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Singularity resolution in gauged supergravity
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Abstract

We obtain a unified picture for the conifold singularity resolution. We propose that gauged supergravity, through a novel
prescription for the twisting, provides an appropriate framework to smooth out singularities in the context of gravity duals of
supersymmetric gauge theories.
 2003 Elsevier Science B.V.

1. Introduction

String theory compactifications in a Calabi–Yau threefold have been the focus of a countless number of papers
due to the fact that they provide effective four-dimensional vacua with N = 1 supersymmetry. Particular emphasis
has been given to the study of singularities on these manifolds—in particular, conical singularities—as long as non-
trivial phenomena take place on them such as gauge symmetry enhancement or the appearance of new massless
particles. The archetype of these is the well-known conifold. It is a complex three-manifold which is a cone over the
homogeneous space T 1,1 = SU(2)×SU(2)

U(1) . The conical singularity can be resolved in two different ways according
to whether an S2 or an S3 is blown up at the singular point. The former is known as the resolved (or Kähler
deformed) conifold, while the latter is the (complex) deformed conifold. Both regular manifolds depend on a
single parameter (namely, the resolution a and the deformation µ), are non-compact and asymptotically behave as
the singular conifold. That is, the three solutions display the same UV behavior for the associated gauge theories.
Supersymmetry and matching holonomy conditions in the context of string theory [1] ensure that there must exist
manifolds with G2 holonomy metrics whose Gromov–Hausdorff limits are precisely the Ricci flat Kähler metrics
on the resolved and deformed conifolds. These were explicitly found in [2]. It was shown afterwards that these G2
manifolds arise as solutions of the same system of first-order equations, this providing a nicely unified picture of
the resolved and deformed conifolds from the perspective of M-theory [3].
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In a different approach based on lower-dimensional gauged supergravity, it was recently shown that the resolved
conifold comes out when studying the gravity dual of D6-branes wrapping an holomorphic S2 in a K3 mani-
fold [4]. The low-energy dynamics is governed, when the size of the cycle is taken to zero, by a five-dimensional
supersymmetric gauge theory with eight supercharges. If the manifold is large enough and smooth, the dual
description is given in terms of a purely gravitational configuration of eleven-dimensional supergravity which is
the direct product of Minkowski five-dimensional spacetime and the resolved conifold. The general solution to this
system was later shown [5] to be given by the generalized resolved conifold [6–9]. This is a one-parameter (say, b)
generalization of the resolved conifold. There is an analogous extension metric both for the deformed conifold—
though it is not regular—and the singular conifold. We will call the latter regularized conifold, following [9],
because b smoothens the curvature singularity and the metric is regular upon imposing a Z2 identification of the
U(1) fiber. It is an ALE space that asymptotically approaches T 1,1/Z2.

Lower-dimensional gauged supergravities provide an explicit arena to impose the twisting conditions required
to wrap a D-brane in a supersymmetric cycle [10,11]. (See [12] for a recent review.) Loosely speaking, in the
conventional twist, the gauge connection has to be identified with the spin connection. This notion of the twist can
be generalized, as shown in [13], in a way that involves non-trivially the scalar fields that arise in lower-dimensional
gauged supergravity from the external components of the metric. The solutions obtained by these means usually
correspond to the near horizon limit of wrapped D-branes [14]. However, in a recent paper [15], we have shown
that the twist can be further generalized so that it encompasses much more general solutions either corresponding
to wrapped D-branes or to special holonomy manifolds with certain RR fluxes turned on. On the one hand, the
new twisting condition can be thought of as a non-trivial embedding of the world-volume in the lower-dimensional
spacetime. More interestingly, as we will show in this Letter through an archetypical example, it can also be
understood as a singularity resolution mechanism:1 the ordinary twisting imposes the value of the gauge fields
at infinity, while the lower-dimensional gauged supergravity governs the non-trivial dynamics in the bulk. This
mechanism resembles that used in the Maldacena–Núñez solution [16], where the singularity is solved by turning
on a non-Abelian gauge field that asymptotically approaches the Abelian one that twists the gauge theory.

In this Letter we present a unified scenario for conifold singularity resolutions. In a sense, we are providing
the unified picture of the resolved and deformed conifolds from the perspective of M-theory advocated in [3]. The
main difference being that we deal with conifolds in eleven dimensions instead of G2 manifolds. A unique system
encompass the generalized resolution and deformation of the conifold singularity, each of them emerging as the
only two possible solutions of an algebraic constraint. Notice the difference with the G2 case studied in [15], where
the algebraic constraints are involved enough so as to admit several well distinct solutions. Here there are only two.
Furthermore, we show that it is possible to impose at the same time both solutions of the algebraic constraint, this
leading to the regularized conifold metric, which describes a complex line bundle over S2 × S2.

2. D6-branes wrapped on S2 revisited

The Lagrangian describing the dynamics of the sector of Salam and Sezgin’s eight-dimensional gauged
supergravity [17] on which we would like to focus (entirely coming from the eleven-dimensional metric), reads

(2.1)e−1L = 1
4
R − 1

4
e2φ(F i

µν

)2 − 1
4
(Pµij )

2 − 1
2
(∂µφ)

2 − 1
32
e−2φ(e−8λ − 4e−2λ),

1 Notice that, in a sense, it is natural to expect that lower-dimensional gauged supergravity degrees of freedom cure singularities. For
example, even when using the standard twisting conditions, the resolution of the conifold singularity has been shown to be driven by turning on
a scalar field in gauged supergravity [4].
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where φ is the dilaton, λ is a scalar in the coset SL(3,R)/SO(3),Ai is an SU(2) gauge potential, e is the determinant
of the vierbein ea , F i is the Yang–Mills field strength and Pij is a symmetric and traceless 1-form defined by

(2.2)Pij +Qij =
 dλ −A3 A2e−3λ

A3 dλ −A1e−3λ

−A2e3λ A1e3λ −2dλ

 ,

Qij being the antisymmetric counterpart. The supersymmetry transformations for the fermions are given by

(2.3)δψγ =Dγ ε + 1
24
eφF i

µν Γ̂i
(
Γ µν
γ − 10δµγ Γ

ν
)
ε − 1

288
e−φεijk Γ̂ ijkΓγ T ε,

(2.4)δχi = 1
2

(
Pµij + 2

3
δij ∂µφ

)
Γ̂ jΓ µε − 1

4
eφFµνiΓ

µνε − 1
8
e−φ

(
Tij − 1

2
δij T

)
εjklΓ̂klε,

where Tij = diag(e2λ, e2λ, e−4λ), T = δij Tij = 2e2λ + e−4λ, and the covariant derivative is

(2.5)Dε =
(
∂ + 1

4
ωabΓab + 1

4
Qij Γ̂

ij

)
ε.

We shall use the following representation for the Dirac matrices:

(2.6)Γ µ = γ µ ⊗ I, Γ̂ i = γ9 ⊗ τ i,

where γ µ are eight-dimensional Dirac matrices, γ9 = iγ 0γ 1 · · ·γ 7 (γ 2
9 = 1), τ i are Pauli matrices and Γ̂ i are the

Dirac matrices along the SU(2) group manifold, whereas Γ7 ≡ Γr corresponds to the radial direction.
We shall consider the following ansatz for the eight-dimensional metric

(2.7)ds2
8 = e2f dx2

1,4 + e2h dΩ2
2 + dr2,

where dΩ2
2 = dθ2 + sin2 θ dϕ2 is the metric of the unit S2. The ansatz for the gauge field is better presented in

terms of the triplet of Maurer–Cartan 1-forms on S2

(2.8)σ 1 = dθ, σ 2 = sin θ dϕ, σ 3 = cosθ dϕ,

that obey the conditions dσ i = − 1
2εijkσ

j ∧ σj . It is:

(2.9)A1 = g(r)σ 1, A2 = g(r)σ 2, A3 = σ 3.

Notice that the twisting in [4] corresponds to g(r) = 0. We will check at the end that g(r) → 0 asymptotically
so, from the point of view of the dual gauge theory, the twisting is not modified. The field strength, F i =
dAi + 1

2εijkA
j ∧Ak , reads:

(2.10)F 1 = g′ dr ∧ σ 1, F 2 = g′ dr ∧ σ 2, F 3 = (
g2 − 1

)
σ 1 ∧ σ 2.

When uplifted to eleven dimensions, the unwrapped part of the metric should correspond to flat five-dimensional
Minkowski spacetime. This condition determines the relation f = φ/3 that we impose from now on. Actually, it
is not difficult to write down the form of the eleven-dimensional metric for the ansatz we are adopting. Let wi for
i = 1,2,3 be a set of SU(2) left invariant one forms of the external three sphere satisfying dwi = 1

2εijkw
j ∧wk .

Then, the uplifted eleven-dimensional metric is:

ds2
11 = dx2

1,4 + e2h− 2φ
3 dΩ2

2 + e− 2φ
3 dr2 + 4e

4φ
3 +2λ(w1 + gσ 1)2

(2.11)+ 4e
4φ
3 +2λ(w2 + gσ 2)2 + 4e

4φ
3 −4λ(w3 + σ 3)2.
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In order to seek for supersymmetric solutions to the system, we start by subjecting the spinor to the following
angular projection

(2.12)Γθϕε = −Γ̂12ε,

which is imposed by the Kähler structure of the ambient K3 manifold in which the two-cycle lives. The equations
δχ1 = δχ2 = 0 give:

(2.13)
(
λ′ + 2

3
φ′
)
ε = ge−h sinh 3λΓ̂1ΓθΓr Γ̂123ε − eφ+λ−hg′Γ̂1Γθε − 1

4
e−φ−4λΓr Γ̂123ε,

while δχ3 = 0 reads:

(2.14)

(
2λ′ − 2

3
φ′
)
ε =

[
eφ−2λ−2h(g2 − 1

)− 1
4
e−φ(e−4λ − 2e2λ)]ΓrΓ̂123ε + 2ge−h sinh 3λΓ̂1ΓθΓrΓ̂123ε.

One can combine these two equations to eliminate λ′:

(2.15)φ′ε + eφ+λ−hg′Γ̂1Γθε +
[

1
2
eφ−2λ−2h(g2 − 1

)+ 1
8
e−φ(e−4λ + 2e2λ)]ΓrΓ̂123ε = 0.

From this last equation, it is clear that the supersymmetric parameter must satisfy a projection of the sort:

(2.16)ΓrΓ̂123ε = −(β + β̃Γ̂1Γθ
)
ε,

where β and β̃ are (functions of the radial coordinate) proportional to the first derivatives of φ′ and g′:

(2.17)φ′ =
[

1
2
eφ−2λ−2h(g2 − 1

)+ 1
8
e−φ(e−4λ + 2e2λ)]β,

(2.18)eφ+λ−hg′ =
[

1
2
eφ−2λ−2h(g2 − 1

)+ 1
8
e−φ(e−4λ + 2e2λ)]β̃.

This radial projection provides the generalized twist introduced in [15]. It encodes a non-trivial fibering of the two-
sphere with the external three-sphere as will become clear below. Since (ΓrΓ̂123)

2ε = ε and {ΓrΓ̂123, Γ̂1Γθ } = 0,
one must have β2 + β̃2 = 1. Thus, we can represent β and β̃ as

(2.19)β = cosα, β̃ = sinα.

Also, it is clear that both independent projections (2.12) and (2.16) leave unbroken eight supercharges as expected.
Inserting the radial projection (2.16), as well as (2.17), in (2.14), we get an equation determining λ′:

(2.20)λ′ = ge−h sinh 3λβ̃ −
[

1
3
eφ−2λ−2h(g2 − 1

)− 1
6
e−φ(e−4λ − e2λ)]β,

together with an algebraic constraint:

(2.21)ge−h sinh 3λβ +
[

1
2
eφ−2λ−2h(g2 − 1

)− 1
8
e−φ(e−4λ − 2e2λ)]β̃ = 0.

Let us now consider the equations obtained from the supersymmetric variation of the gravitino. From the
components along the unwrapped directions one does not get anything new, while from the angular components
we get:

h′ε = −ge−h cosh 3λΓ̂1ΓθΓrΓ̂123ε + 2
3
eφ+λ−hg′Γ̂1Γθε

(2.22)− 1
6

[
−5eφ−2λ−2h(g2 − 1

)+ 1
4
e−φ(2e2λ + e−4λ)]ΓrΓ̂123ε.
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By using the projection (2.16) we obtain an equation for h′:

(2.23)h′ = −ge−h cosh 3λβ̃ + 1
6

[
−5eφ−2λ−2h(g2 − 1

)+ 1
4
e−φ(2e2λ + e−4λ)]β,

together with a second algebraic constraint:

(2.24)−ge−h cosh 3λβ +
[

1
2
eφ−2λ−2h(g2 − 1

)− 1
8
e−φ(2e2λ + e−4λ)]β̃ = 0.

Finally, from the radial component of the gravitino we get the functional dependence of the supersymmetric
parameter ε:

(2.25)∂rε = 5
6
eφ+λ−hg′Γ̂1Γθε − 1

12

[
eφ−2λ−2h(g2 − 1

)+ 1
4
(
2e2λ + e−4λ)]ΓrΓ̂123ε.

The projection (2.16) gives the generalized twisting conditions first studied in [15]. Its interpretation follows
from a similar reasoning as the one used in that reference: using the trigonometric parametrization (2.19), the
generalized projection can be written as:

(2.26)ΓrΓ̂123ε = −eαΓ̂1Γθ ε,

which can be solved as:

(2.27)ε = e− 1
2αΓ̂1Γθ ε0, ΓrΓ̂123ε0 = −ε0.

We can determine ε by plugging (2.27) into the equation for the radial component of the gravitino (2.25).
Using (2.26), we get two equations. The first one gives the characteristic radial dependence of ε0 in terms of
the eight-dimensional dilaton, namely:

(2.28)∂rε0 = φ′

6
ε0 ⇒ ε0 = e

φ
6 η,

with η being a constant spinor. The other equation determines the radial dependence of the phase α:

(2.29)α′ = −2eφ+λ−hg′.

Thus, the spinor ε can be written as:

(2.30)ε = e
φ
6 e− 1

2αΓ̂1Γθ η, Γr Γ̂123η= −η, ΓθϕΓ̂12η = η.

The meaning of the phase α can be better understood by using the following Γ -matrices identity Γx0···x4ΓθϕΓr ×
Γ̂123 = −1, so that

(2.31)Γx0···x4
(
cosαΓθϕ − sinαΓθ Γ̂2

)
ε = ε,

which shows that the D6-brane is wrapping a two-cycle which is non-trivially embedded in the K3 manifold as
seen from the uplifted perspective that is implied in (2.31). Indeed, the case α = 0 corresponds to the D6-brane
wrapping a two-sphere that is fully contained in the eight-dimensional spacetime where supergravity lives, studied
in [4].



202 J.D. Edelstein et al. / Physics Letters B 554 (2003) 197–206

3. Solution of the algebraic constraints

In the previous section we derived two algebraic constraints (2.21) and (2.24) that the functions of our ansatz
must obey. Let us presently solve them. By adding and subtracting the two equations, we get:

(3.1)tanα ≡ β̃

β
= −2geφ+λ−h = ge−3λ−h

eφ−2λ−2h(g2 − 1)− 1
4e

−φ−4λ
.

Whereas the first part of this equation allows us to write α in terms of the remaining functions, the last equality
provides an algebraic constraint that restricts our ansatz. It is not hard to arrive at the following simple equation:

(3.2)g

[
g2 − 1 + 1

4
e−2φ−2λ+2h

]
= 0.

There are obviously two solutions. The first one is clearly g = 0, which corresponds to β̃ = 0, β = 1, or α = 0.
One can check that this is a consistent truncation of the system of equations that actually reduce to the case studied
in [4], whose integral is the generalized resolved conifold (see also [5]). Indeed, the resulting eleven-dimensional
metric can be written as ds2

11 = dx2
1,4 + ds2

6 , where the six-dimensional metric ds2
6 is:

ds2
6 = [

κ(ρ)
]−1

dρ2 + ρ2

9
κ(ρ)

(
dψ +

∑
a=1,2

cosθa dφa

)2

(3.3)+ 1
6
(
ρ2 + 6a2)(dθ2

1 + sin2 θ1 dφ
2
1
)+ 1

6
ρ2(dθ2

2 + sin2 θ2 dφ
2
2
)
,

with κ(ρ) being:

(3.4)κ(ρ)= ρ6 + 9a2ρ4 − b6

ρ6 + 6a2ρ4 .

In Eq. (3.3), ρ is a new radial variable, θ1 ≡ θ , φ1 ≡ ϕ and (θ2, φ2,ψ) parametrize the wi ’s. The constants a and
b provide the generalized resolution of the conifold singularity [7,9]. In the context of gauged supergravity, even
when this solution corresponds to the conventional twist, a and b are non-zero when certain scalar fields are excited
[4,5]. The case a = 0, b �= 0 corresponds to the above mentioned regularized conifold [9].

The other solution to Eq. (3.2) gives a non-trivial relation between g and the remaining functions of the ansatz,
namely:

(3.5)g2 = 1 − 1
4
e−2φ−2λ+2h.

It is not difficult to find the values of β and β̃ for this solution of the constraint:

(3.6)β = 1
2
e−φ−λ+h, β̃ = −g.

Notice that they satisfy β2 + β̃2 = 1 as a consequence of the relation (3.5). Moreover, one can verify that (3.5) is
consistent with the first-order equations. Indeed, by differentiating Eq. (3.5) and using the first-order equations for
φ, λ and h (Eqs. (2.17), (2.20) and (2.23)), we arrive precisely at the first-order equation for g written in (2.18). It
can be also checked that Eq. (2.29) is identically satisfied for this solution of the constraint. Thus, one can eliminate
g from the first-order equations arriving at the following system of equations for φ, λ and h:
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φ′ = 1
8
e−2φ+λ+h,

λ′ = 1
24
e−2φ+λ+h − 1

2
e3λ−h + 1

2
e−3λ−h,

(3.7)h′ = − 1
12
e−2φ+λ+h + 1

2
e3λ−h + 1

2
e−3λ−h.

4. The generalized deformed conifold

In order to integrate the system (3.7), let us define the function z = φ + λ− h and a new radial coordinate τ ,
dr = 2eφ−2λ dτ . Then, if the dot denotes the derivative with respect to τ , it follows from (3.7) that z satisfies the
equation:

(4.1)ż= 1
2
e−z − 2ez.

This equation can be immediately integrated:

(4.2)ez = 1
2

cosh(τ + τ0)

sinh(τ + τ0)
,

where τ0 is an integration constant, which from now on we will absorb in a redefinition of the origin of τ . We can
obtain φ by noticing that it satisfies the equation:

(4.3)φ̇ = 1
4
e−z.

Since we know z(τ ) explicitly, we can obtain immediately φ(τ), namely:

(4.4)eφ = µ̂(cosh τ )
1
2 ,

where µ̂ is a constant of integration. Finally, h satisfies the following differential equation:

(4.5)ḣ= −1
6
e−z + ez + e6φ−5z−6h.

If we define, y = e6h and use the expressions of z and φ as functions of τ , we get:

(4.6)ẏ = cosh2 τ + 2
cosh τ sinh τ

y + 192µ̂6 (sinh τ )5

(cosh τ )2
,

which is also easily integrated by the method of variation of constants. In order to express the corresponding result,
let us define the function:

(4.7)K(τ)≡ (sinh 2τ − 2τ +C)
1
3

2
1
3 sinh τ

,

where C is a new constant of integration. Then, h is given by:

(4.8)eh = 3
1
6 2

5
6 µ̂

sinh τ

(coshτ )
1
3

[
K(τ)

] 1
2 .

As we know z, h and φ, we can obtain λ. The result is:

(4.9)eλ =
(

3
2

) 1
6
(coshτ )

1
6
[
K(τ)

] 1
2 .
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Finally, we can get g from the solution of the constraint (Eq. (3.5)), namely:

(4.10)g = 1
cosh τ

.

It follows immediately from (4.10) that g → 0 as τ → ∞, as claimed above. Moreover, by using the explicit form
of this solution we can find the value of the phase α:

(4.11)cosα = sinh τ
cosh τ

, sinα = − 1
coshτ

.

Notice that α → −π/2 when τ → 0, whereas α → 0 for τ → ∞. In order to express neatly the form of the
corresponding eleven-dimensional metric, let us define the following set of one-forms:

g1 = 1√
2

[
σ 2 −w2], g2 = 1√

2

[
σ 1 −w1], g3 = 1√

2

[
σ 2 +w2],

(4.12)g4 = 1√
2

[
σ 1 +w1], g5 = 1√

2

[
σ 3 +w3],

and a new constant µ, related to µ̂ as µ = 2
11
4 3

1
4 µ̂. Then, by using the uplifting formula (2.11), the resulting

eleven-dimensional metric ds2
11 can again be written as ds2

11 = dx2
1,4 + ds2

6 , where now the six-dimensional metric
is:

(4.13)

ds2
6 = 1

2
µ

4
3K(τ)

[
1

3K(τ)3
(
dτ 2 + (

g5)2)+ cosh2
(
τ

2

)((
g3)2 + (

g4)2)+ sinh2
(
τ

2

)((
g1)2 + (

g2)2)],
which, for C = 0 is nothing but the standard metric of the deformed conifold, with µ being the corresponding
deformation parameter.

The metric (4.13) for C �= 0 was studied in Ref. [9], where it was shown to display a curvature singularity when
µ �= 0. On the contrary, for µ= 0 and C �= 0 this metric is regular, after a Z2 identification of the U(1) fiber, and
reduces to the one written in (3.3) for a = 0 and b �= 0 (the regularized conifold), the parameter b being related
to the constant C [9]. It is not difficult to reobtain this result within our formalism. Notice, first of all, that both
solutions of the constraint (3.2) are not incompatible, i.e., one can take g = 0 in Eq. (3.5) if z = φ + λ − h is
fixed to the particular constant value ez = 1/2. Notice that this is consistent with Eq. (4.1). Actually, this value
of z can be obtained by taking τ0 → ∞ in the general solution (4.2). Moreover, the differential equation (4.3) for
φ in this g = 0 case reduces to φ̇ = 1/2, which can be immediately integrated to give eφ = Aeτ/2, with A being
a non-zero constant. Again, this solution can be obtained from the general expression (4.4) by first reintroducing

Fig. 1. Representation of the moduli space of generalized resolutions of the conifold singularity. The two regions depicted correspond to the
two solutions of our constraint. The generalized deformed conifold metric is singular. A point on each of the three lines represents, from left to
right, the resolved, regularized and deformed conifold. They meet at a single point, the singular conifold.
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the τ0 parameter (i.e., by changing τ → τ + τ0) and then by taking τ0 → ∞ and µ̂ → 0 in such a way that
µ̂eτ0/2 = √

2A. Notice that this corresponds to taking µ = 0, as claimed. It follows from this discussion that the
regularized conifold is a boundary in the moduli space separating the regions that correspond to the generalized
deformed and resolved conifolds, as depicted in Fig. 1. Notice that we cannot continuously connect the deformed
and resolved conifolds through a supersymmetric trajectory of non-singular metrics.

5. Summary and discussion

In this Letter, we have shown that lower-dimensional gauged supergravities are an appropriate framework to
resolve singularities in the study of gravity duals of supersymmetric gauge theories arising in D-branes that wrap
a supersymmetric cycle. The key ingredient is provided by the novel twist prescription recently introduced in [15].
The value of the gauge fields at infinity implied by the conventional twisting is preserved, the lower-dimensional
gauged supergravity governing the non-trivial dynamics in the bulk. The singularity resolution takes place by
switching on the appropriate fields of the gauged supergravity which correspond to the generalized twisting.

We have presented a unified scenario for conifold singularity resolutions from the perspective of M-theory: a
single system encompassing both the generalized resolution and deformation of the conifold singularity, each of
them emerging as the only two possible solutions of an algebraic constraint. It might be possible to relate this
constraint to those appearing in the study of G2 manifolds carried out in [15] by a reduction mechanism of the sort
discussed in [18].

It would be interesting to understand the meaning of b on the dual five-dimensional gauge theory. In the
regularized conifold it plays the rôle of a mass scale: If a stack of D3-branes and fractional branes is at the tip
of the conifold [19], b �= 0 breaks the otherwise conformal invariance associated to the AdS factor for small ρ. See,
for example [20].

The mechanism presented in this Letter must be useful in studying other singularity resolutions. It would be
also interesting to understand the appearance of cascading solutions with chiral symmetry breaking occurring in
the IR—through the resolution of naked singularities—[19], in the framework of gauged supergravity. We hope to
report on some of these issues in a near future.
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