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ABSTRACT

Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star–white dwarf (NS–WD)
binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive
to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic,
tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries
of this type. Currently, two eccentric NS–WD binaries are known in the galactic field, PSR J1141−6545 and
PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations.
However, population synthesis studies predict the existence of a significant Galactic population of such systems.
Though small in most of these systems, we find that tidally induced periastron precession becomes important when
tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing
periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some
cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To
aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function
that relates the WD radius and periastron precession constant to the WD mass.
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1. INTRODUCTION

Future, space-based gravitational-wave (GW) observations
will target Galactic binaries in tight orbits as primary sources
of continuous emission (e.g., LISA; Danzmann & The LISA
Study Team 1996; Hughes 2006, and eLISA/NGO, Amaro-
Seoane et al. 2012). Among those expected to be detected at
relatively high signal-to-noise ratio are some eccentric binaries,
whose periastron precession will leave an imprint on the GW
signal (Willems et al. 2008). In this paper our focus lies on
the population of eccentric neutron star–white dwarf binaries
(NS–WD). Two such systems are currently observed as radio
pulsars orbiting WDs.

Periastron precession in eccentric binaries is caused by a
combination of tidal, rotational, and general relativistic (GR)
effects. Tides and rotation produce distortions in the binary com-
ponents, which perturb the stellar gravitational potential from
its pure Newtonian form, and the orbit from its Keplerian form,
driving precession. Both contributions depend on the internal
mass distributions (through the so-called periastron precession
constant k2), masses, and radii of the components, along with
the orbital period and eccentricity. The GR contribution, on the
other hand, depends solely on the total mass of the system and its
orbital elements. Periastron precession is detectable through its
imprint on the GWs emitted by these sources. In the absence of
periastron precession, the GW radiation is emitted at multiples,
n, of the orbital frequency, νorb. Periastron precession causes
each of these harmonics to split into triplets with frequencies
nνorb ± γ̇ /π and nνorb, where γ̇ is the periastron precession rate
(e.g., Willems et al. 2008).

Seto (2001) suggests that, if the orbital elements are known,
one can use γ̇ to extract the total mass of low frequency eccen-
tric binaries, assuming that GR effects dominate the periastron
precession rate. However, Willems et al. (2008) use polytropic
models to investigate periastron precession in eccentric double
white dwarf (DWD) binaries and demonstrate that the tidal and
rotational distortions of the WD components can significantly
affect such a precession in short-period binaries. This implies
that ignoring the tidal and rotational contributions, when inter-
preting periastron precession measurements from these binaries,
could lead to an overestimate of the total system mass extracted.
Furthermore, they anticipate that accounting for all three con-
tributions would entail degeneracies, given the dependency of
γ̇ on the internal structure (k2) and radius of both components.
Valsecchi et al. (2011) use detailed WD models to study peri-
astron precession in eccentric DWDs and demonstrate that the
components’ masses could be overestimated by orders of mag-
nitude if tides are not properly taken into account. They also
show that a correlation exists between k2R

5 and the WD mass
that allows the use of the periastron precession rate to place
constraints on some combination of the components’ masses3

at any orbital frequency.
Unlike DWDs, where both components contribute to peri-

astron precession, NS–WD binaries are a much cleaner probe

3 If GR is the dominant mechanism driving periastron precession, the total
system mass can be determined. Instead, if tides are the dominant mechanism,
constraints can be placed on (M1 + M2)−5/3[k1R

5
1(M2/M1) + k2R

5
2(M1/M2)],

where the term kiR
5
i for each WD component (1, 2) is a function of its mass

according to Equation (7) in Valsecchi et al. (2011).
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of WD physics. In such systems, the periastron precession rate
carries the sole signature of the WD because the tidal and rota-
tional distortions of the NS contribute negligibly. Furthermore,
the theoretically predicted formation rate of galactic eccentric
NS–WD binaries is between 10–10,000 times the expected for-
mation rates of eccentric DWDs (e.g., Kalogera et al. 2004,
and references therein; Willems et al. 2007). Additionally, be-
cause pulsar-timing measurements could yield an independent
measurement of the components’ masses, these systems may be
used to test our predictions and models from analyzing perias-
tron precession rates.

Two eccentric NS–WD binaries, PSR J1141−6545 (Kaspi
et al. 2000) and PSR B2303+46 (van Kerkwijk & Kulkarni
1999), have been discovered in the Milky Way. These binaries
have lent support to the existence of a non-traditional formation
mechanism for NS–WD binaries (Portgies Zwart & Yungelson
1999; Tauris & Sennels 2000; Nelemans et al. 2001; Brown et al.
2001; Davies et al. 2002). The traditional mechanism leads to
circular binaries—the more massive primary evolves faster to
become an NS, followed by a mass transfer phase from the
secondary (WD progenitor), which circularizes any eccentricity
introduced by the supernova mechanism that led to the formation
of the NS. However, if the progenitors are both massive enough
to evolve into massive WDs, the following scenario may unfold.
The primary star evolves into a WD after a phase of mass
transfer to the secondary. If the secondary acquires enough mass
to evolve into an NS, a common envelope forms. During the
common envelope phase, the NS progenitor loses its envelope,
leaving behind a naked He core in a tight orbit with the WD
companion. Subsequently, asymmetries in the NS formation
process kick the resulting NS–WD into an eccentric orbit.
Apart from this theory, several other evolutionary mechanisms
involving multiple mass transfer and common envelope phases
have also been proposed (Church et al. (2006)). However, all
such mechanisms require an NS-forming supernova explosion
as the final step to impart eccentricity to the orbit.

Following Valsecchi et al. (2011), our goal is to investigate
the importance of WD tides in driving periastron precession in
eccentric NS–WD binaries in order to facilitate an accurate mass
interpretation from periastron precession rate measurements.
In what follows we also take into account the contribution
to periastron precession due to rotation. However, similar to
Valsecchi et al. (2011), we find that periastron precession is
primarily tidally induced at frequencies were GR is no longer
important.

The plan of the paper is as follows. In Section 2 we outline the
equations governing the tidal, rotational, and GR contributions
to periastron precession. In Section 3 we analyze the importance
of tides in driving periastron precession in the observed eccentric
NS–WD binary systems. In Section 4 we investigate periastron
precession in the population of the eccentric NS–WD binaries
in the Milky Way as predicted by population synthesis studies
to understand the role of tides. We conclude in Section 5.

2. PHYSICAL PROCESSES DRIVING
PERIASTRON PRECESSION

We consider an eccentric NS–WD binary system containing
an NS of mass MNS, and a WD of mass MWD, radius RWD, and
uniformly rotating with angular velocity ΩWD. We take the NS
to be a point mass. We assume that the axis of rotation of the WD
is perpendicular to the orbital plane. Let P be the period of the
orbit, a the semi-major axis, and e the orbital eccentricity. For
simplicity, we take tides to be quasi-static (the regime where the

orbital and rotational periods are long compared to the free
oscillation modes of the stars; Cowling 1938; Sterne 1939;
Smeyers & Willems 2001), but we note that investigations
targeting periastron precession in non-degenerate stars show
that the effects of dynamic tides become more significant as
the orbital and/or rotational period, and eccentricity increase
(Smeyers & Willems 2001; Willems & Claret 2002, 2005). We
also note that whereas Willems et al. (2010) demonstrate that GR
dominates over quasi-static tides in driving the evolution of the
orbital separation and eccentricity in NS–WD binaries, recent
investigations targeting dynamic tides in binaries hosting a WD
and another compact object find that they can significantly speed
up the orbital and spin evolution (Burkart et al. 2013; Fuller &
Lai 2011). The contribution to the periastron precession rate, γ̇ ,
due to quadrupole tides raised in the WD is (Sterne 1939)

γ̇Tid,WD = 30π

P

µ
RWD

a

¶5
MNS

MWD

1 + 3
2e2 + 1

8e4

(1 − e2)5
k2. (1)

Here, k2, also known as the quadrupolar periastron precession
constant, is a measure of the WD’s central concentration and is
given by

2k2 = ξ ∗
WD,T (RWD)

RWD
− 1. (2)

Here ξ ∗
WD,T = ξWD,T /(²T c200), where ξWD,T denotes the

radial component of the tidal displacement of a mass element
of the WD and c200 is the Fourier coefficient associated with
the l = 2, m = 0, and k = 0 term in the spherical harmonic
expansion of the tide-generating potential (Polfliet & Smeyers
1990). The values of k2 range from 0 for a point mass to 0.74 for
an equilibrium sphere with uniform density. In the quasi-static
tides regime, ξWD,T is a solution to the homogeneous second-
order differential equation (e.g., Smeyers & Willems 2001):

d2ξWD,T (r)

dr2
+ 2

µ
1

g(r)

dg(r)

dr
+

1

r

¶
dξWD,T (r)

dr

− l(l + 1) − 2

r2
ξWD,T (r) = 0, (3)

where g denotes the local gravity. The solution to Equation (3)
must remain finite at r = 0 and r = RWD, and must satisfy the
following boundary condition at the WD surface:µ

dξWD,T (r)

dr

¶
RWD

+
l − 1

RWD
ξWD,T (RWD) = ²T (2l + 1)cl,0,0.

(4)

Here, ²T = (RWD/a)3(MNS/MWD) indicates the strength
of the tidal force versus gravity at the WD’s equator, l is the
longitudinal mode in the spherical harmonic expansion of the
tide-generating potential, and cl,0,0 are Fourier coefficients of
degree l. Since cl,m,k depend on the WD radius and the semi-
major axis as (RWD/a)l−2, investigations of quasi-static tides in
these sources are often restricted to the dominant l = 2 terms.
Here we only consider l = 2.

Rotation contributes to the periastron precession rate through
the quadrupole distortion of the gravitational field caused by the
centrifugal force (Sterne 1939) and it is given by

γ̇Rot,WD = 2π

P

µ
RWD

a

¶5
MNS + MWD

MWD

(ΩWD/Ω)2

(1 − e2)2
k2, (5)
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Figure 1. Left: evolution of the GW frequency (νGR, solid line) and eccentricity (e, dot-dashed line) of PSR J1141−6545 as a function of time until Roche lobe
overflow. Right: evolution of eccentricity as a function of GW frequency of PSR J1141−6545.

where Ω = 2π/P is the mean motion. In this work, we
assume synchronization at periastron for the spin of the WD
component. This assumption leads to tides being dominant
over rotation in driving periastron precession at any orbital
frequency. The contribution due to rotation further decreases for
a subsynchronous WD component. As the current observational
constraints on rotation rates in single and double WD suggest
that WDs are slow rotators with synchronization at periastron
being an upper limit on the WD rotation rate (see the discussion
in Section 3.2 of Valsecchi et al. 2011 and references therein),
we can safely assume that periastron precession is primarily
tidally induced at frequencies where GR is no longer important.

Finally, the GR contribution to the periastron precession rate
to the leading quadrupole order is given by

γ̇GR =
µ

30π

P

¶5/3 3G

c2

MNS + MWD

a(1 − e2)
, (6)

where G is the gravitational constant and c is the speed of light
(Levi-Civita 1937). The total periastron precession rate is the
sum of the tidal, rotational, and GR contributions.

Aside from causing periastron precession, tides and GR also
induce orbital evolution. As we take tides to be quasi-static, here
we only consider the evolution of orbital elements due to GR
(Willems et al. 2010; but see also Burkart et al. 2013; Fuller &
Lai 2011). The time average of the rate of change of a and e due
to GR is given by (Peters 1964)¿

da

dt

À
= −64

5

G3MNSMWD(MNS + MWD)

c5a3(1 − e2)7/2

×
µ

1 +
73

24
e2 +

37

96
e4

¶
, (7)

¿
de

dt

À
= −304

15
e
G3MNSMNS(MNS + MNS)

c5a4(1 − e2)5/2

µ
1 +

121

304
e2

¶
.

(8)
From Equations (7) and (8) it can be derived that¿

da

de

À
= 12

19

a

e

[1 + (73/24)e2 + (37/96)e4]

(1 − e2)[1 + (121/304)e2]
. (9)

We will now make use of the above formulation to study
periastron precession in eccentric NS–WD binaries. In what
follows, we refer to the radius of the WD as R.

3. THE OBSERVED ECCENTRIC NS–WD BINARIES:
PSR J1141−6545 AND PSR B2303+46

There are currently two known eccentric binary radio pul-
sars with WD companions that are believed to have formed
via the mechanism described in Section 1: PSR J1141−6545
and PSR B2303+46. A summary of the properties relevant
to this analysis is in Table 1. At present, neither system is
a verification binary for either LISA or eLISA/NGO. How-
ever, as these systems spiral-in due to GW emission, their
orbital frequencies increase. Here we examine whether PSR
J1141−6545 or PSR B2303+46 still preserve an eccentricity
when they evolve into the LISA sensitivity band (the sensitivity
planned for LISA is from 10−4 Hz to 0.1 Hz, henceforth “the
LISA band”; that for eLISA/NGO is from 10−4 Hz to 1 Hz).
Moreover, if they do, we investigate the importance of tidally
and rotationally induced periastron precession as they evolve
throughout it.

We first consider PSR J1141−6545. We compute the evo-
lution of its GW frequency (νGR = 2νorb) and eccentricity
as a function of time until the Roche lobe overflow using
Equations (7) and (8). The results shown in Figure 1 demonstrate
that this system still exhibits a small but non-zero eccentricity as
it evolves throughout the LISA band. Next, we simultaneously
evolve the stellar and orbital parameters to analyze the contri-
bution of tides, rotation, and GR to periastron precession as it
evolves throughout the LISA band. To model the WD compo-
nent we use 1.06 M¯ O\Ne\Mg (ONeMg) WD models (Althaus
et al. 2007; these models are described in detail in Section 4.2).
At this stage we use Equations (7) and (8) and calculate k2R

5 as
a function of the WD age for a sequence of WD models using
Equations (2)–(4). We then interpolate between the computed
values.

The results of the time evolution of PSR J1141−6545 are
shown in Figure 2. Here we show the individual contributions
to periastron precession as a function of the GW frequency,
assuming that the WD component is old (7.6 Gyr) at present.
Our results are not significantly affected by the WD evolutionary
stage (see Section 4.2). The trends in Figure 2 demonstrate
that, even though tides do not have a significant contribution to
periastron precession in PSR J1141−6545 at present, they will
be the dominant mechanism after its orbit decays to frequencies
&0.044 Hz in the next 580 Myr.

3
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Table 1
Properties of the Two Observed Eccentric NS–WD Binaries

Name MNS MWD a P Pspin e tcool

(M¯) (M¯) (R¯) (hr) (ms) (Myr)

PSR J1141−6545 1.27a 1.02a 1.89b 4.744c 393.9c,d 0.17a 1.45c,d

PSR B2303+46 1.40c 1.24b 31b 296.2c,d 1066c,d 0.658c 29.7c,d

Notes.
a Bhat et al. (2008).
b Davies et al. (2002).
c Kalogera et al. (2004).
d van Kerkwijk et al. (1999).

Figure 2. Periastron precession rates as a function of GW frequency for
PSR J1141−6545, assuming that the WD component is old at present. The
dashed line indicates the tidal contribution, the dotted line indicates the rotational
contribution, and the dot-dashed line indicates the GR contribution. The solid
line represents the total periastron precession rate. In a binary like PSR
J1141−6545, the WD component will overfill its Roche lobe at νGR = 0.114 Hz.

We then performed a similar analysis on PSR B2303+46. As
the orbital period of this binary is much longer (see Table 1),
we find that its orbital elements do not evolve significantly due
to GR. As a result PSR B2303+46 will not enter the LISA band
within a Hubble time.

Although the two known Galactic NS–WDs with eccentric
orbits are not directly relevant to future GW observations
and are not candidates for measuring periastron precession,
their existence has instigated a number of studies predicting
a significant Galactic population of such systems. In the rest of
the study we focus on analyzing this predicted population.

4. PERIASTRON PRECESSION FOR THE PREDICTED
POPULATION OF ECCENTRIC NS–WD BINARIES

Tutukov & Yungelson (1993) and Nelemans et al. (2001)
predict a population of galactic NS–WD binaries with an
evolutionary history similar to that of PSR J1141−6545 and
PSR B2303+46. Specifically, they predict ∼104–106 systems for
the former and ∼106 systems for the latter. Tutukov & Yungelson
(1993) and Tauris & Sennels (2000) provide detailed estimates
of the expected distribution of orbital periods, eccentricities,
and WD masses for such systems (see Table 2). Many of
these systems will be readily detectable by LISA/eLISA/NGO
and tidal effects could potentially leave an imprint on their
periastron precession rate. Thus, to correctly infer the properties

of these systems from periastron precession measurements, it is
imperative to understand the role played by tides (Willems et al.
2008).

Apart from eccentric NS–WD binaries that form via binary
evolution, Bagchi et al. (2013) recently suggested that NS–WD
binaries with small but non-zero eccentricities could be formed
via three-body interactions in globular clusters. We find that all
such systems that are currently known have extremely small
eccentricities and thus have a negligible tidal contribution to
periastron precession.

Here we adopt the results of population synthesis calculations
by Tauris & Sennels (2000), as they provide the ranges in
orbital periods, eccentricities, and WD masses. We analyze
the predicted population through time evolution due to GR
inspiral and WD cooling with a particular focus on addressing
the following questions: (1) what are the binary properties
of the systems that evolve into the LISA band? (2) How strong is
the tidal contribution to periastron precession in these systems?
(3) For the subset of systems with a significant tidal contribution,
what is the mass overestimate if the sole contribution of GR is
taken into account when extracting the WD mass from periastron
precession rate measurements?

4.1. Outline of the Method

The computation of the periastron precession rates for the
predicted population of eccentric NS–WD binaries proceeds
as follows. First, we scan the parameter space (see Table 2)
in MWD and log10 νorb(Hz) in steps of 0.01M¯ and 0.001,
respectively. For each orbital frequency, we use Figure 4 from
Tauris & Sennels (2000) to derive the eccentricity range to
be considered. For instance, systems born with long orbital
periods of ∼1000 days are predicted to have eccentricities
of ∼1. Similarly, systems born with short orbital periods of
∼0.003 days are predicted to have eccentricities of ∼0. In
Table 3 we list the orbital period intervals considered for
different eccentricities according to Figure 4 in Tauris & Sennels
(2000). Next, we scan on the derived eccentricity range in
steps of 0.01. For each combination of the above parameters,
we compute the periastron precession rate by summing the
contributions of GR, tides, and rotation.

Once the total periastron precession rate has been calculated,
we extract the mass of the WD component assuming that only
GR contributes to the precession, thus computing the error in
the mass inferred for each combination of WD mass, orbital
frequency, and eccentricity.

4.2. Simplifying the Tidal and Rotational Contributions to
Periastron Precession: k2R

5 Versus MWD

Following Valsecchi et al. (2011), we investigate whether
the tidal and rotational contributions to periastron precession

4
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Figure 3. k2 as a function of age for CO (left) and ONeMg (right) WDs.

(A color version of this figure is available in the online journal.)

Table 2
Parameter Space Predicted by Population Synthesis

Reference Type of WD Galactic Population MNS MWD Porb e
(M¯) (M¯)

Tutukov & Yungelson (1993) CO 0.14 × 106–0.30 × 107 1.40 0.90–1.26 0.01–1000 0.2–0.6, 0.8–1.0
Tutukov & Yungelson (1993) ONe 0.99 × 104–0.31 × 106 1.40 1.12–1.40 0.1–1000 0.2–1.0
Tauris & Sennels (2000) Not specified Not specified 1.30 0.6–1.4 0.003–1000 0.0–1.0

Table 3
Bounds on Orbital Period Correlation to Eccentricity

Bound e = 0.2 e = 0.4 e = 0.6 e = 0.8 e = 1.0
(days) (days) (days) (days) (days)

Lower 0.0028 0.0046 0.0062 0.0077 0.0090
Upper 6.1 15.5 26.7 39.3 1000

(Equations (1) and (5), respectively) can be made dependent
solely on the orbital period, eccentricity, and component masses
(similar to the GR contribution in Equation (6)). Specifically,
we check whether there is a one-to-one correlation between the
term k2R

5, entering Equations (1), and (5), and MWD. We use
detailed WD models computed with the LPCODE stellar evo-
lution code (Althaus et al. 2005). LPCODE has been used to
study different problems related to the formation and evolution
of WDs—see Althaus et al. (2013) and Renedo et al. (2010)
for recent applications to the computation of WD cooling se-
quences. The input physics of the code includes the equation
of state of Segretain & Chabrier (2001) for the high-density
regime—which accounts for all the important contributions for
both the liquid and solid phases—complemented with an up-
dated version of the equation of state of Magni & Mazzitelli
(1979) for the low-density regime. Radiative opacities are
those of OPAL (Iglesias & Rogers 1996), including carbon-
and oxygen-rich compositions, complemented with the low-
temperature opacities of Alexander & Ferguson (1994).
Conductive opacities are taken from Cassisi et al. (2007). For
effective temperatures less than 10,000 K, outer boundary con-
ditions for the evolving models are given by detailed non-gray
model atmospheres. Recently, LPCODE has been tested against
other WD evolutionary codes, and uncertainties in the WD cool-
ing ages resulting from different numerical implementations of

stellar evolution equations were found to be below 2% (Salaris
et al. 2013).

For our carbon/oxygen core sequences, those with stel-
lar masses less than 1 M¯, the corresponding WD initial
configurations are obtained from the full evolution of progeni-
tor stars, which we computed in previous studies (Renedo et al.
2010). In those studies, progenitor stars were evolved from the
zero age main sequence through the thermally pulsing and mass-
loss phases on the asymptotic giant branch to the WD cooling
phase. For our more massive WD models, those with M >
1.06 M¯, we have assumed a core composition of oxygen/neon
(see Althaus et al. 2007 for details).

To calculate k2, we use the WD models described above and
Equations (2)–(4). The radius of the WD is taken from the model.
In Figures 3 and 4 we plot k2 and k2R

5 as a function of the WD
age, respectively, for different WD models. Figure 3 shows that,
for each WD model, k2 increases as the WD evolves. This means
that the star becomes less centrally concentrated as it cools.
Figure 4 shows that after 0.5 Gyr of cooling, all WDs reach a
plateau value of k2R

5, which is held nearly constant for the stars’
remaining lifetime. We also note that the values of k2R

5 vary by
less than an order of magnitude over the lifetime of any WD and
the variation becomes less significant with increasing WD mass.
This behavior explains the effect described in Section 3, where
we find that the periastron precession rates for PSR J1141−6545

5
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Figure 4. k2R
5 as a function of age for CO (left) and ONeMg (right) WDs.

(A color version of this figure is available in the online journal.)

Figure 5. k2R
5 as a function of MWD for WDs > 0.5 Gyr old.

are not significantly affected when WDs of different ages are
considered.

In Figure 5 we plot plateau values of k2R
5 as a function of

MWD for the WD models described above, and those described in
Valsecchi et al. (2011) and plotted in Figure 4 therein (seen here
as a series of six detached points between 0.1 M¯ and 0.35 M¯).
We can see that the values of k2R

5 vary smoothly with MWD for
the entire set of WD models. This trend is described well by the
following fitting formula:

k2R
5(10−10R5

¯) = 0.73 M
− 3

2
WD exp(−3.6 MWD)

− 8.0 exp(−4.8 MWD) log(MWD) sin (MWD), (10)

where MWD is in solar units. This relation solves the degeneracy
problem identified by Willems et al. (2008) and mentioned
in Section 1 by eliminating the dependence of Equations (1)
and (5) on the WD central concentration and radius. Therefore
if the orbital period and eccentricity of an NS–WD binary (older
than 0.5 Gyr) are known (from the frequency spectrum of the
GW signal from these sources, for example), one can extract
the mass of the WD component from periastron precession

rate measurements. Because Equation (10) is only satisfied by
binaries older than 0.5 Gyr, we only study the population of
systems that are >0.5 Gyr old in the rest of our analysis.

4.3. Evolving the Parameter Space Forward in Time

Given the behavior of k2R
5 presented in Section 4.2, here we

study the effect of tides on periastron precession for systems
older than 0.5 Gyr. In particular, we consider two evolutionary
stages, 0.5 Gyr and 13.8 Gyr, corresponding to the age at which
the component WD attains its plateau value of k2R

5 (described
by Equation (10)) and equal to a Hubble time, respectively. As
the orbit of these binaries will evolve due to GR, it is important
to determine how the parameter space predicted by population
synthesis calculations and described in the previous sections
changes after each system is evolved for 0.5 and 13.8 Gyr.
Additionally, the sensitivity of LISA will place an upper (a lower)
limit on the orbital frequency (orbital period).

In the top (bottom) panels of Figure 6 we plot the initial and
final eccentricity (ei and ef , respectively), and the initial and
final GW frequency (νGR,i and νGR,f , respectively) for 0.5 Gyr
(13.8 Gyr) old systems. In the left (right) panel of Figure 7,
we show the final GW frequency and eccentricity for 0.5 Gyr
(13.8 Gyr) old systems. From Figure 7, we see that evolved
systems with higher GW frequencies are associated with smaller
eccentricities and vice versa.

From Equations (1), (5), and (6) we can see that the tidal,
rotational, and GR contributions to periastron precession have
different dependences on the components’ masses and proper-
ties. As noted in Section 1, assuming the sole contribution of
GR when extracting the component’s masses from periastron
precession rate measurements could lead to overestimating the
mass. In this study, our method to determine the mass bias if
only GR is accounted for proceeds as follows. First, we com-
pute the periastron precession rate for each binary configuration,
considering the sum of the contributions of GR, rotation, and
tides. Then we extract the mass of the WD component assuming
that GR is the only driver of periastron precession.

In the next section we use the evolved parameter spaces at 0.5
and 13.8 Gyr, shown in Figure 7, to investigate the importance
of tides in driving periastron precession in NS–WD binaries.
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Figure 6. Final vs. initial eccentricity (left) and final vs. initial GW frequency (right) for WDs that are 0.5 Gyr old (top) and 13.8 Gyr old (bottom). The WD mass and
frequency are in M¯ and Hz, respectively. The cut-off seen in the right panels shows that systems with initial GW frequencies higher than ∼2 × 10−4 (∼5 × 10−5) Hz
will evolve outside the LISA band within 0.5 (13.8) Gyr. We note that the GW frequency at which a cold 1.35 M¯ (0.6 M¯) WD would overfill its Roche lobe is
0.48 Hz (0.034 Hz). Since the GW frequency of a system increases with time due to GR, the upper limits on the final GW frequency seen here show that none of the
systems underwent or are undergoing a phase of Roche lobe overflow.

Figure 7. Final GW frequency vs. final eccentricity of systems predicted by population synthesis models that have evolved for 0.5 Gyr (left) and 13.8 Gyr (right). The
color scheme used is the same as in Figure 6.
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Figure 8. Ratio of the periastron precession rate due to tides to the total periastron
precession rate (γ̇Tid/γ̇tot) vs. GW frequency (νGR) for systems that are 0.5 Gyr
old. MWD is in units of M¯.

4.4. The Periastron Precession Rates

In Figure 8 we plot the ratio of the periastron precession
rate due to tides to the total periastron precession rate (γ̇Tid/γ̇tot)
as a function of the GW frequency (νGR) for 0.5 Gyr old systems
in three eccentricity ranges: e < 0.25, 0.25 6 e < 0.5, and
e > 0.5. The total periastron precession rate accounts for GR,
tides, and rotation. Figure 9 shows a similar calculation for
13.8 Gyr old systems. We observe that systems with heavier
WDs (darker points) have lower values of γ̇Tid/γ̇tot than systems
with lighter WDs (lighter points). This is because heavier WDs
have smaller values of k2R

5 than lighter WDs (see Section 4.2),
resulting in a lower tidal contribution to the periastron precession
rate. In Figure 10 we plot the total periastron precession rate
as a function of νGR for 0.5 Gyr systems where γ̇Tid/γ̇tot is
∼10−2 (top-left), 10−4 (top-right), 10−6 (bottom-left), and 10−8

(bottom-right). Figure 11 shows similar results for 13.8 Gyr
systems. As expected, the bottom-right panels in both figures are
populated by heavy WDs (dark points). Similarly, the converse
is seen in the top-left panels, where we can also see lighter WDs
(lighter points). The value of the total periastron precession rate
can be as high as ∼104 deg yr−1 (as seen from the top-left panel
of Figure 10). Additionally, systems with a higher γ̇Tid/γ̇tot also
have a higher γ̇tot.

So far, all our calculations have assumed that the NS com-
ponent has a mass of 1.3 M¯, following population synthesis
models by Tauris & Sennels (2000). However, NSs in eccen-
tric NS–WD binaries are observed with masses from 1.27 M¯
to 1.40 M¯ (see Table 1) and, when interpreting GW measure-
ments, the actual NS mass might be unknown. Here we quantify
how the uncertainty in the NS mass affects the WD mass inferred
from periastron precession measurements in two ways: (1) we
isolate the error introduced by the NS mass uncertainty and
(2) we compute the worst-case error, arising from both neglect-
ing tides and the NS mass uncertainty.

Figures 12 and 13 show the different errors entering the
determination of the WD component mass for 0.5 Gyr and
13.8 Gyr old systems, respectively. In gray we plot the error
arising from neglecting tides and show only systems for which
the relative error is >10%. Then, for each gray data point, we
calculate the total periastron precession rate. Given γ̇tot, we fix
the orbital parameters, vary the NS mass between 1.27 M¯ and

Figure 9. Ratio of the periastron precession rate due to tides to the total periastron
precession rate (γ̇Tid/γ̇tot) vs. GW frequency (νGR) for systems that are 13.8 Gyr
old. MWD is in units of M¯.

1.40 M¯, and extract two values for the WD mass, M
NS1
WD and

M
NS2
WD . The error due to the uncertainty in MNS alone is then

evaluated as µ
ΔM

Mtrue

¶
NSmass

= M
NS1
WD − M

NS2
WD

M
NStrue
WD

, (11)

where M
NStrue
WD is the WD mass computed for each gray data

point in Figures 12 and 13 assuming an NS mass of 1.3 M¯. For
systems that yield two solutions for M

NS(1,2)

WD (see the Appendix),
the maximum value of Equation (11) is used. These uncertainties
are shown in red in Figures 12 and 13.

Finally, we compute the worst-case error arising from both
neglecting tides and the NS mass uncertainty. As before, we
calculate γ̇tot for each gray data point in Figures 12 and 13.
We then set MNS = 1.27 M¯ and 1.40 M¯, and extract two
WD masses, M1.27

WD and M1.40
WD , respectively, assuming the sole

contribution of GR. The worst-case error is then evaluated asµ
ΔM

Mtrue

¶
NSmass,tides

= Max

"¡
M1.27

WD − M
NStrue
WD

¢
M

NStrue
WD

,

¡
M1.40

WD − M
NStrue
WD

¢
M

NStrue
WD

#
. (12)

The error thus computed is shown in blue in Figures 12 and 13.
Comparing Figure 12 (Figure 13) with Figure 8 (Figure 9) we

find that systems that incur an error of >10% due to ignoring
tides have higher orbital frequencies. Since their orbits decay
rapidly through this regime (for example, the orbital decay time,
tGR = |a/ȧ|, for a circular binary with MNS = 1.3 M¯, MWD =
0.6 M¯, and νGR = 0.01 Hz is ∼28,000 yr), they constitute a
small fraction of the predicted population. We note that these
systems should also be easier to detect owing to their relatively
large GW strains.

The small fraction of systems populating Figures 12 and 13
have γ̇Tid/γ̇tot > 0.01 and can incur errors of >10% due to
ignoring tides. However, in systems where 0.01 < γ̇Tid/γ̇tot .
0.03, we find that the NS mass uncertainty dominates the
WD mass uncertainty, whereas, in systems where γ̇Tid/γ̇tot >
0.03, the dominant uncertainty arises due to ignoring tides.
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Figure 10. γ̇ as a function of νGR for γ̇Tid/γ̇tot ∼ 10−2 (top-left), 10−4 (top-right), 10−6 (bottom-left), and 10−8 (bottom-right) in 0.5 Gyr old systems. MWD is in
units of M¯.

Additionally, when γ̇Tid/γ̇tot & 0.1, the error in the WD mass is
>90% and can be as high as ∼8000%, potentially leading to a
misclassification of the source, if tides are neglected. Thus, if
γ̇Tid/γ̇tot & 0.03, Equation (10) can be used to place constraints
on the WD mass estimated from periastron precession rate
measurements.

Finally, we find that the error due to the NS mass uncertainty
is always <40% (.20%) in 0.5 (13.8) Gyr old systems, and
decreases rapidly to <0.1% for systems with γ̇Tid/γ̇tot &
0.1, if tides are properly accounted for. We note that the
errors become flat at small γ̇Tid/γ̇tot values. As explained in
the Appendix, this occurs because the range of NS masses that
yields a solution for the WD mass becomes narrower as the
relative tidal contribution decreases. This implies that periastron
precession rate measurements can also be used to constrain the
NS component mass in systems with γ̇Tid/γ̇tot < 0.1.

5. CONCLUSIONS

GW emission from eccentric binaries encodes information
about the rate at which the periastron of their orbit precesses. The
periastron precession rate depends on the components’ prop-
erties and orbital parameters. Therefore, periastron precession
measurements can be used to constrain some binary properties.
In this work, we focus on such precession in eccentric NS–WD

binaries. These GW sources are of particular interest because
their periastron precession rate can be used to place constraints
on their WD component’s mass if the orbital parameters are
known. Additionally, since pulsar-timing measurements could
yield the components’ masses independent of precession ef-
fects, these systems can be used to verify the validity of our
models. Here we investigate the significance of the three mech-
anisms driving periastron precession: tides, rotation, and GR.
In particular, we focus on the tidal contribution and investigate
the errors introduced in the WD mass estimated from periastron
precession rate measurements, if tides are ignored.

First, we analyze tides in the two eccentric NS–WD binaries
currently known: PSR J1141−6545 and PSR B2303+46. These
are believed to have formed via a common envelope phase
followed by a supernova event that formed the NS. For both
systems, we find that tides are not the dominant driver of
periastron precession at present. However, for the case of
J1141−6545, we find that, as the system evolves due to GR,
tides will take over as the leading mechanism in 580 Myr.

Even though we observe only two NS–WD binaries with
a significant eccentricity, population synthesis studies predict
the existence of a host of such systems in our galaxy, with a
wide range of orbital periods and eccentricities. We analyze
periastron precession in the predicted sources and find that the
tidal contribution is stronger in systems having high orbital

9
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Figure 11. γ̇ as a function of νGR for γ̇Tid/γ̇tot ∼ 10−2 (top-left), 10−4 (top-right), 10−6 (bottom-left), and 10−8 (bottom-right) in 13.8 Gyr old systems. MWD is in
units of M¯.

Figure 12. Relative error in the WD mass estimate as a function of γ̇Tid/γ̇tot for
0.5 Gyr old systems due to neglecting tides (gray), NS mass uncertainty (red),
and both neglecting tides and NS mass uncertainty (blue).

(A color version of this figure is available in the online journal.)

Figure 13. Relative error in the WD mass estimate as a function of γ̇Tid/γ̇tot for
13.8 Gyr old systems due to neglecting tides (gray), NS mass uncertainty (red),
and both neglecting tides and NS mass uncertainty (blue).

(A color version of this figure is available in the online journal.)
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Figure 14. System A: γ̇ as a function of MWD for MNS changed to 1.27 M¯ (left) and 1.40 M¯ (right). The dashed line indicates the tidal contribution, the dotted
line indicates the rotational contribution, and the dot-dashed line indicates the GR contribution. The solid line represents the total periastron precession rate. The solid
red line is the total periastron precession rate we want to match by changing the WD mass. The bottom panels show a blow-up of the regions where the solid red and
black lines are comparable in magnitude.

(A color version of this figure is available in the online journal.)

frequencies, high eccentricities, and low WD masses (i.e.,
larger radii). Furthermore, the tidal contribution grows more
rapidly with increasing orbital frequency than eccentricity. In
the majority of the systems, the relative tidal contribution is
small (<1%) and the error in the WD mass inferred would be
<10% if tides are ignored. In systems where the relative tidal
contribution is between 1% and 3%, the NS mass uncertainty
dominates the errors in the inferred WD mass. In systems
where the relative tidal contribution is between 3% and 10%,
the errors arising due to ignoring tides dominate. However, in
this regime the NS mass uncertainty limits the accuracy with
which the WD mass can be inferred. Regardless, the error
arising solely due to the NS mass uncertainty is always less than
40% (20% for the oldest systems). Finally, in systems where
the relative tidal contribution is >10%, tides play a significant
role and, if neglected, the error in the WD mass inferred from
periastron precession measurements is >90% and could be as
high as ∼8000%. Clearly, in these extreme cases, neglecting
tides would lead to a misclassification of the source. However,
since systems with relative tidal contribution >1% have higher

orbital frequencies, they decay rapidly, thereby constituting only
a small fraction of the predicted population.

Accounting for the tidal (and rotational) contributions to peri-
astron precession introduces the periastron precession constant
k2 and the WD radius R, as k2R

5, which becomes an additional
parameter. We show that k2R

5 is a smooth function of the WD
mass for most of the WD lifetime (starting at 0.5 Gyr of its
cooling age) and derive a relation between k2R

5 and the WD
mass. This relation can be used to simplify the equations gov-
erning the total periastron precession rate, facilitating a more
accurate extraction of the WD mass from periastron precession
measurements.

We conclude that while accounting for tides when interpreting
periastron precession rates to determine the WD component’s
mass in eccentric NS–WD binaries is not necessary in most
cases, tidal precession can be accounted for by using the
relationship between k2R

5 and WD mass presented here, thereby
improving constraints on inferred WD mass in some cases.
Gravitational waves emerging from such sources will provide a
new astrophysical laboratory to test the reliability of our current
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Figure 15. System B: γ̇ as a function of MWD for MNS changed to 1.27 M¯ (left) and 1.40 M¯ (right). The dashed line indicates the tidal contribution, the dotted line
indicates the rotational contribution, and the dot-dashed line indicates the GR contribution. The solid line represents the total periastron precession rate. The solid red
line is the total periastron precession rate we want to match by changing the WD mass.

(A color version of this figure is available in the online journal.)

Table 4
Properties of Systems A and B

System MNS MWD e νorb γ̇tot γ̇Tid/γ̇tot ΔM/Mtrue

(M¯) (M¯) (deg yr−1)

A 1.30 0.60 1.00 × 10−1 1.03638 × 10−3 5.643 × 102 0.018744 0.10435
B 1.30 0.60 1.43 × 10−3 9.88927 × 10−3 2.147 × 105 0.811203 84.4638

understanding of the physics governing these systems, and
perhaps even unravel elements of the engines fueling compact
object physics that remain shrouded by conventional observation
techniques in the electromagnetic spectrum.

We thank Bart Willems for useful discussions, and the
anonymous referee for his/her positive and constructive review.
Vicky Kalogera is grateful for support through a Simons
Foundation Fellowship in Theoretical Physics and for the
hospitality of the Aspen Center for Physics.

APPENDIX

CONSTRAINING THE COMPONENT MASSES FROM
PERIASTRON PRECESSION RATES

Here we explain the procedure proposed in Section 4.4 to
compute the error in the extracted WD mass arising from the
NS mass uncertainty alone. First, for a given system, the total
periastron precession rate is computed using Equations (1), (5),
and (6), assuming an NS mass of 1.3 M¯. Next, we vary the
NS mass between 1.27 M¯ and 1.40 M¯ while keeping the
orbital parameters fixed and, for each NS mass, we search for
values of MWD that yield the same γ̇tot. The computation of
these values is not straightforward and warrants a discussion of
the behavior of γ̇tot as a function of MWD. Since this behavior
changes significantly as γ̇Tid/γ̇tot increases, we focus on the
two systems at the extreme ends of Figure 12, that is, the ones
with the smallest (A) and largest (B) value of γ̇Tid/γ̇tot. Their
properties are outlined in Table 4.

A.1. System A

This system has the smallest value of γ̇Tid/γ̇tot that yields
an error >10% in the WD mass estimated from periastron
precession rate measurements due to ignoring tides. In Figure 14
we plot the individual and total contributions to the periastron
precession rate as a function of MWD on changing the NS mass
in this system to 1.27 M¯ (left) and 1.40 M¯ (right) in black. The
solid red line shows the value of the total periastron precession
rate we want to match (see Table 4). We search for the values
of MWD where the solid black and red curves intersect. We find
that the tidal contribution to periastron precession is stronger
for smaller values of MWD. The reverse is seen for the GR
contribution. Therefore, the total periastron precession rate first
decreases and then increases as a function of MWD. The bottom
panels of Figure 14 show a blow-up of the region where the
two curves are comparable in magnitude for each MNS. We find
that the total periastron precession rate increases on increasing
MNS. This results in two solutions for MWD when MNS is set to
1.27 M¯, and no solutions when set to 1.40 M¯. This behavior
is typical for all systems where γ̇Tid/γ̇tot . 0.1. Therefore, to
find a solution to Equation (11) for a system like System A,
MNS needs to be decreased from 1.40 M¯ until the two curves
intersect. Additionally, this implies that γ̇tot could also be used
to constrain the NS mass in these systems, since only a subset
of the values of MNS yield a solution for MWD for a given value
of γ̇tot.

A.2. System B

In Figure 15, we show results for System B, which are similar
to those described above for System A. Since this system has
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a strong tidal contribution, γ̇tot decreases as a function of MWD
for most of the range in MWD considered. This results in a
single solution for MWD for both values of MNS. As before, we
find that the curve for γ̇tot shifts up as MNS is increased, but
in this case the roots for each NS mass are nearly the same. A
comparison of Figures 14 and 15 shows that as the relative tidal
contribution increases, the curve for γ̇tot spreads out. Thus, even
though a second solution for MWD could theoretically exist for
systems with γ̇Tid/γ̇tot > 0.1, its value would be greater than the
Chandrasekhar limit.
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