method for the study of systems with non-ideal constraints.

Their analysis of the dynamics is based on a clever decomposition of the constraining
force F c. Such a decomposition involves orthogonal projections, with respect to the inner
product induced on co-vectors by the mass matrix M , onto subspaces associated with
the virtual displacements. These orthogonal projections are implemented by means of
the Moore-Penrose pseudo-inverse of a suitable matrix, a covariant procedure applicable
in any coordinate system.

In this paper, we first consider Udwadia-Kalaba’s method from the differential geo-
metric point of view developed in [7] for Lagrangian mechanics. This approach will allow
us to give a geometric interpretation of some of their results, in particular of the version
of the Gauss principle of minimal constraint introduced in [2], and of the remarkable fact
that the non-ideal component of the constraining force can be completely decoupled for
writing the equations of motion [5].

Next, inspired by the orthogonal decomposition of F c proposed by Udwadia and Kal-
aba, we will consider in the last section the orthogonal projection associated with the
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438 PAULA BALSEIRO AND JORGE E. SOLOMIN

inner product defined by M , but for tangent vectors. By doing so, we will be able to
give a geometric interpretation of the classical Gauss principle of minimal constraint and
of the relation between the solutions of constrained and unconstrained systems. Alter-
native simple proofs of that principle and of the existence and uniqueness of solutions
for the dynamics of constrained systems will arise from such a geometric view. It is
worth noticing that only metrics on the configuration manifold will be involved in this
approach.

As in [2] or [4], we do not assume that the restrictions are linear in the velocity
variables.

We believe that our approach can contribute to enlighten the deep analysis carried
out by Udwadia and Kalaba and the scope of their insight.

2. The approach of Udwadia-Kalaba. Let us consider a mechanical system whose
trajectories are described by

q(t) : R −→ Rm.

For unconstrained systems, the equations of motion are given by

Mq̈(t) = F (q(t), q̇(t), t), (2.1)

where M is the (symmetric positive definite) mass matrix and F is the force applied on
the system.

If the system is constrained by the restrictions

φi(q, q̇, t) = 0, i = 1, ..., k, (2.2)

with the φi’s smooth functions such that, at each (q, q̇, t), their differentials are linearly
independent, Eq. (2.1) must be modified in order to take into account the force F c

arising from the realization of the constraints:

Mq̈(t) = F (q(t), q̇(t), t) + F c(q(t), q̇(t), t). (2.3)

It is assumed that, at each (q, q̇, t) the rank of the matrix (
∂φi

∂q̇j
(q, q̇, t)) is equal to k.

When F c yields a null work along every virtual displacement, the constraints are
usually called ideal.

Udwadia and Kalaba [4] introduced a procedure for obtaining the equations of motion
of constrained mechanical systems which encompasses the case of non-ideal constraints.
Their approach is based on the decomposition of the force F c into two components:

F c = F c
i + F c

ni. (2.4)

For a brief description of this decomposition, let us consider the k×m matrix A(q, q̇, t)
with entries

Aij(q, q̇, t) =
∂φi(q, q̇, t)

∂q̇j
. (2.5)

Virtual displacements at (q, q̇, t) are the vectors v such that

A(q, q̇, t)v = 0 (2.6)

(see, for instance, [6]).
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Following Udwadia and Kalaba [4], we define the k × m matrix B as

B = AM− 1
2 , (2.7)

and denote by B+ its Moore-Penrose pseudo-inverse.
The forces F c

i and F c
ni in (2.4) are given by

F c
i = M

1
2 B+B(M− 1

2 F c) (2.8)

and
F c

ni = M
1
2 (I − B+B)(M− 1

2 F c). (2.9)

Remark 1. Any force F̃ yielding the same work as F c along virtual displacements
can be taken instead of F c in formula (2.9). Indeed, F c

ni is defined in this way in [4].
This is a very important fact: the information we need to determine F c

ni is just the work
done by F c on virtual displacements.

Now, we recall some remarkable properties of the decomposition (2.4) [2].
Let us introduce the following notation:

D := Ker A (space of virtual displacements), (2.10)

D̃ := Ker B. (2.11)

It is easy to see that

D̃ = M1/2D, (2.12)

and that, for orthogonal complements taken with respect to the usual inner product of
Rn,

D̃⊥ = M−1/2D⊥. (2.13)

Let us recall that the pseudo-inverse B+ of B is determined by the following properties:

1) B+(y) = 0, ∀y ∈ [B(Rm)]⊥, (2.14)

2) B+(Bx) = ΠD̃⊥x, (2.15)

with ΠD̃⊥ the orthogonal projection onto D̃⊥.
Since we are assuming rank(A) = k, we have B(Rm) = Rk. Then, (2.14) is meaningless

for the matrix B. Consequently, B+ is characterized just by (2.15).
Thus, B+B(M−1/2F c) and (I−B+B)(M−1/2F c) yield the orthogonal decomposition

of M−1/2F c into its components in D̃⊥ and D̃.
So, taking into account (2.8) and (2.9), we have

F c
i ∈ M1/2D̃⊥, (2.16)

F c
ni ∈ M1/2D̃. (2.17)

Because of (2.12) and (2.13), we have that (2.16) and (2.17) are equivalent to
P1: For every F c, the work of F c

i along any virtual displacement vanishes, whereas the
acceleration produced by F c

ni belongs to D [2].
We shall consider, besides the usual norm of Rm, the inner product defined by the

matrix M = (mij) on vectors: for u and v with components (ui) and (vj),

hu, viM :=
X

miju
ivj .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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The metric induced by h, iM on covectors (forces) is the following: for F and G with
components Fi and Gj , if M−1 = (mij),

hF, Giinduced byh,iM
= hβ(F ), β(G)iM (2.18)

=
X

mijβ(F )iβ(G)j, (2.19)

where β(F ) =
P

β(F )i ∂

∂xi
, with β(F )i =

P
mijFj , mij being the entries of M−1, and

analogously for β(G).
The components of the vector β(F ) are obtained from those of F by raising its indexes

by means of the matrix M−1. So, it is clear that it represents the acceleration produced
by F . It is also clear that the work of a force F along a vector v turns out to be
β(F )(v) = hβ(F ), viM .

In particular, the norm of F for this metric is given by

k F kM−1 = (hF, F iM−1)1/2 (2.20)

= (
X F 2

i

mi
)1/2 (2.21)

= k β(F ) kM . (2.22)

In this context, P1 yields

hF c
i , F c

niiM−1 = hF c
i , M−1F c

nii = 0, (2.23)

with h, i the usual inner product of Rm.
That is,

P2: The forces F c
i and F c

ni are orthogonal for h., .iM−1 . Equivalently, the accelerations
β(F c

i ) and β(F c
ni) produced by F c

i and F c
ni respectively, are orthogonal for h., .iM [5].

Remark 2. It is worth noticing that (2.8) and (2.9) represent a clever way of express-
ing M−1-orthogonal projections in terms of the Moore-Penrose pseudo-inverses associ-
ated with the usual norm of Rn.

In terms of A+M , the pseudo-inverse of the matrix A associated with the inner product
h, iM in Rm, F c

i and F c
ni can be written as

F c
i = MA+M AM−1(F c),

F c
ni = M(I − A+M AM−1)(F c).

(As before, since we are assuming rank(A) = k, the m×k matrix A+M is characterized
by the property

A+M (Ax) = ΠM
D⊥x, (2.24)

with ΠM
D⊥ the orthogonal projection onto D⊥ with respect to h, iM .) See [2], [4].

Another important property of Udwadia-Kalaba’s approach, proved in [2], is the Ex-
tended Gauss Principle of minimal constraint. For ideal restrictions, the Gauss Principle
of minimal constraint asserts that the norm kF ckM−1 of the constraining force F c is the
minimum of the set

{kGkM−1 for G ∈ C},
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where

C = {G s.t. the system with q̈(t) = M−1(F + G) satisfies the constraints}.

P3: The norm kF c
i kM−1 is the minimum of the set

{kGkM−1 s.t.G ∈ C̃},

with

C̃ = {G s.t. the system with q̈(t) = M−1(F + F c
ni + G) satisfies the constraints}.

3. Lagrangian mechanics in an invariant form. In this section, we recall the
geometric framework introduced in [7] for the Lagrangian mechanics and analyze the
relation between admitted generators of the dynamics and virtual displacements for con-
strained systems.

Let us consider a mechanical system having the n-dimensional manifold Q as its
configuration space and

L(q, v) : TQ → R

as a Lagrangian.
It will be assumed that the symmetric matrix

M = (Mij)i,j=1,...,n, (3.1)

with

Mij :=
∂2L

∂vi∂vj
, (3.2)

is positive definite at every (q, v) ∈ TQ.
Thus, the matrix M defines an interior product h, iM on TqQ at each q ∈ Q.
The application β from covectors to vectors defined in section 2 generalizes to this

framework: β is now the isomorphism from T ∗
q Q onto TqQ defined through the equality

hu, β(α)iM = α(u) ∀u ∈ TqQ. (3.3)

Notice that ∀ α1, α2 ∈ T ∗
q Q,

hβ(α1), β(α2)iM = hα1, α2iM−1 . (3.4)

The Lagrangian form associated with L is the symplectic form ωL on TQ defined by

ωL := −
µ

∂2L

∂vi∂vj

¶
dqi ∧ dvj +

µ
∂2L

∂vi∂qj

¶
dqi ∧ dqj . (3.5)

Let us denote
X (TQ) := {vector fields on TQ}. (3.6)

In this context, forces are represented by the horizontal 1-forms on TQ, i.e. 1-forms
vanishing on vectors which are tangent to the fibers. The horizontal 1-forms on TQ are
canonically identified with the 1-forms on Q in an obvious way. We will sometimes look
at 1-forms on Q as horizontal 1-forms on TQ and vice versa. By using this identification,
we see that the work a force F does on a vector v tangent to Q is just F (v).
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The dynamics of the (unconstrained) system, when an external force F e is acting, is
generated by the unique XU ∈ X (TQ) satisfying

ωL(q, v)(XU (q, v), (u, w)) + dEL(u, w) = F e(u, w), ∀(u, w) ∈ T(q,v)(TQ), (3.7)

where EL(q, v) =
∂L

∂v
. v − L(q, v) is the energy function associated with L [7].

The existence and uniqueness of XU follows from the fact that ωL is symplectic.
A direct computation shows that XU is a vector field defining a second-order equation.

That is, if π : TQ → Q is the canonical projection π(q, v) = q, then π∗(X(q, v)) = v. As
in [7], we will call special vector fields the elements of X (TQ) having this property.

Let us denote
S(TQ) := {X ∈ X (TQ) s.t. X is special}. (3.8)

Notice that only special vector fields on TQ have a physical meaning. In fact, the
possible trajectories q(t) are lifted to TQ as (q(t), q̇(t)) and so, only special vectors can
be tangent to them.

We recall that a vector (u, w) ∈ T(q,v)TQ is called vertical if π∗(u, w) = 0; i.e, u = 0.

In local coordinates (qi, vi), a vertical tangent vector has the form ui ∂

∂vi
.

We will denote by V(TQ) the space of vertical vector fields on TQ and by τ the
canonical isomorphism from X (Q) onto V(TQ). That is, for Y ∈ X (Q),

τ (Y ) = (0, Y ) ∈ V(TQ).

Now, let us come back to the restrictions

(q(t), q̇(t)) ∈ C, (3.9)

with C a submanifold of TQ locally defined as the zeros of k smooth functions

φi(q, v) = 0, i = 1, ..., k. (3.10)

As in [7], we will assume that the constraint is admissible; i.e., at each (q, v) ∈ C,

dim (span{∂φi

∂vj
dvj(q, v)}) = dim (span {dφi(q, v)}) = k. (3.11)

Remark 3. We consider Lagrangians and constraints independent of time just for
simplicity: the analysis for time-dependent ones is completely analogous.

The set of generators of dynamics which are compatible with the restrictions is

S(C) := {X ∈ S(TQ) s.t. dφi(X) = 0, i = 1, ..., k},
the set of special vector fields belonging to X (C). On the other hand, the space of virtual
displacements is given, at each (q, v) ∈ C, by (see for instance [1] or [6])

D(q,v) := {u ∈ TqQ s.t. dφi(q, v).τ (u) = 0, i = 1, ..., k}. (3.12)

If, as in the previous sections, we denote by A the matrix (
∂φi

∂vj
), the space of virtual

displacements at (q, v) can be expressed as

D(q,v) := {u ∈ TqQ s.t. A(q, v) u = 0}.
We will write Dq instead of D(q,v) when it only depends on q ∈ Q, and analogously

for other distributions.
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Remark 4. At each (q, v) ∈ C, if (v, u) ∈ S(C)(q,v), then

(v, w) ∈ S(C)(q,v) ⇔ τ−1((v, u) − (v, w)) ∈ D(q,v). (3.13)

In fact, since (v, u), (v, w) ∈ T(q,v)(TQ) are special vectors and dφi(v, u) = 0 for
i = 1, ..., k, then

(v, w) ∈ S(C)(q,v) ⇔ dφi(v, w) = 0, i = 1, ..., k

⇔ dφi[(v, u) − (v, w)] = 0, i = 1, ..., k

⇔ A(q, v)(u − w) = 0.

Given that τ−1((v, u) − (v, w)) = u − w, we obtain equation (3.13).
Thus, S(C)(q,v) is an affine subspace of T(q,v)(TQ) and D(q,v) is the vector subspace

associated with it.
It is shown in [7] that, under our assumptions, S(C)(q,v) is not empty.
The dynamics of the restricted system is generated by the unique vector field XR ∈

S(C) satisfying, at each (q, v) ∈ C,

ωL(XR(q, v), (u, w)) + dEL(u, w) = (F e + F c)(u, w), ∀(u, w) ∈ T(q,v)(TQ), (3.14)

where F c is the force exerted by the constraints in order for the restrictions to be satisfied
and, as above, F e is the external force.

Taking into account that F e and F c are horizontal 1-forms on TQ, by identifying
them with 1- forms on Q we can rewrite (3.14) as

ωL(XR(q, v), (u, w)) + dEL(u, w) = (F e + F c)(u), ∀(u, w) ∈ T(q,v)(TQ). (3.15)

In any coordinate patch, (3.15) is equivalent to the Euler-Lagrange equations

(Mij q̈
j +

∂2L

∂q̇i∂qj
q̇j − ∂L

∂qi
)(ui) = (F e

i + F c
i )(ui) ∀u ∈ TqQ. (3.16)

In section 5, we will give a very simple geometric proof of the existence and uniqueness
of the vector field XR satisfying (3.14) and a geometric interpretation of the Gauss
principle of minimal constraint.

Notice that, with our notation, the classical Gauss principle of minimal con-
straint can be written as:

XR is the vector field in S(C) satisfying

kβ−1(τ−1(XR − XU ))kM−1 = min
X∈S(C)

kβ−1(τ−1(X − XU ))kM−1 ,

or, equivalently,

kτ−1(XR − XU )kM = min
X∈S(C)

kτ−1(X − XU )kM .

4. Udwadia-Kalaba’s method revisited. For each (q, v) ∈ D, we denote by

Pβ−1D : T ∗
q Q → β−1(D(q,v))

the M−1-orthogonal projection.
It follows from section 2 that in the Udwadia-Kalaba decomposition

F c = F c
i + F c

ni, (4.1)
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F c
ni turns out to be equal to Pβ−1D(F c).
As mentioned in Remark 1, this implies

β(F c
ni) ∈ D. (4.2)

So, from Remark 4, we have

XU + τ (β(F c
i )) ∈ S(C). (4.3)

Thus, we have the following remarkable property of decomposition (4.1), which is
rather implicit in [4] or [2]:

Property 1. The dynamics of the restricted system is generated by the vector field

XR = Xi
R + τ (β(F c

ni)), (4.4)

where Xi
R = XU + τ (β(F c

i )) would generate the dynamics of the system if the restriction
were ideal.

Since F c
ni = Pβ−1D(F̃ ) for any force F̃ making the same work as F c on the virtual

displacement, from Property 1 we have
Property 2. The dynamics of the restricted system is generated by the vector field

XR = Xi
R + τ (β(Pβ−1D)(F̃ )), (4.5)

for any force F̃ such that F̃ (u) = F c(u) ∀u ∈ D.
Now, taking into account that, since Xi

R − XU is vertical, we can give the following
alternative version of the Gauss principle of minimal action presented in [2]:

Property 3. For any force F̃ such that F̃ (u) = F c(u) ∀u ∈ D, the vector field XR

can be written as
XR = Xi

R + τ (β(Pβ−1D)(F̃ )),

with Xi
R ∈ S(C) satisfying

kτ−1(Xi
R − XU )kM = min

X∈S(C)
kτ−1(X − XU )kM .

In fact, according to the classical Gauss principle, this equation characterizes the gen-
erator of the dynamics for the ideal case, and then Property 3 follows from Property
2.

(As mentioned before, a simple proof of the classical Gauss principle will be included
in the next section.)

5. Restricted systems and M-orthogonal projections. In this section, we will
consider the M -orthogonal projection of tangent vectors onto D. It will be used for
obtaining a geometric interpretation and simple proofs of the existence and uniqueness
of XR and the Gauss principle of minimal constraint.

For each (q, v) ∈ C, we will denote by ΠD the M -orthogonal projection

ΠD : TqQ → D(q,v).

Remark 5. The projection ΠD is related to Pβ−1D through the identity

ΠD(β(α)) = β(Pβ−1D(α)), ∀α ∈ T ∗
q Q.
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We will consider the ideal case. The results can be easily extended to the non-ideal
one by applying Property 1 of the previous section.

Let us take a fixed X0 ∈ S(C).
Notice that, for XU ∈ S(TQ) and XR ∈ S(C), XU − X0 and XR − X0 are vertical

vector fields. So, we can write
XU = X0 + τ (YU ) (5.1)

and
XR = X0 + τ (YR), (5.2)

where, according to Remark 4, YR ∈ D.
A simple characterization of XR in terms of XU is given in the following

Proposition 1. In the case of ideal restrictions, for YU and YR as in (5.1) and (5.2), it
follows that

YR = ΠD(YU ). (5.3)

Proof. From (3.7) and (3.14), we see that XR is characterized by two properties:
a) XR ∈ S(C);
b) at each (q, v) ∈ C,

ωL(XU − XR, (u, w)) = 0, ∀(u, w) ∈ T(q,v) C s.t. u ∈ D(q,v). (5.4)

But, from the definition (3.5) of ωL, since

(
∂2L

∂vi∂qj
)dqi ∧ dqj((0, YU − YR), (u, w)) = 0,

we have

ωL(XU − XR, (u, w)) = −(
∂2L

∂vi∂vj
)dqi ∧ dvj((0, YU − YR), (u, w))

= (
∂2L

∂vi∂vj
)(YU − YR)iuj .

Thus,
ωL(XU − XR, (u, w)) = hYR(q, v) − YU (q, v), uiM . (5.5)

Then, taking into account Remark 4, a) and b) hold if and only if YR = ΠD(YU ). ¤
Notice that equation (5.5), and consequently the previous proposition, are independent

of the particular X0 ∈ S(C) chosen.
This proposition can also be seen as an alternative geometric proof of the existence

and uniqueness of XR.
Moreover, it also gives rise to a simple geometric proof of the
Gauss principle of minimal constraint. For ideal restrictions, the vector field XR ∈

S(C) generating the dynamics of the constrained system is characterized by

kτ−1(XR − XU )kM = min
X∈S(C)

kτ−1(X − XU )kM .

Proof. Since X ∈ S(C) if and only if

X = X0 + τ (Y ),
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with Y ∈ D, then, ∀X ∈ S(C),

kτ−1(X − XU )kM = kY − YUkM

≥ kYU − ΠD(YU )kM

= kτ−1(XR − XU )kM .

It is clear that the equality only holds for X = XR. ¤
Remark 6. In the framework of [4] or [2] recalled in section 2, the projection ΠD

can be represented by means of Moore-Penrose pseudo-inverses with respect to the usual
norm on Rn as

ΠD(Y ) = M− 1
2 (I − B+B)M

1
2 (Y ),

with, as above, B = AM− 1
2 .

As was done in section 2, the projection ΠD can also be written in terms of A+M , the
pseudo-inverse of the matrix A associated with h, iM :

ΠD(Y ) = (I − A+M A)(Y ).

References

[1] J.E. Solomin and M. Zuccalli, A geometric approach to the extended D’Alembert principle of
Udwadia-Kalaba-Hee-Chang. Quart. Appl. Math. 63, 269-275 (2005). MR2150773 (2006a:70043)

[2] F.E. Udwadia, Fundamental principles and Lagrangian dynamics: Mechanical systems with non-
ideal, holonomic, and nonholonomic constraints. J. Math. Anal. Appl. 251, 341 (2002). MR1790412
(2001j:70014)

[3] F.E. Udwadia, On Constrained Motion. Applied Mathematics and Computation. 164, 313-320
(2005). MR2131158 (2005m:70071)

[4] F.E. Udwadia and R.E. Kalaba, On the foundations of analytical dynamics. Internat. J. Non-linear
Mech. 37, 1079-1090 (2002), and references therein. MR1897289 (2003f:70023)

[5] F.E. Udwadia and R.E. Kalaba, What is the General Form of the Explicit Equations of Motion
for Constrained Mechanical Systems? Journ. Applied Mechanics, 69, 335-339 (2002). MR2000941

(2004g:70038)
[6] F.E. Udwadia, R.E. Kalaba, E. Hee-Chang, Equations of motion for constrained mechanical systems

and the extended D’Alembert principle. Quart. Appl. Math. (LV) 2, 321-331 (1997). MR1447580
(98f:70016)

[7] A.M. Vershik, Classical and non-classical dynamics with constraints. Lecture Notes in Mathematics
1108, 278-301, Springer-Verlag 1984.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=2150773
http://www.ams.org/mathscinet-getitem?mr=2150773
http://www.ams.org/mathscinet-getitem?mr=1790412
http://www.ams.org/mathscinet-getitem?mr=1790412
http://www.ams.org/mathscinet-getitem?mr=2131158
http://www.ams.org/mathscinet-getitem?mr=2131158
http://www.ams.org/mathscinet-getitem?mr=1897289
http://www.ams.org/mathscinet-getitem?mr=1897289
http://www.ams.org/mathscinet-getitem?mr=2000941
http://www.ams.org/mathscinet-getitem?mr=2000941
http://www.ams.org/mathscinet-getitem?mr=1447580
http://www.ams.org/mathscinet-getitem?mr=1447580

	1. Introduction
	2. The approach of Udwadia-Kalaba
	3. Lagrangian mechanics in an invariant form
	4. Udwadia-Kalaba's method revisited
	5. Restricted systems and M-orthogonal projections
	Gauss principle of minimal constraint

	References

