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A B S T R A C T

We have performed N-body numerical simulations of the exchange of angular momentum

between a massive planet and a 3D Keplerian disc of planetesimals. Our interest is directed at

the study of the classical analytical expressions of the lineal theory of density waves, as

representative of the dynamical friction in discs ‘dominated by the planet’ and the orbital

migration of the planets with regard to this effect. By means of a numerical integration of the

equations of motion, we have carried out a set of numerical experiments with a large number

of particles ðN $ 10 000Þ, and planets with the mass of Jupiter, Saturn and one core mass of

the giant planets in the Solar system ðMc ¼ 10 M%Þ. The torque, measured in a phase in which

a ‘steady forcing’ is clearly measurable, yields inward migration in a minimum-mass solar

disc ðS , 10 g cm22), with a characteristic drift time of , a few 106 yr. The planets predate

the disc, but the orbital decay rate is not sufficient to allow accretion in a time-scale relevant

to the formation of giant planets. We found reductions of the measured torque on the planet,

with respect to the linear theory, by a factor of 0.38 for Mc, 0.04 for Saturn and 0.01 for

Jupiter, due to the increase in the perturbation on the disc. The behaviour of planets whose

mass is larger than Mc is similar to the one of type II migrators in gaseous discs. Our results

suggest that, in a minimum mass, solar planetesimals disc, type I migrations occur for masses

smaller than Mc, whereas for this mass value it could be a transition zone between the two

types of migration.

Key words: stellar dynamics – celestial mechanics – planets and satellites: general – Solar

system: formation – planetary systems.

1 I N T R O D U C T I O N

A plausible scenario for the formation of planetary systems

assumes the coeval of a gaseous nebular phase with a solid one. It is

widely accepted that, at least in our Solar system, the giant planets

do form in a gas-rich environment, where they grow through a

collisional process between planetesimals (Lissauer 1993). The

presence of gas affects the dynamics of small planetesimals in the

form of drag. When they reach a radius of ,O(103) km, a process

known as the ‘drag crisis’ starts (Landau & Lifshitz 1959) with the

development of a turbulent wake. In such circumstances, the

gravitation begin to be relevant (Takeda et al. 1985) and a more

appropriate treatment of the problem must be made (i.e. by the

inclusion of tidal forces).

A planetesimal which departs sufficiently from the initial

distribution of mass starts an accelerated growth (the ‘runaway

growth’), due to the fact that the dynamical friction with the rest of

its environment reduces its relative velocity, thus enhancing its

gravitational cross-section. The concept of dynamical friction was

first introduced by Chandrasekhar (1942) in the context of stellar

dynamics, to account for the process by which a massive body

reaches the equipartition of energy with the background through

gravitational interaction. This formulation assumes the massive

body moving through an infinite background, so its application to

discs in general and protoplanetary discs in particular is highly

doubtful, e.g. in a protoplanetary disc the ‘friction’ comes mainly

from the shear and not necessarily from the dispersion of

velocities, as is the case in the Chandrasekhar dynamical friction

formulation. On the other hand, the two-body approximation is not

valid because of the fact that the tidal action of the central star

during close encounters is not negligible (Ida 1990).

The formulation of dynamical friction for particulate discs

comes from the stellar dynamics, and it is shown by Lynden-Bell &

Kalnajs (1972, hereafter LBK). In that paper, the authors show that
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a uniformly rotating potential exerts torque on the disc only in

resonant locations (we call this kind of transfer ‘resonant

dynamical friction’ or ‘resonant torque’). Therefore, at the last

stages of planetary accretion, when the short-range interactions

cease to be important, the planets must be gravitationally coupled

to the protoplanetary disc.

For 2D cold gaseous discs ðc/Vr ! 1; c is the speed of sound and

V is the orbital frequency at distance r ), Goldreich & Tremaine

(1979; hereafter GT79) have developed a theory for resonant

torque driven by density waves, showing that in this particular case

the formulation is equivalent to the resonant dynamical friction. In

another pioneer paper, Goldreich & Tremaine (1980; hereafter

GT80) estimated for the first time the speed of migration of a planet

embedded in a protoplanetary nebula of low mass. They gave an

estimation of the magnitude of the speed of migration without

analysing its direction. GT80’s result is conclusive: the core of a

giant planet can decay to the central star in a time-scale shorter that

the time for its complete accretion. This result encouraged a

number of investigations about the interaction of a planet with the

gaseous disc, the most conspicuous nebular component. With

regard to the planetary migration and the magnitude of the resonant

torque, most researches have focused their attention to the

direction of the migration, the reduction of the effect due to 3D

geometry and the opening of gaps in the region of the disc

surrounding the planet. Ward (1986) has shown that, even in discs

with very different profiles, the migration is, in general, inwards.

Actually, the net torque is ruled by intrinsic asymmetries rather

than detailed flow properties (e.g. Ward 1997). Ward (1988) and

Artymowicz (1993) have studied the effect of the thickness of an

isothermal and stratified disc (as a superposition on z of

infinitesimal discs). They found that the torque is reduced by

,50 per cent with regards to the transfer predicted by the 2D

theory, due to the smoothness of the gravity of the planet in the 3D

geometry.

The well known regimes of migration has been analysed in a

unified model by Ward (1997). He has shown how a growing planet

evolves from a linear regime (type I) to a non-linear one (type II),

with gaps opening with the increasing of the planet mass. In this

last stage, as non-linear effects become important, the torque on the

planet is reduced and the orbital evolution finally follows a

constant rate, independently of the mass. The amount of this

reduction can be of orders of magnitude.

Recent numerical simulations of the gaseous flux around a

protoplanet, for an isothermal (in the z-component) 3D disc

(Myoshi et al. 1999; Tanaka, Takeuchi & Ward 2000) would

confirm the theoretical estimations of the 2D theory, in the case

where the tidal radius of the planet is less than the scaleheight of

the disc. That is, in 3D, a type I migrator would reduce its speed of

migration by a factor of 0.5 or even less. For larger perturbers,

simulations by Kley, D’Angelo & Henning (2001) have shown that

both 2D and 3D discs present the same behaviour. These works

have shown how important the non-linearity the 3D effect is, but as

the planet becomes a large perturber both geometries yield the

same result. This can be understood easily in terms of the growth of

the tidal radius of the perturber, which in this case, exceed the high

scale of the disc.

The planet–planetesimal disc interaction has been extensively

studied by means of numerical simulations. However, at present

there are no N-body simulations designed to study orbital

migrations in planetesimal discs from a resonant perspective.

Fernández & Ip (1984) have shown that a system of protoplanets

embedded in a planetesimal disc can experience strong orbital

migrations by the exchange of angular momentum with the

surrounding planetesimals during close encounters. However, the

attention of most papers was focused at the end of the runaway

phase, with special emphasis on the structure of the disc in the

neighbourhood of the protoplanet (Ida & Makino 1992, 1993). In

particular, Ida & Makino (1993) have shown that even for a small

(non-migrating) protoplanet the interaction evolves from a

‘planet–planetesimal–planetesimal’ interaction to a ‘planet-

dominated stage’ (planet–planetesimal interaction), in which the

planet becomes a strong disc perturber, scattering the disc and

slowing down the runaway growth. We show in this work that for

larger perturbers, the tidal effects are reduced due to gap opening

(non-linear effects), producing a strong scattering of the

planetesimals, with the subsequent ejection of particles of the

system. Ward & Hahn (1995) and Tanaka & Ida (1999) have

studied how a migrating protoplanet (due solely to the interaction

with the gaseous component of the disc) affects the accretion

process at the end of the runaway stage. Murray et al. (1998)

suggested that a massive disc of planetesimals can induce inwards

migrations of protoplanets.

The decay of galactic satellites as a result of the action of

resonant dynamical friction has been extensively studied. We have

found in these kind of studies, the works sharing the major

methodological similitude with our own work (Wahde, Donner &

Sundelius 1996, and references therein). The effect of the

dispersion of velocities and of the self gravitation have been

studied by Wahde et al. (1996). Their results were conclusive in the

sense that this effect have a negligible effect on the observed

dynamical friction. It is worth noting here that the extrapolation of

these results to the case of protoplanetary discs is not evident. In

addition, in these simulations the satellite does not interact only

with the disc but also with other galactic structures.

In this work, we have simulated the dynamical interaction

between a massive planet and a non-self-gravitating Keplerian

3D disc with a large number of planetesimals. The planet can

migrate freely within the disc and the disc can evolve without

limits. N-body simulations with large number of particles enable us

to study the problem in a resonant perspective, together with other

interactions as scattering, ejection, encounters and accretion. We

focus our attention to the possible migrations in a minimum mass

solar nebula model, and the magnitude of the torque on the planet,

in order to investigate the behaviour of the classical formulation of

the 2D resonant torque (linear theory of density waves in 2D).

These migrations are relevant not only in their cosmogonical

implications, but also in the light of the recently discovered

extrasolar planets close to the central star (e.g. see the Extrasolar

Planets Encyclopedia1), and as a way to extend the phase of

runaway growth.

In Section 2 we will describe the numerical model and the main

results of our simulations. In Section 3 we will estimate the torque

from the orbital decay. In Section 4 we will describe the effect of

the planets on the disc. Section 5 is devoted to the resonant torque

formulae. Sections 6 and 7 describe how we have applied these

formulae. The last section is devoted to the conclusions.

2 N U M E R I C A L S I M U L AT I O N S

Our model is composed of a planet of mass M and a number of

planetesimals, each one of mass m0, orbiting around the Sun. The

self-interaction between the planetesimals was not considered.

1 http://www.obspm.fr/encycl/encycl.html
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This assumption is supported by the results of Ida & Makino

(1993). They have shown that the mutual interaction between

planetesimals is weaker than the effect due to the scattering by the

protoplanet in the case M/m0 . 102. In all our simulations we have

M/m0 @ 102. The conclusions of Wahde et al. (1996) also support

this model assumption. The equations of motion were integrated by

means of a leap-frog simplectic integrator based in the one of

Wisdom & Holman (1992). Close encounters with the planet are

treated with the strategy of Chambers (1999), so our integrator is

fully simplectic. The code allows accretion. Those planetesimals

falling on to the Sun or acquiring hyperbolic orbits are eliminated

from the integration. The simulations were performed for three

different kinds of planets: Jupiter (MJ), Saturn (MS) and a ‘one core

mass’ planet ðMc ¼ 10 M%Þ at 5 au. The initial orbital eccen-

tricities where of 0.05, compatible with a near circular planetary

orbit. The discs were constructed with constant surface density of

the order of ,10 g cm2, consistent with a model of minimum mass

solar nebula (0.01 M(). The boundaries of the disc were [0.4, 2.2]a,

a being the semi-major axis of the planet. This limits guarantee the

inclusion of the most distant resonances involved in the theoretical

determination of the resonant torque to the second order in the

eccentricity (GT80).

In all our simulations, the initial orbital eccentricities and

inclinations of the particles were generated at random with uniform

probability distribution in the interval ð0–5Þ £ 1023.

With the objective of checking the sensitivity of the results with

respect to some of the parameters of our model, we have performed

some previous simulations. For us, the main result of the simu-

lations is the variation of the planetary semi-major axis, because we

expect to determine the migration speed and the torque on the

planet from it.

In the test runs we have varied the number of planetesimals, the

mass and limits of the simulated disc, the index k in the radial

distribution of planetesimals and the initial orbital inclinations and

eccentricities of the planetesimals.

At constant disc mass, the number of particles is of great

importance. The noise introduced by the ‘granularity’ (defined by

the relation M/m0Þ produces jumps into the temporal evolution of

the semi-major axis of the planet. Regarding the variation of the

semi-major axis, it is possible to establish two main stages, which

were observed in all the simulations, as follows.

(i) The transitory phase: initial oscillations and jumps of

different magnitude, producing stochastic migrations.

(ii) The stationary phase: the stage of an almost constant rate of

change of the planetary semi-major axis. The jumps and

oscillations are of small amplitude.

We expect to determine the migration and the torque on the

planet in this last stage. The duration of the stationary phase was

notably less than 105 yr for all the runs. After this period, it is very

difficult (sometimes impossible) to obtain the dynamical friction

force, because of rapid variations in semi-major axis and larger

discrepancies between the runs for each case.

The jumps are reduced with the increase in the number of

particles, but they never completely disappear. After many checks,

we have utilized 1 £ 104 planetesimals for the cases of Jupiter and

Saturn, and 2 £ 104 for Mc. On average, we have obtained similar

results with an even larger number of particles, but with an

important additional computational cost.

The way the perturber is introduced might be of great relevance

for phase (i). As the initial conditions for the planetesimals were

generated as if the planet was not present, we have made runs

introducing the planet in different ways. Unfortunately, it was

impossible to eliminate the initial jumps (as is also mentioned by

Wahde et al. 1996). In the case of Jupiter, phase (i) was of

,1 £ 104 yr, and for the other ones it was ,2 £ 104 yr.

We have also experimented with different radial distributions of

planetesimals of the form r k. The index k does not introduce

appreciable effects. Therefore it is possible, in principle, to recreate

different densities. We have estimated the simulated density as:

SðrÞ ¼
m0Noðr/1UAÞk

2prDr
¼ Soðr/1UAÞk21; ð1Þ

where m0 is the planetesimal mass and No is certain number of

particles distributed at the distance r in a ring of width r 2 Dr/2 ,

r , r þ Dr/2: As the discs were generated as flattened systems,

and as the results will be compared with the bidimensional theory,

we have taken the 2D density as a reference. In Table 1 we show the

‘exact’ value of the density for each simulation (we have used

k ¼ 1Þ, joint with other relevant parameters of the simulations.

For each of the three cases, we have carried out four runs with

different seed numbers, which were necessary to generate the

initial conditions of the planetesimals. The results for each case is

the average over the four runs. With this procedure, we hope to

smooth out the stochastic effects, which are always present in

N-body simulations. The step size of integration was #1022 of the

smallest orbital period in each simulation.

2.1 General results

As it is shown in Fig. 1 for one of the runs of Jupiter, the planets

develop a trailing spiral pattern, evidentiating the resonant

structure of the disc (obviously this pattern is less evident for the

other cases). The disc is perturbed in the neighbourhoods of

the Lindblad and co-rotation resonances (see Section 5.1). After

the initial stage, the density of the disc acquires a characteristic

profile, as is shown in Fig. 2 for Jupiter. This figure displays the

number of particles at t ¼ 0 and t ¼ 2 £ 104 yr. The initial location

of the resonances in the disc are also marked. It can be appreciated

clearly how after t ¼ 2 £ 104 yr the disc is excited near the

resonances. The shift is due to the planetary migration. A deep gap

appears in the zone of overlapping of resonances. The gap is very

similar for Jupiter and Saturn simulations, and it is shallower in the

core mass planet case. In this last case the planet ejected almost 50

per cent of the particles.

One central point of our simulations is when the torque on the

planet should be measured. We should seek a time-interval in

which the nearly constant variations of the semi-major axis are not

strongly affected by relaxation or saturation of resonances, (always

present in N-body simulations), in order to perform the comparison

against the theory. Therefore, the time-interval used to measure the

planetary migration rate in each case was determined in the way

proposed by Wahde et al. (1996).

The rate of migration for each case (the ‘observed migration

rate’) was obtained by means of a least-squares fit over the

Table 1. Parameters of the simulations. The semi-major
axis of the planet is a, S is the ‘exact’ density value.

Mdisc a S NPart m0

[MJ] [au] [g cm22] [M%]

Jupiter 0.5 5 12 10 £ 103 0.017
Saturn 0.5 5 12 10 £ 103 0.017
Core 0.5 5 12 20 £ 103 0.008
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averaged semi-major axis of the four runs, performed during a

time-interval where the conditions prescribed above were satisfied

in all of them. We have carried out several tests for different time-

intervals, and we found a maximum variation in the results by a

factor of less than 2. Therefore, this parameter of migration must be

considered like an extrapolation, and are important if their rate

remains constant. This kind of extrapolation is used, for example,

in Nelson et al. (2000), where the decay time is computed in a time-

interval shorter than the simulated one.

We have also fitted the decay of the semi-major axes for each

particular run, in order to have an idea of the dispersion of the

results.

In what follows we will describe the particular results of each

one of the three cases.

2.2 Jupiter

Initially placed at 5 au, we extended the disc in the region

½2–11� au, distributing 0.5 Jupiter mass through 104 particles.

Therefore, the mass of each particle is 0.0167 M%

ðM/m0 . 19 000Þ. Following the prescription quoted above, we

have measured the decay rate in the time-interval

ð10–35Þ £ 105 yr. The results, averaging over the four runs with

different random numbers, are:

(i) observed migration rate k_al ¼ 20:94 £ 1026 au yr21;

(ii) characteristic drift time t ¼ a/k_al ¼ 5:32 £ 106 yr.

The migration rates fitted to each individual run presented

maximum variations of 0:4–1:5 times the mean value. Fig. 3 shows

the averaged change in the semi-major axis for Jupiter, normalized

to the initial one.

2.3 Saturn

Saturn was initially placed at 5 au. The disc parameters are the

same as in the Jupiter case. The granularity factor is M/m0 . 5500.

The average results for the four runs were computed within the

interval ð20–80Þ £ 103 yr, giving:

(i) observed migration rate k_al ¼ 21:07 £ 1026 au yr21;

(ii) characteristic drift time t ¼ a/k_al ¼ 4:67 £ 106 yr.

The variations were, in this case, of 0:6–2:4. Fig. 4 shows the

averaged change in the semi-major axis for Saturn, normalized to

the initial one.

2.4 One core mass

The planet was initially placed at 5 au, and the planetesimals were

distributed in the region ½2–11� au. The total disc mass was the

same as in the case of Jupiter in order to obtain the same density.

However, in order to increase the granularity, the number of

particles was set at 2 £ 104. In this way the mass of each

planetesimal is 0.0083 M% ðM/m0 . 1200Þ. The main results

(measured within the interval ð20–80Þ £ 103 yr are:

Figure 2. Number of particles at t ¼ 0 (dash-dotted line) and t ¼ 2 £ 104 yr (solid line) for one of the Jupiter runs. The initial location of the resonances in the

disc are also marked with vertical lines (solid lines: circular resonances, dashed lines: eccentric resonances).

Figure 1. Trailing spiral pattern developed in one of the runs of Jupiter after

104 yr. The plus signs indicate the locations of the Sun and Jupiter.
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(i) observed migration rate k_al ¼ 23:22 £ 1026 au yr21;

(ii) characteristic drift time t ¼ a/k_al ¼ 1:55 £ 106 yr.

The maximum variations were found to be of 0:4–1:8. Fig. 5 shows

the averaged change in the semi-major axis for Mc , normalized to

the initial one.

3 D E T E R M I N AT I O N O F T H E T O R Q U E F R O M

T H E O R B I TA L M I G R AT I O N

The reaction torque that the disc exerts on the planet can be

estimated from the orbital decay and the rate of variation of the

orbital angular momentum of the planet. From two-body

dynamics, it is straightforward to relate the torque on the planet

with its migration. The observed behaviour of the disc suggests that

the variation of the z-component of the angular momentum almost

introduces the totality of the torque. Therefore, it is valid to

suppose that the planet experiences a net tangential perturber

acceleration A ¼ G/aM, where G is the torque exerted for the disc

on the planet of mass M with semi-major axis a, and orbital

frequency V. At first order in the eccentricity, we have

G ¼ 0:5aVM
da

dt
: ð2Þ

Therefore, by means of the equation (2) we obtain the ‘observed’

torque related to the observed migration rate, da/dt. Its values are

shown in Table 2.

We have obtained almost identical results from the variations of

the orbital angular momentum of the planet. This is due to the fact

that the planetary eccentricities are always very small.

4 P R E DAT E AC T I O N , G A P F O R M AT I O N A N D

S C AT T E R I N G : T H E D E S T I N Y O F

P L A N E T E S I M A L S

The planets predate the disc (Ward & Hahn 1995; Tanaka & Ida

1999) with an intensity proportional to the speed of migration. In

Fig. 6 the predating action is shown for a particular run of Mc case

planet. The orbital instabilities generated by the overlapping of

resonances close to the planet open a gap, but as a result of the

migration there are planetesimals entering the feeding zone, where

the Tisserand parameter is less than 3 (Danby 1962). We have taken

the width of the gap as the distance were the density of

planetesimals drops abruptly with respect to the original density,

and we find that its width is related to the Hills’ radius of the planet

by a factor of close to 7 in all the cases. In Table 3 the half-width of

the gap and the Hills’ radius of the planets are given. At difference

with the predating action, the accretion is negligible in the time-

span of the simulations (no accretion was detected for the Jupiter

and Saturn cases, for Mc two planetesimals hit the planet, on

average). This fact could be relevant for giant planet formation

(Pollack et al. 1996). It suggests that even for a migrating 10 M%

protoplanet, it is difficult for a solid core to exceed this mass value

in a planetesimal disc of minimum nebular mass. The effect of the

gaseous component of the protoplanetary nebula could play an

important role in this question.

The ejections are in general important, and, as it is shown in

Fig. 6, they occur mainly in the gap zone. Jupiter and Saturn

ejected almost 80 per cent of the initial particles in this zone. Even

Figure 4. Temporal evolution of the semi-major axis for the case of a planet

with Saturn mass initially at 5 au, averaged over four runs.

Table 2. Migration rate, characteristic drift time and
torque on the planet, obtained from the simulations.

da/dt t G

[au yr21] [yr] [M( au2 yr22]

Jupiter 20.94 £ 1026 5.32 £ 106 21.31 £ 1029

Saturn 21.07 £ 1026 4.67 £ 106 20.55 £ 1029

Core 23.22 £ 1026 1.55 £ 106 20.14 £ 1029

Figure 5. Temporal evolution of the semi-major axis for the case of a planet

with a 10 M% mass initially at 5 au, averaged over four runs.

Figure 3. Temporal evolution of the semi-major axis for the case of a planet

with Jupiter mass initially at 5 au, averaged over four runs.
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Mc ejected approximately 50 per cent of the particles in the gap

zone, therefore it must be considered a ‘gap opener’.

Considering that the particles are ejected mainly in the coorbital

region, the variation of the energy by the ejection of a mass Dm0 is

DEm0 ¼ GM(Dm0=2a. As the total energy of the system is con-

served, the variation in the energy of the planet is DEM ¼

2GM(MDa/a 2; and therefore

Da ¼ 20:5a
Dm0

Mp
: ð3Þ

This migration is consistent with a net torque (which can be

obtained from equation 2):

G ¼ 20:25L0

dm0

dt
; ð4Þ

where L0 is the specific angular momentum of the planet in the case

of circular orbit and dm0=dt is the rate of ejection of planetesimals.

In Section 7, we will apply this equation to estimate the effect of

the ejected particles.

5 T H E R E S O N A N T T O R Q U E

A perturber embedded in a particulate disc exert torques solely into

resonant locations (LBK). The LBK formulation starts from the

‘epicyclic description’, and from a fluid approximation through a

‘distribution function’, which, for flattened systems, only depends

on the energy and the angular momentum. The dynamics of the

disc is described by means of action-angle variables which are

associated to harmonic numbers l, m in the Fourier decomposition

of the perturbation. The action of the perturber induces a spiral

pattern of m arms. If the spiral pattern is trailing, the angular

momentum is transferred from the inner disc to the outer one.

The main hypothesis of the LKB formulation is that the flux

around the perturber must be stationary. This hypothesis is

equivalent to introduce the planet smoothly. The angular

momentum is transferred at resonant locations ðr ¼ resÞ, where

l

m
kðresÞ þVðresÞ2 VPS ¼ 0; ð5Þ

where k is the epicyclic frequency, V is the circular frequency

(‘guide centre’ of the epicyclic motion) and VPS is the pattern

speed of the lm component of the Fourier decomposition of the

disturbing potential.

At the places where the wave pattern corotates with the circular

frequency, there are ‘corotation resonances’ ðl ¼ 0Þ, whereas we

have ‘Lindblad’ resonances ðl ¼ ^1Þ where the natural frequency

of the disc (k ) is equal to the frequency of the perturber, shifted by

the Doppler effect (the perturbation finds the particle at the same

position in the epicycle).

GT79 have demonstrated that in the limit J1 ! kr 2, where J1 is

the radial action, the formulation LKB is equivalent to the

formulation of external torques on gaseous discs. The above

condition implies that J1 should be much less than the ‘epicyclic

momentum’, or in other words, that the epicyclic approximation

must be perfectly valid (which is equivalent to the condition

c/Vr ! 1 in the GT79 formulation).

The first application of the resonant theory to the planet–disc

interaction is performed by GT80. They have considered a planet

on eccentric orbit. The potential due to the planet, in the epicyclic

approximation is Fp /Flm cos½mðu 2 VlmtÞ�, where Vlm ¼

VðaÞ þ ðl 2 m/mÞkðaÞ is the pattern speed of the perturbing poten-

tial (the l, m numbers are not exactly the same than in the LBK

theory, and Flm is the amplitude of the perturbing potential). The

guide centre and the epicyclic frequency of the planet is evaluated in

a, which differs from the Keplerian semi-major axis aK by

a . aKð1þ 2e 2Þ; ð6Þ

to the first order in the epicyclic amplitude. Following GT79 and

GT80, the torque at Lindblad resonances is given by

TL
l;m ¼ 2mp2S

C2
l;m

D0
ð7Þ

where D0 ¼ rðdD/drÞ, D ¼ k 2 2 m 2ðV 2 VlmÞ
2 and Clm is the lm

component of the Fourier decomposition of the perturbing

function. The torque at corotation resonances is

TC
l;m ¼ 2m

p2

2
F2

l;m

dV

dr

� �21
d

dr

S

B

� �
; ð8Þ

where B ¼ V=4 is one of the Oort constants. For the Lindblad

torque the sign of D0/T is negative. In the outer disc, D0 , 0, and

conversely in the inner disc. Therefore, the outer disc gains angular

momentum at expenses of the inner disc. For corotation torques,

the first bracket is negative. The sign depends on the value of the

second bracket (the vorticity gradient), which is equal to 0 for a

disc with a Keplerian density profile. For a gaseous disc, the planet

transfers angular momentum to the Lindblad resonances, and it is

transported away by a density wave. In particulate discs without

self-gravity like ours, no density waves should be excited: the

planet transfers angular momentum to the Lindblad resonances and

it is absorbed by the particles. At corotation there is no net transport

of the angular momentum deposited by the planet.

Table 3. Hill’s radius and gap
half-width in units of RH.

RH [au] gap width

Jupiter 0.35 3.7
Saturn 0.23 3.6
Core 0.11 3.4

Figure 6. Snapshot at t ¼ 2 £ 104 yr of the distribution of semi-major axes

and eccentricities of the particles in the case of Mc. The scattered particles

are distributed along the curves of constant values of the Jacoby integral.

However, the predated action is evident, as particles are not swept up by the

planet during the migration. At resonant locations, the orbital eccentricity

of the particles is pumped up. The dashed lines represent the loci of the

Tisserand parameter T ¼ 3 at t ¼ 0 and t ¼ 2 £ 104 yr.
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5.1 Resonances

As was already mentioned, the epicyclic description implies the

existence of two basics resonances.

Following equation (6), as in our case e ! 1, we will consider all

the resonant frequencies referred to the planet, evaluated into the

Keplerian semi-major axis. Lindblad resonances occur if

m½VðresÞ2 Vlm� ¼ 2ekðresÞ; m $ 1; ð9Þ

where e ¼ 2sgn ðD0Þ ¼ 1 for the outer disc and 21 for the inner

disc. For the potentials l ¼ m we have circular resonances, ‘inner’

(21) and ‘outer’ (þ1), which are the only ones excited by a

circular perturber. In a Keplerian disc ðk ¼ VÞ,

VðaÞ

VðresÞ
¼ ðres/aÞ

3=2 ¼
mþ e

m
; ð10Þ

which is equivalent to the usual relation of mean motion

commensurability

VðaÞ

VðresÞ
¼

jþ 1

j

� �e

; j $ 1: ð11Þ

As the GT80 formulation includes the indirect part of the

perturbing function for m ¼ 1, both resonances are equal if

m ¼ jþ 1. For the potentials with l ¼ mþ e we have eccentric

resonances (inner and outer);

ðres/aÞ
3=2 ¼

1 2 m

1þ m

� �e

ð12Þ

for each pair of resonances (inner–outer) there is also a couple of

resonances which are ‘coorbital’ with the perturber ðres ¼ aÞ.

The corotation resonances occur at locations where

VðresÞ ¼ Vlm: ð13Þ

For l ¼ m they are coorbitals with the perturber. In the case

l 2 m ¼ e ; the corotation resonances coincide with the circular

ones, because the pattern speed of the potential contains the

epicyclic motion around the guiding centre.

At r ¼ a the resonances have an accumulation point (see Fig. 2).

At certain m, where resonances begin to overlap, all the preceding

expressions are no longer valid. In what follows we will call a to

res/a.

6 A P P L I C AT I O N O F T H E R E S O N A N T

T O R Q U E F O R M U L AT I O N

One of our main scopes will be to compare the torque observed in

our numerical simulations with the one obtained with the 2D linear

theory of density waves.

For a particulate disc without a density gradient, the only source

of asymmetry in the torque comes from the perturbing function and

from the radial dependency of the rotation curve of the disc. In our

case, V/ r 23=2. In the computation of the Fourier decomposition

of the perturbing function, the Laplace coefficient and its

derivatives are involved;

bm
1=2 ¼

2

p

ð2p

0

cos mu duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 2a cos uþ a 2
p : ð14Þ

As it is established in the literature, their computation is well

approximated by means of the modified Bessel functions (Kn). The

integral may be approximated by K0ðxÞ/a
1=2 (GT80), because now

we cannot suppose a ¼ 1. In this approximation the coefficients

are given by

bm
1=2 ¼

2

p

K0ðxÞ

a 1=2
ð15Þ

a
dbm

1=2

da
¼

2bm
1=2

2
2 em

aþ 1

a

� �
K1ðxÞ ð16Þ

a 2 d2bm
1=2

da 2
¼2 a

dbm
1=2

da
þ

1

p

(
1

2a 3=2
m 2 ðaþ 1Þ2

a
þ 1

� �
K0ðxÞ

þ
em

a 2

ðaþ 1Þ2 2 2

a 2 1

� �
K1ðxÞ

)
;

ð17Þ

with x ¼ mj1 2 aj/a 1=2.

For the potentials with l ¼ m we have the Lindblad ‘circular’

torque. Its effect on the perturber is an orbital decay. For the

potentials l 2 m ¼ 2e we have Lindblad ‘eccentric’ torque

(calculated on those non-coorbital resonances), it is also negative

on the planet.

For the potentials l 2 m ¼ 2e (in the non coorbital case), the

corotation torque depends of the vorticity gradient S/B, and in our

case it produces an outward migration.

Although we know that in our simulations the most important

effect is the Lindblad circular torque, we have decided, for reasons

of completitude, to compute the contribution of each kind of

torque. In the coorbital region, whose width is related with the zone

of horseshoe orbits, the contribution to the torque was studied by

Quinn & Goodman (1986), Ward (1991, 1992) and Wahde &

Donner (1996). We will use the expression found by Ward (1992)

because it is closely related with the linear theory described above:

T ¼ 4SjAjBw 4 d ln

d ln r
ðS/BÞ ð18Þ

where A and B are the Oort constants and w is the radius of the

coorbital region. For a sufficiently massive perturber (tidal radius

greater than the height scale of the disc), w . RH (Quinn &

Goodman 1986; Ward 1992). In our simulations, the fraction of

particles with z , RH is 0.9 for Jupiter, whereas for the one core

mass planet it is 0.8, so we will adopt this approximation for the

coorbital radius. With these assumptions equation (18) may be

written as

T ¼
9

8
SV2R4

H: ð19Þ

The migration from this term will be outwards.

Those planetesimals coorbiting with the perturber are the most

susceptible to saturate resonances, because they are set into

libration. We think that coorbital torque is not present, due to the

strong perturbation of the disc in the cases of Jupiter and Saturn,

and due to the saturation in the Mc case, because its speed of

migration is not sufficient to drift across the coorbital zone in a

time shorter than the time-scale of saturation. Nevertheless, the

inclusion of this kind of torque makes a negligible contribution to

the net one.

7 A N A LY T I C A L P R E D I C T I O N S

To compute the resonant torque by analytical means, one of the

most important questions to be analysed is the maximum m which

is valid to include, to sum the contributions of the different sources

of resonant torque. The preceding formulae were obtained
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neglecting azimuthal gradients of quantities describing the flux in

the neighbourhood of the resonances. Therefore, the torque

increases without limits in the region surrounding the planet. On

the other hand, one of the implicit assumptions of the theory is that

no overlapping of resonances should occur. The theory ceases to be

valid in this region.

The resonance-overlapping criterion (Chirikov 1979) gives a

way to compute the mmax as (Wisdom 1980)

1

mmax 2 1
# 2:1m 2=7; ð20Þ

where m ¼ M/M%.

The m obtained in this way is not necessarily related to the actual

last active resonance. Nevertheless, we don’t want numerical proof

of the theory, but to see how the theory represents the results of our

simulations.

In Table 4 the mmax and the net torque (including those

components coming from the Lindblad circular and eccentric

resonances, the corotation resonances and the indirect part of the

perturbing function) for the three cases are given. The coorbital

torque has not been included for the reasons cited above.

The most important contribution comes from the Lindblad

circular torque as is expected from the planetary eccentricities, and

from the relevant wave numbers. All quantities were evaluated at

resonant (initial) locations and with the non-perturbed density. All

the torque expressions were evaluated at the same mmax.

Then we calculated the relation between the ‘observed’ torque

(Table 2), and the ‘calculated’ one (Table 4). The O/C relation is

0.01 for Jupiter, 0.04 for Saturn and 0.38 for Mc. They are shown in

the Table 5. These kind of estimates, similar to the ones given in

works on gaseous discs, enable us to compare the distribution of

the migration velocity in our simulations with the theoretical

distribution given by Ward (1997). Type I migrators are defined as

the planets which follow the predictions of the linear theory, and

their velocities of migration are proportional to the planetary mass

(the characteristic time-scales are inversely proportional to the

mass). Type II migrators are in a non-linear regime. In this case the

planet clears a gap and the orbital evolution becomes independent

of the planet mass. In this case the orbital evolution can be orders

of magnitude less than in type I. Extrapolating this result to our

simulations, we should conclude that the discrepancy between the

prediction of the 2D linear theory and the torque observed in the

numerical simulations is due to non-linear effects, which introduce

a strong disc profile modification. In Fig. 7 we show the ‘dynamical

heating’ of the disc by a Mc planet. In planetesimals discs, this

phenomena produces scattering (Ida & Makino 1993), and

ejection.

The effect of the ejection of particles may be evaluated by means

of equation (2). We found that the torque due to ejection (for each

case, averaged from the ejection of the four runs during the

corresponding time interval) is 0.81 times the one observed in the

case of Jupiter, 1.14 for Saturn and 7.85 for Mc. In Fig. 8 we show

the relation between the observed torque and the calculated ones.

The O/C relationship for both types of theoretical estimation are

shown in Table 5. Although these estimations are very crude, they

suggest, together with the reduction predicted by the density waves

theory, that in a planetesimal disc of minimum mass, planets with

masses larger than Mc follow a law of transfer of angular

momentum similar to type II migrators in gaseous disc. Taking into

account the dispersion between the four runs, which may be

attributed to the limitations of our numerical experiments as well as

in the way the ‘observed migration’ was obtained, our results

suggest that for values of the mass near Mc there is a transition zone

between type II and type I migrators. This feature will be

investigated in a forthcoming paper.

Table 4. Maximum m and the
predicted torque by the 2D theory.

mmax G [M( au2 yr22]

Jupiter 5 2120.1 £ 1029

Saturn 6 213.6 £ 1029

Core 10 20.37 £ 1029

Table 5. O/C relationship
between the observed torque, the
one predicted by the resonant 2D
theory and by the ejection of
planetesimals.

O/C Resonant Ejection

Jupiter 0.01 0.81
Saturn 0.04 1.14
Core 0.38 7.85

Figure 7. Rms eccentricity of the disc in one of the Mc simulations at

t ¼ 20 000 yr averaged over bins of width 0.1 au.

Figure 8. Migration rate calculated by 2D density waves theory (solid line),

the ‘observed’ in our simulations (dashed line) and the result from the

ejection(dash-dotted lines).

84 R. G. Cionco and A. Brunini

q 2002 RAS, MNRAS 334, 77–86

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/334/1/77/999157 by guest on 23 August 2019



For a quantitative comparison with gaseous discs, we have

included the analytical prediction for type I migrator, by Ward

(1986, their equation 34). It contains the ‘cut-off’ function (the

diminution of the torque due to gaseous pressure effects), and was

derived in a linear regime. It also contains the speed of sound,

related to the dispersion of velocities s . ermsVK for particled

discs, where erms is the rms eccentricity of the disc particles, and

VK is its Keplerian velocity. We have also included a comparison

using the equation (23) by Ida et al. (2000) for particled discs by

close and distant encounters. It also depends on s trough the

eccentricity of the planetesimals.

Both formulations are sensitive to the dispersion of velocity;

Ward’s (1986) torque formula depends on s 22, and in Ida et al.

(2000) the dependence is approximately s 23. These formulations

show how the enlargement of s (the dynamical heating) reduce the

net torque. They show that the type I behaviour depends linearly on

the perturber mass.

Table 6 shows the calculated values of the speed of migration

using the formulae cited above, and erms averaged over the disc for

each case. These velocities are larger than those obtained by

simulations. However, the Ida et al. (2000) expression is closer to

the numerical results due to its dependence on the velocity of

dispersion. We also think that this formulation performs a more

realistic treatment of the problem, as encounters are taken into

account. Our calculated speed of migration by density wave is

larger with respect to the Ward estimates (see Fig. 8). It is due to

the non-inclusion of the gaseous ‘cut-off’ function.

Jupiter and Saturn are far from the regime of applicability of this

formula; the strong dynamical heating dominates the migration by

means of ejections. As we have already seen, they follow a

distinctive regime of migration which is not mass-dependent. For

Mc the agreement is remarkable, but if we use a erms closer to the

gap zone (where the torque is strongest), the estimates fall under

the numerical values in a factor of almost 3, so this case, we think,

supports the reliability of the numerical simulations, but neither is

enough for a definitive classification of this planet.

Then we hope that, in a gradual fashion, masses smaller than Mc

follow the linear theory more and more closely.

8 C O N C L U S I O N S

We have performed N-body numerical simulations of the exchange

of angular momentum between a massive planet and a 3D

Keplerian disc of planetesimals. Our interest was directed to the

study of the orbital migration of the planets an to the validity of the

classical analytical expressions of the lineal theory of density

waves in 2D, as representative of dynamical friction in discs

‘dominated by the planet’. By means of a numerical integration of

the equations of motion, we have carried out a set of numerical

experiments with large number of particles ðN $ 10 000Þ, and

planets of different masses between the mass of Jupiter and the

mass of one core mass of the giant planets in the Solar system

ðMC ¼ 10 M%Þ.

We studied the semi-major axis evolution and determined a zone

to measure the torque on the planet. The main conclusions are as

follows.

(i) The net migration is always inwards in a disc of small density

(,10 g cm22), compatible with a minimum mass solar nebula

model. The time-scale of orbital decay is of ,106 yr for all the

cases under study.

(ii) The rate of migration in a minimum mass solar nebula, due to

the solid phase, does not enhance the accretion rate on the planet in

a time-scale relevant for giant planet formation.

(iii) We have estimated the resonant component of the torque

and we have computed the relation between the ‘observed’ torque

(Table 2), and the ‘calculated’ one (Table 4). The O/C relation is

0.01 for Jupiter, 0.04 for Saturn and 0.38 for Mc.

(iv) The dynamical heating of the disc is responsible for the

reduction of the net resonant torque on the planet. Therefore, in

addition to the fact that the migration rates are almost the same for

the biggest planets we conclude that this planets evolves as

following the definitions of the types II migrators in gaseous discs.

Taking into account the reduction of the resonant torque for Mc,

planets with masses smaller than it would be well described by the

linear theory of density waves in a planetesimal disc compatible

with the minimum-mass solar nebula.

We cannot say anything with respect to the final destiny of the

planets. As a result of the time-span of the simulations, they fail to

explain any switch-off of this mechanism of migration, which must

be related to the involved time of relaxation, even thought it must

be orders of magnitude larger.

Finally, for a complete comparison of migrators in planetesimal

and gaseous discs, a more wide range of planetary masses should

be simulated (the smaller ones), in particular, for the study of the

transition stage between the two types of orbital evolution. We

think, in accordance with Ida & Makino (1993), that at 5 au this

stage appears between 0.1 M% and masses smaller than Mc.
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