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Abstract

Let A be a selfadjoint operator and P be an orthogonal projection both operating on a
Hilbert space H. We say that A is P -complementable if A− µP � 0 holds for some µ ∈ R.
In this case we define IP (A) = max{µ ∈ R : A− µP � 0}. As a tool for computing IP (A)

we introduce a natural generalization of the Schur complement or shorted operator of A to
S = R(P ), denoted by �(A,P ). We give expressions and a characterization for IP (A) that
generalize some known results for particular choices of P . We also study some aspects of the
shorted operator �(A,P ) for P -complementable A, under the hypothesis of compatibility of
the pair (A,S). We give some applications in the finite dimensional context.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a Hilbert space and L(H) the algebra of bounded linear operators
on H. Given a closed subspace S ⊆ H and P = PS ∈ L(H) the orthogonal
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projection onto S, we study the following two problems: for any selfadjoint operator
A ∈ L(H),

1. determine whether there exists some µ ∈ R such that

A− µP � 0; (1)

2. in case Eq. (1) holds for some µ, compute the optimum number

IP (A) = max{µ ∈ R : A− µP � 0}. (2)

The general solution of problem (1) is well known, see for example [14] or Propo-
sition 3.3. Also, if A � 0, problem (2) has a known answer (see, for example, [7]).
We state this case in the preliminary Section 2 (Corollary 2.2). Therefore our main
interest is to study problem (2) in the non-positive case. It should be mentioned that
the general case seems not to be easily reduced to the positive case (see Remark 5.1).

If condition (1) is satisfied by A, we shall say that A is P -complementable, be-
cause in this case there exists the shorted operator (or Schur complement, see [1])
defined as follows:

�(A,P ) = max{D ∈ L(H) : D = D∗,D � A,D(H) ⊆ S}.
Using the identity �(A− µP,P ) = �(A,P )− µP , in Section 3 we extend several
known properties of shorted operators of positive operators to our case. On the other
hand, in Section 5 we show that, if A� 0 but it is P -complementable, then

IP (A) = λmin(�(A, P )),

where λmin(C) denotes the minimum of the spectrum σ(C) of C ∈ L(H).
Although most applications of the problems mentioned above appear in matrix

theory, i.e., when dimH < ∞, an additional hypothesis of the operator A allows to
extend all finite dimensional results to our setting. This hypothesis is the so called
compatibility of the pair (A,S). This notion, defined by Corach, Maestripieri and
the second author in [4–6], is the following: The pair (A,S) is compatible if there
exists a A-selfadjoint projection onto S⊥, i.e., Q ∈ L(H) such that Q2 = Q, AQ =
Q∗A and R(Q) = S⊥.

There are several characterization of the compatibility of (A,S) and general
properties of such pairs in the case A � 0 (see, for example, [4]); some of them
are stated in Section 4 of this paper, where we also extend these properties to the
non-positive case. We say that compatibility is an additional condition because, if
(1 − P)A(1 − P) � 0 and (A,S) is compatible , then A is P -complementable. The
reverse implication is false in general, but it is true if dimS⊥ < ∞, in particular in
the finite dimensional case.

Section 5 is devoted to the computation of the number IP (A) for A selfadjoint,
not necessarily positive. We first obtain the formula

IP (A) = inf{〈Aξ, ξ〉 : ξ ∈ H, ‖Pξ‖ = 1}
so that, if S is the subspace generated by the unit vector ξ ∈ H, then

IP (A) = inf{〈Aη, η〉 : η ∈ H, 〈η, ξ〉 = 1}.
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If (A,S) is compatible , we show that the computation of IP (A) can be reduced to
the case in which S ⊆ R(A), by replacing S by S ∩ R(A). We state the results of
the rest of this section in the following theorem:

Theorem. Let A = A∗ ∈ L(H), A� 0, and P = P ∗ = P 2 ∈ L(H) with R(P ) =
S. Suppose that (1 − P)A(1 − P) � 0 and (A,S) is compatible. Then

1. R(�(A, P )) = S ∩ R(A) /= {0}.
2. If T = S ∩ R(A) and Q = PT, then the pair (A,T) is compatible, �(A, P ) =

�(A,Q) and IP (A) = IQ(A).
3. If R(A) is closed, then T = S ∩ R(A) and

IP (A) = IQ(A) = λmin
(
(QA†Q)†), (3)

where C†denotes the Moore–Penrose pseudoinverse of a closed range operator C.

Formula (3) is the natural generalization of IP (A) = ‖PA†P ‖−1, which holds
if A is positive (semidefinite) with closed range (see Corollary 2.2). In Section
6 we study some applications of the mentioned results, particularly to problems
posed by Fiedler–Markham [9] and Reams [15]. Given a completely positive map
� : Mn(C) → Mn(C), we also compute the number

I (�) = max{µ ∈ R : � − µ · Id is completely positive},
which can be considered as a notion of index for such maps.

2. Preliminary results

In this paper H denotes a Hilbert space, L(H) is the algebra of all linear bounded
operators on H, Gl(H) is the group of invertible operators in L(H) and L(H)+
is the subset of L(H) of all positive (semidefinite) operators. If dimH = n < ∞
we shall identify H with Cn and L(H) with the space of n× n complex matrices
Mn(C). The elements of Cn are considered as column vectors. For simplicity we
sometimes describe a column vector ξ ∈ Cn as ξ = (ξ1, . . . , ξn).

For every C ∈ L(H) its range is denoted by R(C), σ(C) denotes the spectrum of
C and ρ(C) the spectral radius of C. If C∗ = C, we denote λmin(C) the minimum
of σ(C). If R(C) is closed, then C† denotes the Moore–Penrose pseudoinverse of C.
The orthogonal projection onto a closed subspace S is denoted by PS. We use the
notations Q = {Q ∈ L(H) : Q2 = Q} for the set of idempotents and P = {P ∈ Q :
P = P ∗} for the set of orthogonal projections. For every P ∈ P, the decomposition
H = R(1 − P)⊕ R(P ) induces a 2 × 2 representation of A ∈ L(H):

A =
(
a b

b∗ c

)
,

which we call the matrix representation induced by P .
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Now we state the well known criterion due to Douglas [8] (see also [10]) about
ranges and factorization of operators:

Theorem 2.1. Let A,B ∈ L(H). Then the following conditions are equivalent:

1. R(B) ⊆ R(A).
2. There exists a positive number µ such that BB∗ � µAA∗.
3. There exists D ∈ L(H) such that B = AD.

Moreover, in this case there exists a unique solution D of the equation AX = B such
that R(D) ⊆ R(A). The operator D is called the reduced solution of the equation
AX = B and ‖D‖2 = min{µ : BB∗ � µAA∗}. If R(A) is closed, then D = A†B.

Corollary 2.2. Let A, B ∈ L(H)+. Then there exists µ > 0 such that A− µB �
0 if and only if R(B1/2) ⊆ R(A1/2). In this case, if B /= 0 and D is the reduced
solution of the equation A1/2X = B1/2, we have

max{µ � 0 : A− µB � 0} = ‖D‖−2.

If R(A) is closed, this number coincides with ρ(A†B)−1 = ‖B1/2A†B1/2‖−1.

Proof. If R(A) is closed, then R(A) = R(A1/2) and D = (A1/2)†B1/2. Hence

‖D‖2 = ‖D∗D‖ = ‖B1/2A†B1/2‖ = ρ(B1/2A†B1/2) = ρ (A†B). �

Corollary 2.3. Let A ∈ L(H)+ and ξ ∈ H with ‖ξ‖ = 1. Consider the rank one
projection P = ξ ⊗ ξ = Pξ onto the subspace generated by ξ . If

Iξ (A) = max{µ � 0 : A− µP � 0},
then Iξ (A) /= 0 ⇐⇒ ξ ∈ R(A1/2). In this case, if η ∈ kerA⊥ satisfies A1/2η = ξ,

we get Iξ (A) = ‖η‖−2. If ξ ∈ R(A), then for every ζ ∈ H such that Aζ = ξ it holds
Iξ (A) = 〈Aζ, ζ 〉−1. If R(A) is closed, then Iξ (A) = 〈A†ξ, ξ〉−1.

Proof. The first part follows from Corollary 2.2. Let η ∈ kerA⊥ such that A1/2η =
ξ . Then the reduced solution of the equation A1/2X = P is η ⊗ ξ , the one rank
operator defined by

η ⊗ ξ(γ ) = 〈γ, ξ〉η, γ ∈ H.

It is easy to see that ‖η ⊗ ξ‖ = ‖ξ‖ ‖η‖ = ‖η‖. If there exists ζ ∈ H such that Aζ =
ξ , then A1/2ζ = η and 〈Aζ, ζ 〉 = ‖η‖2. If R(A) is closed, then η = (A1/2)†ξ , so that
‖η‖2 = 〈η, η〉 = 〈A†ξ, ξ〉. �

2.4. Suppose that dimH = n < ∞. We identify L(H) with Mn(C), the algebra of
n× n complex matrices. Let A ∈ L(H)+. In [16] the notion of minimal index for A
was defined as
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I (A)= max
{
µ � 0 : A ◦ B � µ · B ∀ B ∈ L(H)+

}
= max

{
µ � 0 : �A − µ · Id � 0 on L(H)+

}
(4)

= max
{
µ � 0 : A− µ · eet � 0

}
,

where e = (1, . . . , 1), the symbol ◦ denotes the Hadamard product of matrices and
�A(C) = A ◦ C, C ∈ L(H). The last equality follows from the fact that for C ∈
L(H), �C � 0 ⇔ C � 0 (see [13]).

Note that, if ξ = n−1/2e, then ‖ξ‖ = 1 and I (A) = n−1Iξ (A). By Corollary 2.3,
I (A) > 0 if and only if e belongs to the range of A. In [7,16] it is shown that, in this
case, for any vector y such that A(y) = e,

I (A) = 〈Ay, y〉−1 = 〈A†e, e〉−1 = min{〈Az, z〉 : 〈z, e〉 = 1}. (5)

Note that the first two equalities are particular cases of Corollary 2.3.

3. The shorted operator for selfadjoint operators

Let A = A∗ ∈ L(H) and P ∈ P. We first need a characterization of those pairs
(A, P ) such that, for some µ ∈ R, it holds

A− µP � 0. (6)

The solution of this problem is well known, see for example [14]. We shall give a
brief survey of the characterization of pairs (A, P ) satisfying Eq. (6), for the sake of
completeness.

Note that if Px = 0 then 〈(A− µP)x, x〉 = 〈Ax, x〉. Thus, a necessary condition
for A and P to satisfy condition (6) is that (1 − P)A(1 − P) � 0.

Definition 3.1. Let A ∈ L(H) such that A = A∗ and let P ∈ P. We shall say that
A is P -positive if (1 − P)A(1 − P) � 0.

Remark 3.2. Let e = (1, . . . , 1) ∈ Cn and let Pe ∈ Mn(C) denote the orthogonal
projection onto the subspace generated by e. A real symmetric matrix A ∈ Mn(R) is
called almost positive if 〈Aξ, ξ〉 � 0 for all ξ ∈ Rn such that 〈ξ, e〉 = 0. Therefore a
real selfadjoint matrix A ∈ Mn(C) is almost positive if and only if it is Pe-positive.

Proposition 3.3. Let P ∈ P with R(P ) = S and A ∈ L(H) be hermitian and P-

positive. Let A =
(
a b

b∗ c

)
be the representation induced by P . Then the following

conditions are equivalent:

1. There exists µ ∈ R such that A− µP � 0.

2. The partial matrix

(
a b

b∗ ?

)
admits a positive completion.
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3. The set M(A,S) = {D ∈ L(H) : D = D∗,D � A,R(D) ⊆ S} is not empty.
4. There exists x ∈ L(S,S⊥) such that b = a1/2x.
5. R(b) ⊆ R(a1/2).

and, if R(a) is closed, also
6. ker a = kerA ∩S⊥.

Proof. 1 → 2: Take d = c − µP . Then

(
a b

b∗ d

)
= A− µP � 0.

2 → 3: Let d ∈ L(S) such that

(
a b

b∗ d

)
� 0. Then D =

(
0 0
0 c − d

)
∈

M(A,S).
3 → 1: If D ∈ M(A,S), take µ ∈ R such that −D � −µP .
4 ↔ 5: It is a consequence of Douglas Theorem 2.1.
2 ↔ 5: It is well known (see [1] or [14]). For example, if b = a1/2x with x ∈

L(S,S⊥), then(
a b

b∗ x∗x

)
=

(
a1/2 0
x∗ 0

) (
a1/2 x

0 0

)
� 0.

If R(a) is closed, then R(a1/2) = R(a) = (ker a)⊥. In this case

R(b) ⊆ R(a)⇔ ker a ⊆ ker b∗

⇔ (∀ ξ ∈ S⊥, aξ = 0 ⇒ aξ + b∗ξ = Aξ = 0),

i.e., condition 5 is equivalent to ker a ⊆ kerA ∩S⊥. Note that the reverse inclusion
always holds. �

Remark 3.4. With the notations of Proposition 3.3, if R(a) is not closed, then con-
ditions 1–5 still imply, with the same proof, that ker a = kerA ∩S⊥.

Definition 3.5. Let A ∈ L(H) be hermitian and P ∈ P such that A is P -positive.

1. A is called P -complementable if any of the conditions of Proposition 3.3 holds.
2. In this case we define: IP (A) = max{µ ∈ R : A− µP � 0}.

If A is P -complementable, the shorted operator can be defined for the pair (A, P ),
and several results for shorted operators of positive operators (see [1]) remain true in
this case. We show these properties in the rest of this section.

Definition 3.6. Let P ∈ P with R(P ) = S and let A =
(
a b

b∗ c

)
∈ L(H) be

hermitian P -complementable. Let d ∈ L(S,S⊥) be the reduced solution of the
equation b = a1/2x. Then we define the Schur complement (or shorted operator)
of A with respect to S as
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�(A,P ) =
(

0 0
0 c − d∗d

)
.

Proposition 3.7. Let P ∈ P with R(P ) = S and let A be P -complementable.

1. If A � 0, then �(A,P ) is the usual shorted operator for A and S.
2. Let µ ∈ R. Then �(A− µP,P ) = �(A,P )− µP .
3. �(A, P ) = max{D ∈ L(H) : D = D∗,D � A,R(D) ⊆ S}.
4. �(A, P ) = inf{QAQ∗ : Q = Q2, R(Q) = S}.
5. Let ξ ∈ S. Then

〈�(A,P )ξ, ξ〉 = inf
{〈A(ξ + η), ξ + η〉, η ∈ S⊥}

.

6. If a =
(
a b

b∗ c

)
and R(a) is closed, then

�(A,P ) =
(

0 0
0 c − b∗a†b

)
.

where a† is the Moore–Penrose pseudoinverse of a in L(S⊥).

Proof
1. It is shown in [1].
2. It is clear by definition.
3. If A � 0, then �(A,P ) = max{D ∈ L(H) : D � 0, D � A and R(D) ⊆ S}

(see [1]). The general case can be easily deduced from the positive case using
item 2.

4. If A � 0, then �(A,P ) = inf{QAQ∗ : Q = Q2, R(Q) = S} (see [1]). The gen-
eral case can be easily deduced from the positive case using item 2 and the fact
that, if Q ∈ Q has R(Q) = S, then QPQ∗ = P .

5. The positive was shown in [1]. If A� 0, denote by B = A− IP (A)P � 0. By
item 2, �(A,P ) = �(B, P )+ IP (A)P . Thus,

〈�(B, P )ξ, ξ〉 = inf{〈B(ξ + η), ξ + η〉, η ∈ S⊥}
= inf{〈A(ξ + η), ξ + η〉, η ∈ S⊥} − IP (A)‖ξ‖2.

6. If R(a) is closed, then R(a1/2) is also closed, (a1/2)† = (a†)1/2 and d = (a1/2)†b

is the reduced solution of the equation a1/2x = b. �

Remark 3.8. The following properties are easy consequences of Proposition 3.7
and the corresponding results for the positive case (see [1,11]):

1. Let P,Q ∈ P such that P � Q, let A ∈ L(H) P -complementable and B ∈ L(H)

such that A � B. Then B is P -complementable, �(A,P ) � �(B, P ), A is Q-
complementable and �(A,P ) � �(A,Q).



306 P. Massey, D. Stojanoff / Linear Algebra and its Applications 393 (2004) 299–318

2. Let {En} ∈ L(H) be a monotone decreasing sequence of positive operators
strongly convergent to 0 and let A ∈ L(H) be P -complementable. Then �(A+
En, P ) converges strongly to �(A,P ).

3. Let A∈L(H) be an invertible P -complementable operator. Then‖�(A+ ε, P )−
�(A,P )‖ → 0 as ε → 0+.

4. Let A ∈ L(H) be P -complementable. Then there exist unique operators F and G

such that A = F +G with R(F) ⊆ S, G � 0 and R(G1/2) ∩S = {0}.
5. Let A ∈ L(H) and P ∈ P such that A is P -complementable. Let f be a op-

erator monotone map defined on σ(A) ∪ σ(�(A, P )) such that f (0) � 0. Then
�(f (A), P ) � f (�(A, P )).

6. Let {Pn} ∈ P be a decreasing sequence of projections such that Pn
S.O.T−→ P and let

A ∈ L(H) be P -complementable. Then {�(A,Pn)} decreases to �(A,P ) (see
[14] or [2]).

4. A-selfadjoint projections

Given P ∈ P with R(P ) = S and A ∈ L(H)P -positive, we shall consider a
condition stronger than being P -complementable which is the existence of A-self-
adjoint projections onto S⊥, i.e., Q ∈ Q such that AQ = Q∗A and R(Q) = S⊥.

Definition 4.1. Let A = A∗ ∈ L(H) and S ⊆ H a closed subspace. We denote by

P(A,S) = {
Q ∈ Q : R(Q) = S⊥, AQ = Q∗A

}
.

The pair (A,S) is said to be compatible if P(A,S) is not empty.

The notion of a compatible pair was introduced in [4], where a characterization
of compatible pairs (A,S) in terms of the Schur complements �(A,P ) is given, in
case that A � 0. The following two results are taken from [4]:

Lemma 4.2. Let A = A∗ ∈ L(H) and Q ∈ Q. Then the following conditions are
equivalent:

1. Q satisfies that AQ = Q∗A, i.e., Q is A-selfadjoint.
2. kerQ ⊆ A−1(R(Q)⊥).

and, if A � 0,
3. Q∗AQ � A.

Proposition 4.3. Given A = A∗ ∈ L(H) and P ∈ P with R(P ) = S, the follow-
ing conditions are equivalent:

1. The pair (A,S) is compatible (i.e., P(A,S) is not empty).
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2. If A =
(
a b

b∗ c

)
then R(b) ⊆ R(a).

3. S⊥ + A−1(S) = H.

In this case, for every E ∈ P(A,S), kerE ⊆ A−1(S).

Corollary 4.4. If (A,S) is compatible and A is P -positive, then A is P -comple-
mentable.

Proof. Just note that, if a = (1 − P)A(1 − P) � 0, then R(a) ⊆ R(a1/2). �

Remark 4.5. Let A ∈ L(H) be hermitian and P ∈ P with R(P ) = S such that
A is P -positive and suppose that R((1 − P)A(1 − P)) is closed. Then (A,S) is
compatible if and only if A is P -complementable. This last condition holds whenever
dimS⊥ < ∞. Therefore if H is a finite dimensional space and A is P -positive, the
conditions (A,S) is compatible and A is P -complementable are equivalent.

Proposition 4.6. Let A = A∗ ∈ L(H) such that A is P -positive and the pair (A,S)

is compatible. Let E ∈ P(A,S) and Q = I − E. Then

1. �(A, P ) = AQ = Q∗A = Q∗AQ.
2. �(A, P ) = min{FAF ∗ : F ∈ Q, R(F ) = S}.
3. R(�(A, P )) ⊆ R(A) ∩ S.

Proof. The case A � 0 was shown in [4] (with equality in item 3). The gener-
al case follows from the fact that if F ∈ Q and R(F) = S, then FP = PF ∗ =
FPF ∗ = P . Recall that if B = A− IP (A)P , then �(A,P ) = �(B, P )+ IP (A)P ;
and R((I − E)∗)= ker(I − E)⊥ =S. Item 3 is clear because R(AQ) ⊆ R(A). �

Lemma 4.7. Let A = A∗ ∈ L(H) and P ∈ P with R(P ) = S. Suppose that A is
P -positive and (A,S) is compatible. Let E ∈ P(A,S) and Q = 1 − E. Consider
the operator T = (1 − P)+Q. Then

1. T ∈ Gl(H) with T −1 = E + P .

2. If A =
(
a b

b∗ c

)
in terms of P, then

T ∗AT =
(
a 0
0 �(A,P )

)
. (7)

3. If A ∈ Gl(H) then a ∈ Gl(S⊥) and �(A,P ) ∈ Gl(S). Moreover, if we view
�(A,P ) ∈ L(S), then �(A,P )−1 = PA−1P or, in other words,

�(A, P ) = (PA−1P)†. (8)
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Proof
1. Since R(1 − P) = R(E) = kerP = kerQ = S⊥, then (1 − P)E = E and

QP = Q. Thus T (E + P) = E +Q = 1. The other case is similar.
2. The fact that R(Q) = kerE ⊆ A−1(S) implies that Q∗A(1 − P) = (1 − P)

AQ = 0. By Proposition 4.6, Q∗AQ = �(A,P ).
3. Note that (T ∗AT )−1 = T −1A−1(T ∗)−1 = (E + P)A−1(E∗ + P). But PE = E∗

P = 0, so that �(A,P )−1 = P(T ∗AT )−1P = PA−1P . �

Proposition 4.8. Let A = A∗ ∈ L(H) and P ∈ P with R(P ) = S. Suppose that
A is P -positive and (A,S) is compatible. Then R(�(A, P )) = R(A) ∩S.

Proof. We use the notations of Lemma 4.7. By formula (7), R(T ∗AT ) ∩S =
R(�(A, P )). On the other hand, if ξ ∈ S, then T ∗ξ = Q∗ξ = ξ , because R(Q∗) =
kerQ⊥ = S and Q∗ ∈ Q. Hence R(A) ∩S = R(AT ) ∩S ⊆ R(T ∗AT ) ∩
S = R(�(A, P )). The reverse inclusion was shown in Proposition 4.6. �

5. Computation of IP (A)

Let P ∈ P and A = A∗ ∈ L(H). Recall that, if A is P -complementable, we have
defined

IP (A) = max{µ ∈ R : A− µP � 0}.

Remark 5.1. If A � 0 then, by Corollary 2.2, IP (A) /= 0 if and only if R(P ) ⊆
R(A1/2) and, in this case, IP (A) = ‖D‖−2, where D is the reduced solution of the
equation A1/2X = P . Thus, if R(A) is closed, then IP (A) = ρ(A†P).

Suppose now that A� 0. It is easy to see that if B = A+ µP , then IP (B) =
IP (A)+ µ. Therefore a way to compute IP (A) would be to find a lower bound
µ � IP (A) in order to compute firstly IP (B) for B = A− µP � 0, reducing the
general case to the positive case. Nevertheless this way seems to be not applicable.
For example, it is easy to get, for any M > 0, selfadjoint matrices A ∈ M2(C) with
‖A‖ � 2 such that IP (A) < −M , where P is a fixed projection of rank one. Indeed,

take P =
(

0 0
0 1

)
and A =

(
ε 1
1 0

)
, for ε < M−1.

We first show the key relation between IP (A) and the shorted operator �(A,P ):

Proposition 5.2. Let A ∈ L(H) be hermitian, A� 0, and P ∈ P with R(P ) = S
such that A is P -complementable. Then

IP (A) = λmin(�(A, P )) = min{〈�(A,P )ξ, ξ〉 : ξ ∈ S, ‖ξ‖ = 1}. (9)
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Proof. Denote by µ = λmin(�(A, P )). Since A� 0, it is easy to see that µ < 0. In
particular this shows the last equality in Eq. (9). Note that µP � �(A,P ), so that

A− µP � A−�(A,P ) � 0 and µ � IP (A).

On the other hand, since A− IP (A)P � 0, then IP (A)P ∈M(A,S) and IP (A)P �
�(A,P ) (see Propositions 3.3 and 3.7), which implies that IP (A) � µ. �

Remark 5.3. With the notations of Proposition 5.2, if A � 0, then the identity
IP (A) = min{〈�(A,P )ξ, ξ〉 : ξ ∈ S, ‖ξ‖ = 1} remains true; and this number co-
incides with λmin(�(A, P )) if we consider the spectrum of �(A,P ) as an operator
of L(S) (in order to remove the number 0 if necessary).

The following properties of IP (A) follow immediately from Remark 3.8 and
Proposition 5.2.

Corollary 5.4. Let A ∈ L(H) be hermitian and P ∈ P such that A is P -comple-
mentable:

1. Let Q ∈ P such that P � Q and suppose that A� 0. Then IP (A) � IQ(A).
If A � 0 this property may fail because of the fact observed in Remark 5.3.

2. Let B ∈ L(H) such that A � B. Then IP (A) � IP (B).
3. Let {En} ∈ L(H) be a monotone (not necessary strictly) decreasing sequence

of positive operators strongly convergent to 0. Then the sequence {IP (A+ En)}
decreases to IP (A).

4. Let {An} ∈ L(H) be a sequence of P -complementable operators which is norm
convergent to an invertible P -complementable operator A. Then {IP (An)} con-
verges to IP (A).

5. Let f be a operator monotone map defined on σ(A) ∪ σ(�(A, P )) such that
f (0) � 0. Then IP (f (A)) � f (IP (A)).

6. Let {Pn} be a decreasing sequence of orthogonal projections such that Pn
S.O.T−→ P .

Then {IPn(A)} decreases to IP (A).

Remark 5.5. It was pointed out in [16] that the hypothesis in item 3 can not be
relaxed, i.e the map A �→ IP (A) is not norm continuous in general, as we see in the
following example.

Example 5.6. Let a /= 1 and {bn} ⊆ R>a such that limn→∞ bn = a. Then the se-
quence of positive matrices

An =
(

a2 + a−2 abn + (abn)
−1

abn + (abn)
−1 b2

n + b−2
n

)
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converges in norm to A = (a2 + a−2)eet , where e = (1, 1). Let xn = (a, bn) and
yn = (a−1, b−1

n ). Note that An = xnx
∗
n + yny

∗
n and e = λnxn + µnyn, with λn =

(a + bn)
−1 and µn = abn(a + bn)

−1. If a vector z satisfies that Anz = e, then

e = Anz = (xnx
∗
n + yny

∗
n)z = 〈z, xn〉xn + 〈z, yn〉yn

and 〈z, e〉−1 = (〈z, xn〉2 + 〈z, yn〉2)−1 = (a+bn)
2

1+a2b2
n

. Since IPe (An) = 2〈A−1
n e, e〉−1 =

2(a+bn)
2

1+a2b2
n

, we get

lim
n→∞ IPe (An) = lim

n→∞
2(a + bn)

2

a2b2
n + 1

= 8

a2 + a−2
/= 2(a2 + a−2) = IPe (A).

The following results are the natural generalizations of formula (5) to our setting.

Corollary 5.7. Let A ∈ L(H) be hermitian and P ∈ P with R(P ) = S such that
A is P -complementable. Then

IP (A) = inf{〈Aξ, ξ〉 : ξ ∈ H, ‖Pξ‖ = 1}. (10)

Proof. It is a consequence of Eq. (9) in Proposition 5.2 (or Remark 5.3 in case that
A � 0) and item 5 of Proposition 3.7. �

Corollary 5.8. Let A and P be as above and suppose that P = ξ ⊗ ξ for some unit
vector ξ ∈ H. Then

IP (A) = inf{〈Aη, η〉 : η ∈ H, 〈η, ξ〉 = 1}. (11)

Proof. Note that Pη = 〈η, ξ〉ξ and ‖Pη‖ = |〈η, ξ〉|. Also, if ω ∈ C has |ω| = 1,
then 〈Aωη,ωη〉 = 〈Aη, η〉. �

Throughout, we shall consider P ∈ P with R(P ) = S and A ∈ L(H) P -positive
such that (A,S) is compatible. In this case almost all results which can be shown
for matrices can be extended to the infinite dimensional case.

Remark 5.9. Let A ∈ L(H) be hermitian and P ∈ P with R(P ) = S such that
(A,S) is compatible. Suppose that IP (A) /= 0. Then

R(A) ∩S = R(�(A, P )) /= {0}.
Indeed, since (A,S) is compatible, R(�(A, P )) = R(A) ∩S by Proposition 4.8.
On the other hand, 0 /= IP (A) = λmin(�(A, P )), by Proposition 5.2. Hence
�(A,P ) /= 0.

Theorem 5.10. Let A ∈ L(H) be hermitian and P ∈ P with R(P ) = S, such
that A is P -positive and (A,S) is compatible with IP (A) /= 0. Denote by T =
S ∩ R(A) and Q = PT. Then
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1. A is Q-complementable. Moreover, the pair (A,T) is compatible.
2. �(A, P ) = �(A,Q).
3. IP (A) = IQ(A).

Proof. If A � 0, by Remark 5.3, we know that �(A,P ) is invertible in L(S).
On the other hand, since (A,S) is compatible, S = R(�(A, P )) = R(A) ∩S ⊆
R(A).

Suppose now that A� 0. By Remark 5.9, R(�(A, P )) = R(A) ∩S ⊆ T. Hence

�(A,P ) ∈ M(A,T) = {D ∈ L(H) : D = D∗,D � A,R(D) ⊆ T} /= ∅.
Therefore, by Proposition 3.3, A is Q-complementable and, by Proposition 3.7,
�(A,P ) � �(A,Q). The inequality �(A,Q) � �(A,P ) follows by Remark 3.8.
Then,

IP (A) = λmin(�(A, P )) = λmin(�(A,Q)) = IQ(A).

Using Proposition 4.3 item 3, in order to show that the pair (A,T) is compati-
ble, it suffices to verify that T⊥ + A−1(T) = H, which follows from the fol-
lowing facts: S⊥ + A−1(S) = H (since (A,S) is compatible), S⊥ ⊆ T⊥ and
A−1(S) = A−1(S ∩ R(A)) ⊆ A−1(T). �

Remark 5.11. When dimS = 1, if A is P -positive and P -compatible we can de-
duce that S ⊆ R(A). More generally, if dimS < ∞, A is injective and (A,S) is
compatible , then S ⊆ R(A). Indeed, note that dimA−1(S) = dimS ∩ R(A), and
A−1(S) must be a supplement of S⊥. Nevertheless, if we remove the condition
(A,S) is compatible , this is not true, even if dimS = 1 and A is injective and
P -complementable, as the following example shows.

Example 5.12. Let A ∈ L(H)+ be injective non-invertible. Let ξ ∈ H \ R(A) be
a unit vector. Denote by S the subspace generated by ξ , P = PS. If

A =
(
a b

b∗ c

)

in terms of P and Aξ = λξ + η with η ∈ S⊥, then λ = 〈Aξ, ξ〉 /= 0 and η /= 0
(otherwise ξ ∈ R(A)). Therefore c = λP and b(µξ) = µη, µ ∈ C.

Suppose that η ∈ R(a), i.e., there exists ν ∈ S⊥ which verifies aν = bξ . Then
(1 − P)A(ν − ξ) = aν − bξ = 0, so A(ν − ξ) is a multiple of ξ , which must be 0
(ξ /∈ R(A)). So ν = ξ , a contradiction. Therefore R(b)�R(a) and the pair (A,S)

is incompatible.
Now consider B = A+ µP , for any µ ∈ R. It is clear that B must be P -comple-

mentable (B − µP = A � 0). But the facts that A is injective and ξ /∈ R(A), clearly
imply that B is injective and ξ /∈ R(B).
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5.13. Fix E ∈ P with range M. Denote by L(H)M = {C ∈ L(H) : ECE = C}.
For C ∈ L(H)M, denote by C0 ∈ L(M) the compression of C to M. With respect
to the matrix representation induced by E

C =
(

0 0
0 C0

)
M⊥
M

.

The following properties of this compression are easy to see:

1. The map L(H)M ! C �→ C0 ∈ L(M) is a ∗-isomorphism of C∗-algebras, i.e., it
is isometric and compatible with sums, products and adjoints.

2. If C = C∗ ∈ L(H)M and R(C) = M, then C0 ∈ Gl(M) and (C0)
−1 = (C†)0. If

R(C) is closed, then (C0)
† = (C†)0.

Theorem 5.14. Let A ∈ L(H) be hermitian, A� 0, and P ∈ P with R(P ) = S
such that A is P -positive and (A,S) is compatible. Suppose that R(A) is closed.
Denote by T = S ∩ R(A) and Q = PT. Then

IP (A) = IQ(A) = λmin(QA†Q)†. (12)

Proof. Since we only need to prove the equality IQ(A) = λmin(QA†Q)†, we
shall directly suppose that R(P ) ⊆ R(A). Denote M = R(A) and E = PM.
Using the notations of 5.13, we have that A,P and �(A,P ) ∈ L(H)M. It is clear
that �(A,P )0 = �(A0, P0), IP (A) = IP0(A0) and A0 is invertible. Therefore, by
Lemma 4.7,

�(A0, P0) = (P0(A0)
−1P0)

† = (PA†P)0
† = ((PA†P)†)0

and

IP (A)= IP0(A0) = λmin�(A0, P0) = λmin((PA†P)†)0

= λmin(PA†P)†. �

6. Some applications

The problem of calculating IP (A) of a P -complementable operator A with re-
spect to a projection P has already been considered for certain projections P , mainly
in the finite dimensional case. Reams [15] showed that if A ∈ Mn(R) is invertible
and almost positive (see Remark 3.2), then A is Pe-complementable and IPe (A) =
n · 〈A−1e, e〉−1, where e = (1, . . . , 1) ∈ Cn and Pe denotes the orthogonal projec-
tion onto the subspace generated by e. We obtain a generalization of this result in
the non-positive case. The general positive case was already considered in [7] and
Corollary 2.3 (for every unit vector ξ ∈ Cn).
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Corollary 6.1. Let ξ ∈ Cn be a unit vector. Let A ∈ Mn(C) be non-positive but
Pξ -positive. Then A is Pξ -complementable if and only if

∀η ∈ Cn, 〈η, ξ〉 = 0 and 〈Aη, η〉 = 0 ⇒ Aη = 0. (13)

In this case ξ ∈ R(A) and

IPξ (A) = 〈A†ξ, ξ〉−1 = min{〈Az, z〉 : 〈z, ξ〉 = 1}. (14)

Proof. Condition (13) is equivalent to Ker((1−Pξ )A(1−Pξ )) ∩ {ξ}⊥ = Ker(A) ∩
{ξ}⊥. By Proposition 3.3, this is equivalent to the fact that A is Pξ -complementable,
since R(A) is closed. Note that IPξ (A) < 0, since A� 0. By Remarks 4.5 and 5.9
we get R(A) ∩ R(Pξ ) /= {0}. Therefore ξ ∈ R(A) and 〈A†ξ, ξ〉 /= 0. By Eq. (12) in
Theorem 5.14,

IPξ (A) = λmin(PξA
†Pξ )

† = λmin(〈A†ξ, ξ〉Pξ )
† = 〈A†ξ, ξ〉−1.

In order to prove Eq. (14), it only remains to show that the infimum in Eq. (11) is
actually a minimun. Let ζ = A†ξ and η = 〈A†ξ, ξ〉−1ζ . Then

〈Aη, η〉 = 〈A†ξ, ξ〉−2〈Aζ, ζ 〉 = 〈A†ξ, ξ〉−2〈ξ, A†ξ〉 = 〈A†ξ, ξ〉−1,

and the minimum is attained at η. �

It was also noted in [15] that the problem of calculating IP (A) with respect to
P = Pe is equivalent to a problem posed by Fiedler and Markham in [9], that is to
calculate

max{λmin((A ◦ C)C−1), C > 0}
for a positive matrix A ∈ Mn(C), where A ◦ B denotes the Hadamard product of
A and B. The corollary above complements the results obtained in [9] in the non-
positive, non-invertible case.

Recall that given a positive matrix A ∈ Mn(C), the minimal index was introduced
in [16] as

IA = max{µ � 0 : A ◦ B � µB,B � 0}.
Given P ∈ Mn(C) an orthogonal projection and a P -complementable matrix A,
there is a relation between IP (A) and the Schur multiplier induced by A.

Corollary 6.2. Let M = {x1, . . . , xk} ⊆ Cn be an orthonormal set and let P be the
orthogonal projection onto the subspace spanned by M . Suppose that A ∈ Mn(C) is
P -complementable. Then

IP (A) = max

{
µ ∈ R : A ◦ B � µ

k∑
i=1

DxiBD∗
xi
, B � 0

}
, (15)

where Dx denotes the diagonal matrix with main diagonal x ∈ Cn.

Proof. First note that P = ∑k
i=1 xix

∗
i . Thus A− µP � 0 if and only if every B � 0

satisfies (A− µ
∑k

i=1 xix
∗
i ) ◦ B � 0, which is equivalent to A ◦ B � µ

∑k
i=1 Dxi
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BD∗
xi

, since a simple calculation shows that C ◦ xx∗ = DxCD∗
x for every C ∈

Mn(C) and x ∈ Cn. This shows formula (15). �

6.1. Completely positive maps on Mn(C)

Definition 6.3. Let � : Mn(C) → Mn(C) be a linear map. � is positive if �(A) �
0 whenever A � 0. � is selfadjoint if �(A∗) = �(A)∗ or equivalently if �(A) is
selfadjoint whenever A is selfadjoint.

Let � : Mn(C) → Mn(C) be a linear map. If m ∈ N , we denote �(m):
Mm(Mn(C)) → Mm(Mn(C)) the map given by

�(m)((aij )ij ) = (�(aij ))ij , (aij )ij ∈ Mm(Mn(C)),

and call it the inflation of order m of �.

Definition 6.4. The linear map � : Mn(C) → Mn(C) is called completely positive
if �(m) is positive for every m ∈ N .

In the following, {eij } ⊆ Mn(C) denotes the canonical basis for Mn(C). Now we
state a result due to Choi [3].

Theorem 6.5. Let � : Mn(C) → Mn(C) be a linear map. Then � is completely
positive if and only if �(n)((eij )ij ) = (�(eij ))ij ∈ Mn(Mn(C)) is positive.

Remark 6.6. Note that the matrix E = ((eij )ij ) ∈ Mn(Mn(C)) " Mn2(C) is a sca-
lar multiple of a rank one projection. Indeed, if {ei} denotes the canonical basis of
Cn and v ∈ Cn2

is the vector v = (e1, . . . , en), then (eij )ij = vv∗. Thus E = 1
n
Pv ,

where Pv is the projection onto the subspace generated by v.

Remark 6.7. Let A ∈ Mn(A). Then the linear map �A : Mn(C) → Mn(C) given
by �A(B) = A ◦ B is selfadjoint (resp. positive) if and only if A is selfadjoint (resp.
positive). Moreover, if A � 0, then �A is completely positive, since the inflated ma-
trix A(n) � 0 and �(n)

A = �A(n) (see [13]). Therefore �A − µId is completely posi-
tive if and only if A− µee∗ � 0, where e ∈ Cn is given by e = (1, . . . , 1). Note that
ee∗ = nPe, since ‖e‖ = n1/2. Therefore we conclude that for every Pe-complement-
able matrix A,

I (A) = max{µ ∈ R : �A − µId is completely positive} = 1

n
IPe(A),

where I (A) is the minimal index of A defined in 2.4 (in fact, its natural generalization
for A not necesarily positive, but Pe-complementable).
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Definition 6.8. Let � : Mn(C) → Mn(C) be a selfadjoint map. We say that � is
complementable if there exists µ ∈ R such that � − µId is completely positive. In
this case we define:

I (�) = max{µ ∈ R : � − µId is completely positive}.

Note that all completely positive maps � are complementable and I (�) � 0. But
in general not all selfadjoint maps are complementable. For example, if A ∈ Mn(C)

is selfadjoint, then �A is complementable if and only if A is Pe-complementable.

Theorem 6.9. Let � : Mn(C) → Mn(C) be a selfadjoint map. Then, with the nota-
tions of Remark 6.6,

1. Suppose that � is not completely positive. In this case � is complementable if and
only if for all η1, . . . , ηn ∈ Cn

n∑
i=1

(ηi)i = 0 ⇒
n∑

i, j=1

〈�(eij )ηj , ηi〉 � 0 (16)

and

n∑
i=1

(ηi)i = 0 and

n∑
i, j=1

〈�(eij )ηj , ηi〉 = 0 ⇒
n∑

j=1

�(eij )ηj = 0,

i = 1, . . . , n (17)

or, equivalently, if A� = �(n)E = (�(eij ))ij ∈ Mn2(C) is Pv-complementable.
2. In this case I (�) = n · IPv (A�) and we have

I (�) = min

{
n∑

i,j=1

〈�(eij )ηj , ηi〉 : η1, . . . , ηn ∈ Cn and
n∑

i=1

(ηi)i = 1

}
.

(18)

3. If conditions (16) and (17) hold, there exist η1, . . . , ηn ∈ Cn such that

n∑
j=1

�(eij )ηj = ei, i = 1, . . . , n (19)

where {e1, . . . , en} is the canonical basis of Cn. For any such vectors,

I (�)−1 =
n∑

i, j=1

〈�(eij )ηj , ηi〉. (20)

4. If � is completely positive then it is complementable and I (�) � 0. Moreover,
I (�) > 0 if and only if there exist η1, . . . , ηn ∈ Cn such that Eq. (19) holds. For
any such vectors, Eq. (20) holds. Also Eq. (18) is true in this case.
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Proof. From Theorem 6.5 we conclude that the map � is complementable if and
only if the matrix A� = (�(eij ))ij is Pv complementable. It is easy to see that in fact
I (�) = n · IPv (A�). Thus we can apply Corollary 6.1 to the matrix A� ∈ Mn2(C)

and the projection Pv . Note that Eq. (16) holds if and only if A� is Pv-positive
and condition (13) is equivalent to condition (17). Indeed, if η = (η1, . . . , ηn) ∈
Cn2

with ηi ∈ Cn (i = 1, . . . , n), then 〈η, v〉 = ∑n
i=1(ηi)i and 〈A�η, η〉 = ∑n

i, j=1〈�(eij )ηj , ηi〉.
Note that condition (19) is equivalent to the fact that v ∈ R(A�), so this condition

and Eq. (18) follow from Eq. (14). Similarly, I (�) = n · IPv (A�) = 〈v,A†
�v〉.

Let ζ = (ζ1, . . . , ζn) = A
†
�v. If η = (η1, . . . , ηn) ∈ Cn2

satisfy condition (19)
(i.e., A�η = v), then PR(A�)η = ζ . Therefore

n∑
i, j=1

〈�(eij )ηj , ηi〉 = 〈A�η, η〉 = 〈A�ζ, ζ 〉 = 〈v,A†
�v〉 = I (�)−1.

Suppose now that � is completely positive. It is clear that � is complementable.
By Corollary 2.3, it follows that I (�) = n · IPv (A�) > 0 if and only if v ∈ R(A�),
since R(A�) is closed. This is equivalent to condition (19), and using Corollary 2.3,
we can also deduce Eqs. (20) and (18) in this case. �

Example 6.10. Consider the map T : Mn(C) → Mn(C) given by

T (A) = 1

n
T r(A)In = 1

n

n∑
i,j=i

e∗ijAeij ,

where T r(A) = ∑
Aii is the usual trace. Then T is completely positive; morever it

is a conditional expectation. Note that the matrix

AT = (T (eij ))ij = 1

n
In2 .

Then I (T ) > 0, since AT (n ei) = ei , 1 � i � n, and T satisfies condition (19).
Therefore, since T (eij ) = 0 if i /= j and T (eii) = 1

n
In, using Eq. (20),

I (T )−1 =
n∑

i=1

〈T (eii)nei, nei〉 =
n∑

i=1

n = n2.

This result is actually known in index theory of condidional expectations (using that
T (n)(Pv) = n−1AT = n−2In2 , see [12]). Note that the number

J (T )= max{λ ∈ R : T − λ Id is positive (not completely)}
= n−1 /= n−2 = I (T ).

Indeed, it is easy to see that A � 0 implies that T r(A) � ρ(A) = ‖A‖, so that

T (A) = 1

n
T r(A)In � 1

n
A.

Taking A = e11 we get T (A)� λA if λ > 1
n

; so that J (T ) = n−1.
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Remark 6.11. Let � : Mn(C) → Mn(C) be a selfadjoint map. The formulation
of Theorem 6.9 intends to characterize complementability and to compute I (�) in
terms of � itself instead of doing it in terms of the “inflated” matrix A�. Another way
would be to recall the identity I (�) = n · IPv (A�) and use all the previous results of
the paper. For example, let U1, . . . , Um ∈ Mn(C), and suppose that � is given by

�(A) =
m∑

k=1

U∗
k AUk, A ∈ Mn(C),

a prototypical completely positive map (see [3]). Denote by Vk ∈ Mn2(C) the block
diagonal matrix with copies of Uk in its diagonal. Denote by v = (e1, . . . , en) ∈
Cn2

and E = (eij )ij = vv∗. Note that ‖Vkv‖ = ‖Uk‖2 and V ∗
k EVk = (Vkv)(Vkv)

∗.
Therefore

A� = (�(eij ))ij =
m∑

k=1

V ∗
k EVk =

m∑
k=1

‖Uk‖2
2PVkv.

Thus I (�) can be computed using this expression and Corollaries 6.1 and 2.3.

References

[1] W.N. Anderson, G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975) 60–71.
[2] J.A. Antezana, Shorted de Operadores, grade thesis UNLP, 2002.
[3] M.D. Choi, Completely positive maps on complex matrices, Linear Algebra Appl. 10 (1975) 285–

292.
[4] G. Corach, A. Maestripieri, D. Stojanoff, Schur complements and oblique projections, Acta Sci.

Math. (Szeged) 67 (2001) 439–459.
[5] G. Corach, A. Maestripieri, D. Stojanoff, Generalized Schur complements and oblique projections,

Linear Algebra Appl. 341 (2002) 259–272.
[6] G. Corach, A. Maestripieri, D. Stojanoff , Oblique projections and abstract splines, J. Approx. The-

ory 117 (2002) 189–206.
[7] G. Corach, D. Stojanoff, Index of Hadamard multiplication by positive matrix II, Linear Algebra

Appl. 332–334 (2001) 504–517.
[8] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space,

Proc. Amer. Math. Soc. 17 (1966) 413–416.
[9] M. Fiedler, T.L. Markham, An observation on the Hadamard product of Hermitian matrices, Linear

Algebra Appl. 215 (1995) 179–182.
[10] P.A. Fillmore, J.P. Williams, On operator ranges, Adv. Math. 7 (1971) 254–281.
[11] C.K. Li, R. Mathias, Extrernal characterizations of the Schur complement and resulting inequalities,

SIAM Rev. 42 (2) (2000) 233–246.
[12] R. Longo, Index of subfactors and statistics of quantum fields, I, Comm. Math. Phys. 126 (1989)

217–247.
[13] V.I. Paulsen, S.C. Power, R.R. Smith, Schur products and matrix completions, J. Funct. Anal. 85

(1989) 151–178.
[14] E.L. Pekarev, Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged) 56 (1992)

147–163.
[15] R. Reams, Hadamard inverses, squares roots and products of almost semidefinite matrices, Linear

Algebra Appl. 288 (1999) 35–43.



318 P. Massey, D. Stojanoff / Linear Algebra and its Applications 393 (2004) 299–318

[16] D. Stojanoff, Index of Hadamard multiplication by positive matrices, Linear Algebra Appl. 290
(1999) 95–108.

[17] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Verän-
derlichen, J. Reine Angew. Math. 140 (1911) 1–28.


