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Objectives: Reproduction in the plains viscacha is characterized by the polyovulation of hundreds of
oocytes, the loss of implantation and the development of 1e3 offspring. Our goal was to determine
whether placental development was affected by these specializations.
Study design: Thirteen placentas from early pregnancy to near-term pregnancy were analyzed using
histological, immunohistochemical and transmission electron microscopy.
Results: An inverted, villous yolk sac was present. Placentas were formed by the trophospongium,
labyrinth and subplacenta. A lobulated structure with a hemomonochorial barrier was established early
in pregnancy. Proliferating trophoblast that was clustered at the outer border and inside the labyrinth
was responsible for placental growth. Trophoblast invasion resulted from the cellular trophoblast and
syncytial streamers derived from the subplacenta. Different from other caviomorphs, numerous giant
cells were observed.
Conclusions: The principle processes of placentation in caviomorphs follow an extraordinarily stable
pattern that is independent of specializations, such as polyovulation.

Ó 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

The plains viscacha, Lagostomus maximus Desmarest, 1817, is
a guinea pig-related caviomorph rodent with an ample distribution
throughout Argentina [1]. It is one of the larger rodents of South
America, with females weighing between 2 and 4.5 kg, and males
weighing between 5 and 8 kg [1]. This species is characterized by the
unique reproductive feature of natural polyovulation. Originating
from the suppression of apoptosis, females polyovulate up to 800
oocytes per cycle [1e6] and just 10 to 12 blastocysts are implanted
[7,8]. However, usually only two fetuses are maintained to birth after
154 days [1,2]. The surviving fetuses are those implanted near the
cervical end of the uterus [4]. With the exception of basic data ob-
tained from delivered tissues [9], placentation in L. maximus is
unknown. Placentation has beenwell studied in several caviomorph
species [10e25] because they are more attractive animal models for
human placentation than other rodents [26,27]. Similarities to
humans include the processes of trophoblast invasion and placental
Elsevier OA license.
growth, a hemomonochorial barrier and a precocial reproductive
strategy [13,18,19,21,24e29]. Previous data indicate that placenta-
tion in caviomorphs occurs in a stable pattern that is largely inde-
pendent of body size [17,20,25]. However, no parallel mechanism to
the unusual polyovulation in the plains viscacha has been observed
in other caviomorphs. Thus, we aimed to substantiate its potential
influence on the differentiation of both the chorioallantoic and yolk
sac placenta in L. maximus.
2. Methods

Samples were obtained from free-living female viscachas from Estación de Cría
de Animales Silvestres, Buenos Aires. The procedures followed that of established
studies [e.g., [22,25]]. Materials included 15 placentas from early pregnancy to full-
term pregnancy (Table 1). They were analyzed using the following techniques:
histology (hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) staining),
lectinhistochemistry with DBA (Dolichus biflorus) lectin for recognize uNK cells,
immunohistochemistry for cytokeratin (to mark epithelial/trophoblast cells; mouse
monoclonal anti-human primary antibody 1:300; Clone 1A4, DakoCytomation) and
vimentin (to identify mesenchymal/endothelial cells; mouse monoclonal anti-
human primary antibody 1:200; V9, sc-6260, Santa Cruz Biotechnology), prolifer-
ating cell nuclear antigen (mouse monoclonal anti-human primary antibody 1:800;
PC10, sc-56, Santa Cruz Biotechnology; negative control using PBS) and transmission
electron microscopy (TEM).
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Table 1
Morphometric parameters of fetuses and placentas at different gestation stages.

Pregnancy stagea Age (days) N CRL (cm) PD (cm)

Early pregnancy 40e60 6 3.0e5.7 1.1e2.8
Middle-term pregnancy 80e120 5 8.0e10.5 2.2e3.4
Near-term pregnancy 130e150 4 11e13.0 2.5e3.0

N: number of animals studied; CRL: fetal crow-rump length; PD: placental diameter.
a Total gestation time ¼ 154 days.

Fig. 1. The general structure of chorioallantoic and yolk sac placenta. (A) Embryo in mid-gest
uterus (U). (B,C) Early pregnancy. (B) Immunostaining for cytokeratin marked trophoblast (
vimentin. Only the labyrinth showed fetal vessels (FV) with positive endothelial cells. (D,E
membrane (RM). The cells had close contact (noted with arrows) at the bottom. (F) Early pre
A fibrovascular ring (FR) was present. Bar A: 1 cm. Bars B, C: 100 mm. Bar D: 2 mm. Bar E: 1
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3. Results

3.1. The general structure of chorioallantoic placenta and yolk sac

The chorioallantoic placenta had a discoidal shape with a main
placenta and a distinct subplacenta (Fig. 1A) and was attached to
the uterus by a peduncle. The umbilical cords included a variable
number of vessels; most often, there were two arteries and two
veins. From early pregnancy onward, the main placenta was lobu-
lated and was characterized by a labyrinth and a trophospongium
around the lobes (Fig. 1B,C). The labyrinth was dually vascularized
from the maternal and fetal systems, whereas the trophospongium
had no fetal capillaries (Fig. 1B,C). The chorioallantoic placenta was
covered by the non-villous parietal yolk sac above awell-developed
ationwith umbilical cord (UC), chorioallantoic placenta (CA), visceral yolk sac (VYS) and
arrows) in the trophospongium (TRS) and the labyrinth (LAB). (C) Immunostaining for
) Near-term pregnancy. TEM. One-layered parietal yolk sac (PYS) above the Reichert’s
gnancy. Vimentin. The visceral yolk sac (VYS) was well vascularized (arrow) and villous.
mm. Bar F: 500 mm.
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Reichert’s membrane (Fig. 1D). The cells contained apical microvilli
(Fig. 1D), and they were interconnected by tight junctions at the
base (Fig. 1E). A visceral yolk sac was present throughout gestation
and was completely inverted, highly villous and well vascularized
(Fig. 1F). A fibrovascular ring occurred where the yolk sac was
attached to the placenta and contained a network of capillaries that
positively immunostained for vimentin (Fig. 1F).

3.2. Internal placental structure

In early pregnancy, the trophospongium was the dominant
structure. Toward the decidua, trophoblastic giant cells that were
bi- or poly-nucleated and contained evident chromatin were
present (Fig. 2A). The trophoblast was located on internally directed
lamellae of the fetal mesenchyme (Fig. 2B). The trophoblast lined
the tubular channels that formed the inner side of the troph-
ospongium (Fig. 2C). The syncytial trophoblast lined the maternal
blood spaces (Fig. 2C). Clusters of cellular trophoblast appeared
Fig. 2. Trophospongium. (AeD) Near-term pregnancy. (A) HE. The outer area of the trophos
divided this area. (C) TEM. Syncytial trophoblast (ST) between the maternal blood channels (
proliferation activity of these trophoblast cells (shown by arrows). Bar A, B, F: 50 mm Bar C
between the syncytial layer and the mesenchyme (Fig. 2D).
Placental growth resulted primarily from cells that were actively
proliferating during early and mid-gestation (Fig. 2E,F). In the
labyrinth, maternal blood spaces and fetal capillaries were closely
intermingled (Fig. 3A), but only the latter had an intact endothe-
lium (Fig. 3A). The barrier between the maternal blood spaces and
fetal capillaries consisted of cellular and syncytial trophoblasts
(Fig. 3B), with the latter appearing as the dominant trophoblast
form from mid-gestation onwards. The barrier eventually
decreased to a thin syncytial layer (Fig. 3C). Both the cellular and
syncytial trophoblast showed electron dense inclusions. The
cellular trophoblast proved to be actively proliferating (Fig. 3D),
indicating that the labyrinth is an additional region of proliferation.

3.3. Subplacenta and junctional zone

The subplacenta was highly folded (Fig. 4A) and characterized by
layers of cellular and syncytial trophoblast. This organ developed
pongium (TRS) with giant cells (noted with arrows). (B) HE. A fetal mesenchyme (FM)
MBC). (D) TEM. Clustered cellular trophoblast (CT). (E,F) Early pregnancy. PCNA showed
: 2 mm. Bar D: 10 mm. Bar E: 200 mm.



Fig. 3. Labyrinth. Near-term pregnancy. (A) The labyrinth contained vimentin-marked fetal vessels endothelium and trophoblast (vimentin-negative). (B,C) TEM. Syncytial (ST) and
cellular (CT) trophoblast and fetal mesenchyme (FM) were observed in the barrier. Partly, there was only a thin syncytial (i.e., hemomonochorial) layer in between the maternal
blood channels (MBC) and the fetal capillaries (FC). (D) PCNA. Proliferation activity of the cellular trophoblast (designated with arrows). Bar A, D: 50 mm. Bar B: 10 mm. Bar C: 1 mm.
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during early gestation and was in contact with the maternal blood
systemwith the syncytiotrophoblast facing toward the blood spaces.
Later, it was supplied by fetal vessels with an intact endothelium
(Fig. 4B), which comprised the only blood supply in advanced stages
of pregnancy. However, there was some overlap between both
systems (Fig. 4B). Neighboring the fetal vessels were clusters of
trophoblast cells that were actively proliferating (Fig. 4C). Frommid-
gestation on, signs of degeneration were frequently observed in the
trophoblast. Originating from the subplacenta, the extraplacenta
trophoblast cells and syncytial streamers were oriented toward the
maternal blood channels (Fig. 4D) and were widespread early on.
However, they were rarer during advanced pregnancy. During early
pregnancy, the maternal spiral arteries in the decidua were associ-
ated with PAS, DBA lectin and vimentin positive cells (Fig. 4EeG).
These cells likely represented uterine Natural Killer (uNK) cells. In
the more advanced stages, only a few of these PAS and DBA positive
cells were observed.

4. Discussion

In the plains viscacha (L. maximus), placentationwas structurally
similar to the guinea pig and related rodents. This process is inde-
pendent of the uncommon condition characterized by the poly-
ovulation of hundreds of oocytes and the death of most implanted
embryos. The lobulated structure-associated growing processes and
hemomonochorial types of the barrier were identical in cav-
iomorphs, including the viscacha [10e12,14,17,18,21e23,25,29]. As
another characteristic of the group, the visceral yolk sac was inver-
ted, villous and associated with a fibrovascular capillary network,
and the parietal yolk sac covered the placenta [10,14,15,17,
21e23,25]. Further similarities included the early, invasive and
deep process of trophoblast invasion [17,21,24e28]. A subplacenta,
serving as the source of origin for the trophoblast invasion and
representing a derived condition for Rodentia, was temporarily
supplied by both maternal and fetal blood systems, as is the case in
other caviomorphs [17,20,25]. The invasion process appeared to be
modulated by PAS-positive cells, identified asmaternal uNK cells, as
has been reported for other rodents, such as mice [30e32]. In
addition to PAS, these cells positively immunostained for vimentin,
which distinguished them from vimentin-negative, and often
cytokeratin-positive, trophoblast cells. This staining supports the
maternal origin of these cells, as was recently proposed for other
rodents [33,34]. Anothermarker for uNK cells is DBA-lectin [35]; we
found DBA-lectin positive marcation in these cells, similar to what
has been described in mice.

In Lagostomus, a remarkable population of trophoblast giant
cells was observed, which is not common for caviomorph rodents.
Giant cells were identified in mice and other rodents as being an
important fetal cell lineage for invasion processes and associated
with the expression of particular genes and growth factors [e.g.,
[36e39],]. Because the invasion process in all caviomorphs is
induced by the extraplacental trophoblast derived from the sub-
placenta, the functional meaning of the giant cell population in
the plains viscacha is unclear. Further studies are needed to
determine whether these cells resemble those of other rodents
and to identify their function. In conclusion, our data support the
following hypotheses: (1) the principle processes of placentation
in caviomorph rodents follow an extraordinarily stable pattern;
(2) their placentation is largely independent of body size and
specialized modes of reproduction, such as polyovulation in the
plains viscacha; and (3) further studies will investigate the
processes of implantation and the fetomaternal control of
embryonic survival and resorption processes. Understanding the
phenomenon of natural polyovulation may also lead to a better
understanding of hormone-stimulated superovulation in assisted
reproductive techniques in humans, which has indeed caused
malfunctions in trophectoderm-derived tissues and in the func-
tion of the placenta [40].



Fig. 4. Subplacenta and junctional zone. (A) Mid-gestation. HE. Folded subplacenta (S) near the trophospongium (TRS). (B). Early pregnancy, vimentin. Positive immunoreactivity
(arrows) indicated supply by fetal vessels, in addition to the maternal blood spaces near the decidua (D). (C) Mid-gestation. PCNA. Proliferative trophoblast cells (arrows). (D) Early
pregnancy. The trophoblast has invaded the decidua. (E,F,G) PAS, Vimentin and DBA lectin. Positive immunoreactivity of cells associated with the spiral arteries and in other decidual
regions, identified as uNK cells. Bar A, D: 100 mm. Bar B: 200 mm. Bar C: 30 mm. Bars E, F, G: 50 mm.
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