Search for resonant top plus jet production in $t\bar{t} + \text{jets}$ events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

The ATLAS Collaboration

Abstract

This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying respectively to tq or $\bar{t}q$, leading to a resonance within the $t\bar{t} + \text{jets}$ signature. The full 2011 ATLAS pp collision dataset from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.
Search for resonant top plus jet production in $t\bar{t} +$ jets events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying respectively to $t\bar{t} q$ or $t\bar{t} \bar{q}$, leading to a resonance within the $t\bar{t} +$ jets signature. The full 2011 ATLAS pp collision dataset from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.

PACS numbers: 14.80.-j

In the past few decades, remarkable agreement has been shown between measurements in particle physics and the predictions of the Standard Model (SM). The top quark sector is one important place to look for deviations from the SM, as the large top quark mass suggests that it may play a special role in electroweak symmetry breaking. The recent top quark forward-backward asymmetry measurements from the Tevatron experiments1,2 are in marginal agreement with SM expectations. A non-SM explanation could come from a possible top-flavor-violating process3,4. In these models, a new heavy particle R would be produced at the LHC in association with a top or anti-top quark. Figure 1 shows representative production diagrams for these new particles, for the cases of $R = W'$ or $R = \phi$ (see below). As shown in Ref.~5, the production mechanism in pp collisions mainly involves quarks rather than anti-quarks at $\sqrt{s} = 7$ TeV, even for relatively low mass particles.

The larger number of quarks relative to anti-quarks produced in the initial state at the LHC leads to a resonance R that decays predominantly to either the $t\bar{t} +$ jet or $\bar{t} +$ jet final state, where baryon number conservation restricts the models that are available. Two models that can give rise to these final states are a color singlet resonance (W') mostly in the tq system, and a di-quark color triplet model with a resonance (ϕ) in the $t\bar{q}$ system. In both cases a $t\bar{t}+$ jet final state is produced, but a peak will be present in only one of the $t\bar{t}+$ jet or $\bar{t}+$ jet invariant mass distributions. The new resonances are assumed not to be self-conjugate, which makes searches for same-sign top quarks insensitive to them6, and to have only right-handed couplings. The t or \bar{t} then decays to $W^{-}b$ or $W^{+}\bar{b}$, respectively. This paper considers the decay signature of events in which one W boson decays leptonically (to an electron or muon, plus neutrino final state) and the other W boson decays hadronically. The first direct search for such particles was performed at CDF10, which excluded color triplet resonances with masses below 200 GeV and W' resonances with masses below 300 GeV, for particles with unit right-handed coupling (g_{R}) to $t\bar{t}$. As is done in this paper, CDF used the formalism in Ref.~4 to define g_{R}. CMS recently performed a search that excluded a new W' with a mass less than 840 GeV13 for particles with $g_{R} = 2$.

The analysis presented here uses the full ATLAS 7 TeV pp collision dataset collected in 2011, corresponding to 4.7±0.2 fb$^{-1}$ of integrated luminosity13,14 delivered by the LHC. ATLAS15 is a multi-purpose particle physics detector with cylindrical geometry15. The inner detector (ID) system consists of a high-granularity silicon pixel detector and a silicon micro-strip detector, as well as a transition radiation straw-tube tracker. The ID is immersed in a 2 T axial magnetic field, and provides charged particle tracking in the range $|\eta| < 2.5$. Surrounding the ID, electromagnetic calorimetry is provided by barrel and endcap liquid-argon (LAr)/lead accordion calorimeters and LAr/copper sampling calorimeters in the forward region. Hadronic calorimetry is provided in the barrel by a steel/scintillator tile sampling calorimeter, and in the endcaps and forward region by LAr/copper and LAr/tungsten sampling calorimeters, respectively. The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field with a bending power of 2-8 Tm, generated by three superconducting air-core toroid systems. A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels, level-2 and the event filter, which together reduce the event rate to ~ 300 Hz.

Events with an electron (muon) are required to have passed an electron (muon) trigger with a threshold of transverse energy $E_{T} > 20$ GeV (transverse momentum...
$p_T > 18 \text{ GeV}$), ensuring that the trigger is fully efficient for the off-line selection discussed below. Electrons reconstructed offline are required to have a shower shape in the electromagnetic calorimeter consistent with expectation, as well as a good quality track pointing to the cluster in the calorimeter. Candidate electrons with $E_T > 25 \text{ GeV}$ are required to pass the “tight” electron quality criteria [17], to fall inside a well-instrumented region of the detector ($|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$), and to be isolated from other objects in the event. Muons with transverse momentum $p_T > 20 \text{ GeV}$ are required to pass muon quality criteria [18], to be well measured in both the ID and the muon spectrometer, to fall within $|\eta| < 2.5$, and to be isolated from other objects in the event.

Jets are reconstructed in the calorimeter using the anti-k_t [19] algorithm with a radius parameter of 0.4. Jets are required to satisfy $p_T > 25 \text{ GeV}$ and $|\eta| < 2.5$. Events with jets arising from electronic noise bursts and beam backgrounds are rejected [20]. Jets are calibrated to the hadronic energy scale using p_T- and η-dependent corrections derived from simulation, as well as from test-beam and collision data [21]. Jets from the decay of heavy flavor hadrons are selected by a multivariate b-tagging algorithm [22] at an operating point with 70% efficiency for b-jets and a mistag rate for light quark jets of less than 1% in simulated $t\bar{t}$ events. Neutrinos are inferred from the magnitude of the missing transverse momentum (E_{T}^{miss}) in the event [23].

The signal region for this analysis is defined by requiring exactly one charged lepton and five or more jets, including at least one W boson, events are required to have $E_{T}^{\text{miss}} > 30 \text{ GeV}$ ($E_{T}^{\text{miss}} > 20 \text{ GeV}$) in the electron (muon) channel. Additionally, the event must have a transverse mass of the leptonically-decaying W boson $m_{W}^{T} > 30 \text{ GeV}$ in the electron channel, or scalar sum $E_{T}^{\text{miss}} + m_{W}^{T} > 60 \text{ GeV}$ in the muon channel [24]. Here, $(m_{W}^{T})^2 = 2E_{T}^{\text{miss}}E_{T}^{l}(1 - \cos \phi)$, where E_{T}^{l} is the magnitude of the transverse momentum of the lepton, and ϕ is the angle between the lepton and the missing transverse momentum in the event.

A variety of Monte Carlo generators are used to study and estimate backgrounds. The generated events are processed through full detector simulation [25], based on GEANT4 [26], and include the effect of multiple pp interactions per bunch crossing. To predict the event yield, the simulation is given an event-by-event weight such that the distribution of the number of pp collisions matches that in data.

The $t\bar{t}$ background is modeled with MC@NLO v4.01 [27] interfaced to HERWIG v6.520 [28] and JIMMY v4.31 [29]. An additional $t\bar{t}$ sample modeled with MC@NLO interfaced to PYTHIA v6.425 [30] is used to study potential systematic uncertainties. Other $t\bar{t}$ samples use POWHEG [31] interfaced either to PYTHIA or HERWIG, as well as AcerMC v3.8 [32]. The background from the production of single W bosons in association with extra jets is modeled by the ALPGEN v2.13 [33] generator interfaced to HERWIG. The MLM matching scheme [34] is used to form inclusive W boson + jets samples such that overlapping events produced in both the hard scatter and parton showering are removed. In addition, the heavy flavor contributions are reweighted using the data-driven procedures of Ref. [35] using the full 2011 LHC dataset. Diboson events are generated using HERWIG. Single-top-quark events are modeled by MC@NLO, interfaced with HERWIG for the parton showering, in the s-channel and Wt channel, and by AcerMC v3.8 in the t-channel. The small background in which multi-jet processes are misidentified as prompt leptons is modeled from a data-driven matrix method [36]. In determining the expected event yields, the $t\bar{t}$ cross section is normalized to approximate next-to-next-to-leading-order QCD calculations of 167^{+18}_{-18} pb for a top quark mass of 172.5 GeV [37, 38], and the total W+jets background is normalized to inclusive next-to-next-to-leading-order predictions [39]. Signal events are produced, for a range of W' and ϕ masses, with MadGraph v5.1.3.16 [40] and interfaced to PYTHIA v6.425. Next-to-leading-order (NLO) cross sections are used for the predicted W' boson signal normalization [40], and leading-order (LO) cross sections using MSTW2008 are used for the ϕ-resonance normalization [41].

Events are reconstructed with a kinematic fitting algorithm that utilizes knowledge of the over-constrained $t\bar{t}$ system to assign jets to partons. In the fit, the two top quark masses are each constrained at the particle level to 172.5 GeV by a penalty in the likelihood, computed from variations from this nominal value and the natural top quark width of 1.5 GeV. The two W boson masses are similarly constrained to 80.4 GeV within a width of 2.1 GeV. This allows the z-component of the momentum of the neutrino from the leptonically decaying W boson to be computed. Both solutions from the quadratic ambiguity of this computation are tested when computing the likelihood. Charged lepton, neutrino and jet four-momenta are constrained in the fit by resolution transfer functions derived from simulated $t\bar{t}$ events that relate the measured momenta in the detector to true particle momenta. The full shapes of these transfer functions are used in the likelihood computation. All assignments of any four jets to partons from the $t\bar{t}$ decay are tested and the assignment with the largest likelihood output for the $t\bar{t}$ hypothesis is selected. After the assignment is selected, the originally measured jet and lepton momenta and E_{T}^{miss} are used. The remaining jets not associated with the $t\bar{t}$ partons are included to form m_{ij} and m_{ij} masses, where the charge of the lepton is used to infer which is the top candidate and which is the anti-top candidate. All combinations of extra jets with the top and anti-top quark candidates are considered, and the pairings that give the largest m_{ij} and m_{ij} masses are used. In this way, the same extra jet can (but does not necessarily have to) be used to form m_{ij} and m_{ij}. These two masses are used as observables for the search.

Several control regions are used to ensure good model-
ing and understanding of the backgrounds before the signal region is examined. The preselection control region requires at least four jets, but does not require a b-tag. The dominant $t\bar{t}$ background is tested in a control region with exactly four jets (including at least one b-tagged jet). The rejection of events with more than four jets reduces signal contamination. A second $t\bar{t}$ control region is defined by events with exactly four jets with p_T above 25 GeV, one of which must be b-tagged, and exactly one additional jet with p_T between 20 GeV and 25 GeV. Signal contamination is further reduced by requiring that the $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ between the fifth jet and both the reconstructed top and anti-top quarks is greater than $\pi/2$. Figure 2 shows distributions in the two $t\bar{t}$ control regions, where good agreement is observed between data and the prediction. The second major background, production of single W bosons in association with extra jets, is tested in a control region with five or more jets, vetoing events with b-tagged jets. The requirement of zero b-tagged jets reduces both signal and $t\bar{t}$ contamination. The distribution in Figure 3 shows good agreement between data and the prediction within uncertainties. Table I summarizes the expected and observed yields in the control regions.

Figure 1 shows the expected and observed m_{tj} and $m_{t\bar{t}}$ distributions in the signal region. The data are found to be consistent with the SM expectation. A variety of potential systematic effects are evaluated for the predicted signal and the background rates and shapes. The dominant systematic effects of the jet energy scale and resolution lead to uncertainties of up to 10% on the total background rate and up to 21% on the total signal expectation, depending on the mass of the new particle. The other dominant systematic uncertainty from the difference in b-tagging efficiency between simulation and data leads to uncertainties of roughly 16% on both the signal and background rates. Effects due to lepton trigger uncertainties and ID efficiency as well as the energy scale and resolution are assessed using $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ data, which lead to systematic uncertainties of a few percent. Other potential systematic effects considered are the size of the small multi-jet background (assigned 100% uncertainty); $t\bar{t}$ generator uncertainties (evaluated by comparing different results using the MC@NLO and POWHEG generators, 1–10%); $t\bar{t}$ showering and fragmentation uncertainties (evaluated by comparing samples using both PYTHIA and HERWIG, 1–6%); an uncertainty on the total integrated luminosity (3.9%) [13, 14]; and the amount of QCD radiation for the signal and the $t\bar{t}$ background (approximately 10%, evaluated using AcerMC). Total cross section uncertainties of 10% (55%) are used for the $t\bar{t}$ ($W +$jets) backgrounds.

Expected and observed upper limits on the signal cross section are computed at discrete mass points as follows. For each benchmark signal mass point under consideration, a signal region is defined in the m_{tj}–$m_{t\bar{t}}$ plane. When setting limits for the $W' (\phi)$ model, the m_{tj} ($m_{t\bar{t}}$) window is significantly wider than the m_{tj} ($m_{t\bar{t}}$) window.

![FIG. 2: The leading jet p_T in the four-jet $t\bar{t}$ control region (a), and $m_{t\bar{t}}$ in the five-jet $t\bar{t}$ control region (b). The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multijet events.](image-url)
to account for the fact that the resonance is predominantly in the m_{tj} ($m_{\bar{t}j}$) system. The windows are optimized to maximize sensitivity, accounting for the full effect of systematic uncertainties. Typical mass windows are shown in Table I. For each mass window, 95% confidence level (C.L.) upper limits on the signal cross section (times the branching ratio to $t\bar{t}$) are computed using a single bin frequentist CL$_S$ method [12]. No shape information is used within the mass windows. Table II shows the expected and observed event yields in several of the signal region windows. Expected and observed 95% C.L. lower limits on the signal mass are derived, assuming a coupling of $g_R = 1$ and $g_R = 2$, and are shown in Figure 5. Assuming that the cross section scales as g_R^2, the exclusion in the mass-coupling plane is shown in Figure 6. As shown, most of the parameter space in this model, which was favored by the Tevatron forward-backward asymmetry and $t\bar{t}$ cross section measurements [13], has been excluded.

In conclusion, this paper presents a search for a new heavy particle R in the tj or $\bar{t}j$ system of $t\bar{t}$ plus extra jet events with the ATLAS detector. Such new particles have been proposed as a potential explanation of the difference from the SM values of the forward-backward asymmetries measured in top quark pair production at the Tevatron. The full 2011 ATLAS pp dataset (4.7 fb$^{-1}$) is used in the search. Assuming unit coupling, the expected 95% C.L. lower limit on the mass of the new particle is 500 (700) GeV in the W' (ϕ) model. No significant excess of data above SM expectation is observed, and 95% C.L. lower limits of 430 GeV for both the W' and ϕ models are set. At $g_R = 2$, the limits are 1.10 (1.45) TeV for the W' (ϕ) model, with expected limits of 0.93 (1.30) TeV. These are the most stringent limits to date on such models. Most of the regions of parameter space for these models that are more consistent with the Tevatron forward-backward asymmetry and $t\bar{t}$ cross section measurements than the SM are excluded at 95% C.L. by these results.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR and DFK, Germany; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF
FIG. 3: Expected and observed distribution of m_{tj} in the $W+$jets control region. The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.

and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

FIG. 4: Expected and observed distributions of (a) m_{tj} and (b) $m_{\bar{t}j}$ in the signal region. The example signal distributions assume unit coupling for the new physics process. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production and multi-jet events.
FIG. 5: Expected and observed 95% C.L. upper limits on the (a) W' and (b) ϕ model cross sections. The CDF result is documented in Ref. [10]. The W' cross sections are NLO calculations, and the ϕ cross sections are LO calculations.

FIG. 6: Expected and observed 95% C.L. upper limits on the (a) W' and (b) ϕ model cross sections assuming a cross section which scales with g_R^2. The hatched area shows the region of parameter space excluded by this search at 95% C.L. The CDF result is documented in Ref. [10]. The W' cross sections are NLO calculations, and the ϕ cross sections are LO calculations. The region favored by the Tevatron A_{FB} and σ_t measurements is shown as the dark band [43].
There are several differences between the models in Refs. [3] and [4]. The Lagrangian in the former (used in this paper) includes a factor of $1/\sqrt{2}$ and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional non-resonant diagrams with cross section that scale as g_F^4. Such diagrams are not included in Ref. [3].

There are several differences between the models in Refs. [3] and [4]. The Lagrangian in the former (used in this paper) includes a factor of $1/\sqrt{2}$, and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional non-resonant diagrams with cross section that scale as g_F^4. Such diagrams are not included in Ref. [3].

There are several differences between the models in Refs. [3] and [4]. The Lagrangian in the former (used in this paper) includes a factor of $1/\sqrt{2}$, and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional non-resonant diagrams with cross section that scale as g_F^4. Such diagrams are not included in Ref. [3].

[15] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse ($x-y$) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
[43] This region simultaneously satisfies the observed high-$m_t A_{FB}$, low-$m_t A_{FB}$ and σ_t observed at the Tevatron. Mathematically it is defined as the region with $\chi^2 < 2.8$, where χ^2 is defined in Equation 22 in M. Gresham et al., Phys. Rev. D 85 (2012) 014022, arXiv:1107.4364 The χ^2 for the Standard Model is 2.8.
M.J. Woudstra82, K.W. Wozniak39, K. Wraight53, M. Wright53, B. Wrona73, S.L. Wu173, X. Wu49, Y. Wu31b,af, E. Wulf35, B.M. Wynne46, S. Xella36, M. Xiao136, S. Xie48, C. Xu33b,z, D. Xu139, B. Yabsley150, S. Yacoob45a,am, M. Yamada65, H. Yamaguchi155, A. Yamamoto65, K. Yamamoto63, S. Yamamoto155, T. Yamamura155, T. Yamamoto45, T. Yamazaki155, Y. Yamazaki66, Z. Yan22, H. Yang87, U.K. Yang82, Y. Yang60, Z. Yang146a,146b, S. Yaman91, L. Yao34a, Y. Yao15, Y. Yaus65, G.V. Ybeles Smit130, J. Ye40, S. Ye25, M. Yilmaz4c, R. Yoosooofmiya123, K. Yourita171, R. Yoshida48, C. Young134, C.J. Young118, S. Yousef22, D. Yu25, J. Yu8, J. Yu112, L. Yuan66, A. Yurikewicz106, M. Byzewski30, B. Zabiniski30, R. Zaidan62, A.M. Zaitsev128, Z. Zajacova30, L. Zanello132a,132b, D. Zanzelli39, A. Zaytsev35, C. Zeitnitz75, M. Zemani125, A. Zemla39, C. Zendler21, O. Zenin128, T. Zenis144a, Z. Zimons122a,122b, S. Zenz15, D. Zerwas115, G. Zevi della Porta57, Z. Zhan33d, D. Zhang133b,ak, H. Zhang88, J. Zhang8, X. Zhang33d, Z. Zhang115, L. Zhao108, T. Zhao138, Z. Zhao33b, A. Zhembegov64, J. Zhong118, B. Zhou87, N. Zhou163, Y. Zhou151, C.G. Zhu33d, H. Zhu32, J. Zhu87, Y. Zhu33b, X. Zhuang98, V. Zhuravlov99, D. Zieminska60, N.I. Zimin64, R. Zimmermann21, S. Zimmermann21, S. Zimmermann48, M. Ziolkowski141, R. Zitoun5, L. Zivkovic35, V.V. Zmouchko128, G. Zobernig173, A. Zoccoli20a,20b, M. zur Nedden16, V. Zutshi106, L. Zwalinski30.

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupinar University, Kuralay; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dugus University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania
27 Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física,
(b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institut of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

Triumf, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal