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Abstract

We correlated the changes in glucose-induced insulin
secretion with those observed in glucose metabolism and
hexokinase/glucokinase activity in islets from normal
sucrose-fed hamsters. Blood glucose and insulin levels
were measured in normal male hamsters fed with (S5)
or without (C5) 10% sucrose in the drinking water for
5 weeks. Isolated islets (collagenase digestion) from both
groups of animals were used to study insulin secretion,
14CO2 and 3H2O production from -[U-14C]-glucose
and -[5-3H]-glucose respectively, with 3·3 or 16·7 mM
glucose in the medium, and hexokinase/glucokinase
activity (fluorometric assay) in islet homogenates.

Whereas S5 and C5 animals had comparable normal
blood glucose levels, S5 showed higher insulin levels than
C5 hamsters (2·3&0·1 vs 0·6&0·03 ng/ml, P<0·001).
Islets from S5 hamsters released significantly more insulin
than C5 islets in the presence of low and high glucose
(3·3 mM glucose: 0·77&0·04 vs 0·20&0·06 pg/ng
DNA/min, P<0·001; 16·7 mM glucose: 2·77&0·12 vs
0·85&0·06 pg/ng DNA/min, P<0·001) and produced
significantly higher amounts of 14CO2 and 3H2O at both
glucose concentrations (14CO2: 3·3 mM glucose:
0·27&0·01 vs 0·18&0·01, P<0·001; 16·7 mM glucose:
1·44&0·15 vs 0·96&0·08, P<0·02; 3H2O: 3·3 mM
glucose: 0·31&0·02 vs 0·15&0·01, P<0·001; 16·7 mM
glucose: 1·46&0·20 vs 0·76&0·05 pmol glucose/ng

DNA/min, P<0·005). The hexokinase Km and Vmax
values from S5 animals were significantly higher than
those from C5 ones (Km: 100·14&7·01 vs 59·90&
3·95 µM, P<0·001; Vmax: 0·010&0·0005 vs 0·008&
0·0006 pmol glucose/ng DNA/min, P<0·02). Con-
versely, the glucokinase Km value from S5 animals
was significantly lower than in C5 animals (Km:
15·31&2·64 vs 35·01&1·65 mM, P<0·001), whereas
Vmax figures were within a comparable range in both
groups (Vmax: 0·048&0·009 vs 0·094&0·035 pmol
glucose/ng DNA/min, not significant). The glucose
phosphorylation ratio measured at 1 and 100 mM
(hexokinase/glucokinase ratio) was significantly higher in
S5 (0·26&0·02) than in C5 animals (0·11&0·01,
P<0·005), and it was attributable to an increase in the
hexokinase activity in S5 animals.

In conclusion, sucrose administration increased the
hexokinase/glucokinase activity ratio in the islets, which
would condition the increase in glucose metabolism by
â-cells, and in â-cell sensitivity and responsiveness to
glucose. These results support the concept that increased
hexokinase rather than glucokinase activity causes the
â-cell hypersensitivity to glucose, hexokinase being meta-
bolically more active than glucokinase to up-regulate
â-cell function.
Journal of Endocrinology (2001) 171, 551–556

Introduction

Glucose homeostasis depends on the balance between
insulin secretion and the response of the target tissues to
the hormone. This balance is further modulated by differ-
ent hormones and metabolites, physical activity, physio-
logical states and dietary components (Like & Chick 1970,
Stauffacher et al. 1970, Lombardo et al. 1983, Parsons et al.
1992, Luo et al. 1998).

Among those modulators, insulin resistance is a
common denominator of several pathological conditions
(Reaven 1988) that can strongly affect glucose homeostasis

and islet function (DeFronzo 1997). Under its influence,
normal blood glucose levels can only be achieved by
attaining high levels of circulating insulin. To cope with
this increased demand for insulin, islets undergo marked
functional and morphological changes, increasing the re-
lease of insulin in response to glucose and the â-cell mass
(Lombardo et al. 1996, Massa et al. 1997, Pick et al. 1998).

In this regard, we have demonstrated that admin-
istration of sucrose to both normal rats (Lombardo et al.
1996, Pick et al. 1998) and hamsters (Massa et al. 1997, Del
Zotto et al. 1999) induces insulin resistance, which in time
triggers an increase in insulin secretion and in the â-cell
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mass through an increase in the replication rate of â-cells
and islet neogenesis. These changes were accompanied by
a significant increase in the content of islet neogenesis-
associated protein (INGAP) (Del Zotto et al. 2000), a
cellular compound originally described by Vinik et al.
(1996, 1997). However, we do not know the possible
mechanism by which all these changes occurred.

Glucose-induced insulin release results from an increase
in the rate of glucose metabolism in pancreatic â-cells
(Ashcroft et al. 1970). Since the kinetics of glucose
transport in the islets rapidly equilibrates its concentration
across the cell membrane (Thorens et al. 1990), glucose
phosphorylation becomes the rate-limiting step in the
control of glucose metabolism. Further phosphorylation of
glucose in the islets depends on the activity of two
different kinases: hexokinase and glucokinase (Lenzen
1992, Lenzen & Panten 1988, Matschinsky 1990) of
low and high Michaelis constant (Km) for glucose
respectively.

Because of this knowledge and in an attempt to further
characterize the mechanism by which sucrose admin-
istration modifies the secretory function of the islets,
we have currently studied insulin secretion elicited by
glucose, glucose metabolism (14CO2 production from
U-14C-glucose and 3H2O production from 3H-glucose),
and the hexokinase/glucokinase activity in islets
isolated from normal hamsters fed with or without
sucrose.

Materials and Methods

Chemicals and drugs

Collagenase was obtained from Serva Feinbiochemica,
Heidelberg, Germany; -[U-14C]-glucose and -[5-3H]-
glucose (10 µCi/ml (300 µCi/mM)) were from New
England Nuclear, Boston, MA, USA; bovine serum albu-
min (fraction V; BSA) and other reagents of the purest
grade available were from Sigma Chemical Co., St Louis,
MO, USA.

Experimental groups

Male Syrian hamsters of 23 days of age (30&2 g), main-
tained in a temperature-controlled room (23 )C) with a
fixed 12 h light:12 h darkness cycle (lights on 0600–
1800 h), were randomly divided into two groups of 20
animals each. The treated group had free access to a
standard commercial diet plus 10% (w/v) sucrose in the
drinking water for 5 weeks (S5), whereas the control
group received the same diet and tap water for the same
period (C5). Water intake was measured daily in both
groups, while individual body weight was recorded once a
week throughout the experimental period. The exper-
iments were carried out in tissues from different animals
from both control and treated groups.

Blood measurements and pancreas removal

At the time of death, blood samples were obtained from
each animal (retro-orbital plexus) for determination of
glucose (glucose-oxidase GOD-PAP method; Roche
Diagnostics, Mannheim, Germany) and radioimmuno-
active insulin levels by radioimmunoassay (RIA) (Herbert
et al. 1965). The whole pancreas was also removed from
each animal to isolate islets by collagenase digestion (Lacy
& Kostianovsky 1967). The islets obtained from each
isolation were used to study insulin secretion, glucose
metabolism and enzymatic activity in different assays.

Insulin secretion in vitro

Groups of five isolated islets were incubated for 60 min at
37 )C in 0·6 ml Krebs-Ringer bicarbonate buffer (KRB),
pH 7·4, previously gassed with a mixture of CO2/O2
(5%/95%) and containing 1% (w/v) BSA and different
concentrations of glucose (3·3 and 16·7 mM) (Gagliardino
et al. 1974). At the end of the incubation period, aliquots
were taken from the medium to measure insulin by RIA
(Herbert et al. 1965), using an antibody against rat insulin
standard (Linco Research Inc., St Charles, MO, USA),
and highly purified porcine insulin labelled with 125I
(Linde et al. 1980). Using this procedure, parallel tracer-
displacement curves were obtained using either the rat
insulin standard, or partially purified insulin extracted from
a pool of hamster pancreata (Massa et al. 1997).

Glucose oxidation and utilization

Groups of 20 islets were incubated in a glass vial containing
40 µl KRB buffer supplemented with 10 mM Hepes (pH
7·4) containing -[U-14C]-glucose and -[5-3H]-glucose
(10 µCi/ml (300 µCi/mM)) in the presence of 3·3 or
16·7 mM glucose. This vial was placed inside an airtight-
sealed 20 ml glass scintillation vial (500 µl distilled water in
the bottom) which contained another empty glass vial;
after 2 h at 37 )C the reaction was stopped by adding 20 µl
metabolic poison (400 mM citric acid, 10 mM rotenone,
10 mM antimycine and 3 mg KCN, pH 4·9 injected
through the rubber seal) to the incubation vial; at the same
time 250 µl hyamine was added to the empty tube. After
incubation for 60 min at 37 )C, the 14CO2 fixed to
hyamine was measured in vials containing 5 ml scintilla-
tion liquid. The islets were then incubated overnight at
room temperature and glucose utilization was measured as
3H2O production captured by water in 5 ml scintillation
liquid. The reaction tube was frozen at –20 )C (Malaisse
& Sener 1988).

Hexokinase/glucokinase assay

Groups of 20 isolated islets were homogenized (1 islet/µl)
in Hepes–NaOH buffer (50 mM, pH 7·5) containing
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6 mM MgCl2, 60 mM KCl, 10 mM KH2PO4, 1 mM
EDTA, 1 mM -cysteine and 0·02% BSA. Twenty
microlitres of islet homogenate were dropped into another
20 µl of the reaction mixture (Hepes–NaOH, 10 mM
ATP, 20 µCi/ml (300 µCi/mM) -[U-14C]-glucose and
1–100 mM unlabelled -glucose) and incubated for
60 min at 37 )C. The reaction was stopped by the addition
of 1 ml iced water and the diluted reaction medium was
then passed through a column of AG 1-X8 (0·5 ml;
Bio-Rad Laboratories, Hercules, CA, USA) to separate
-[U-14C]-glucose-6-phosphate from -[U-14C]-glucose
by ion exchange chromatography (Giroix et al. 1984). The
column was later rinsed with 5#1 ml water, and the
hexose phosphate was eluted with 3·0 ml 1 M ammonium
formate/0·1 M formic acid. The eluate was mixed with
10 ml scintillation fluid (Ultima Gold XR; Packard,
Meriden, CT, USA) and its radioactive content was
determined. Blank values were obtained under identical
conditions but in the absence of islet homogenate. Only
0·5% of the initial radioactivity was found in such control
samples. Using this procedure, the enzymic activity
measured in the presence of low (up to 1 µM) and high
glucose concentrations corresponded to hexokinase and
glucokinase respectively.

DNA content

Several 10 µl aliquots of islet homogenates from C5 and
S5 hamsters were collected in tubes and stored at "70 )C
for subsequent measurements of DNA content by the
fluorometric assay described by Labarca & Paigen (1980).

Statistical analysis

The experimental data were analyzed using Student’s
t-test. Data are expressed as the means&... Differences
were considered significant when P<0·05.

Results

Body weight and water intake

Similar body weights were recorded in S5 (n=20) and C5
(n=20) animals (66·1&8·6 vs 68·3&7·2 g) at the end of
the experiment. Animals from the S5 group drank a
significantly larger volume of water than those from the
C5 group (30·4&3·7 vs 22·1&1·3 ml/day, P<0·001).

Blood glucose and serum insulin levels

There were no significant differences in the glucose levels
measured at the time of death in both groups of animals
(S5 (n=20): 5·7&0·3 vs C5 (n=20): 5·9&0·22 mM).
Conversely, S5 hamsters showed higher insulin levels
than C5 hamsters (2·3&0·1 vs 0·6&0·03 ng/ml (n=20
animals in each group), P<0·001).

Since blood glucose levels were comparable in S5 and
C5 animals, the uneven serum insulin values increased the
insulin–glucose molar ratio in the S5 group, as compared
with the corresponding control values (2·24#10"6 vs
5·6#10"7 respectively).

Insulin secretion

Islets incubated with high glucose released significantly
more insulin than those incubated with low glucose in
both groups. On the other hand, islets isolated from
S5 hamsters released significantly larger amounts of insulin
than those from C5 animals in response to either a low or
high glucose concentration (3·3 mM glucose: 0·77&
0·04 vs 0·20&0·06 pg insulin/ng DNA/min, P<0·001;
16·7 mM glucose: 2·77&0·12 vs 0·85&0·06 pg insulin/
ng DNA/min, P<0·001) (in all cases n=9) (Fig. 1).

Glucose metabolism

The production of 14CO2 from -[U-14C]-glucose and
3H2O from -[5-3H]-glucose by the isolated islets in-
creased significantly when the glucose concentration in
the incubation medium was raised from 3·3 to 16·7 mM in
both experimental groups. Both 14CO2 and 3H2O pro-
duction was significantly higher in islets isolated from S5
than from C5 animals in the presence of either low or high
glucose in the medium (14CO2: 3·3 mM glucose:
0·27&0·01 (n=11) vs 0·18&0·01 (n=12), P<0·001;
16·7 mM glucose: 1·44&0·15 (n=18) vs 0·96&0·08
(n=18) pmol glucose/ng DNA/min, P<0·02; 3H2O:
3·3 mM glucose: 0·31&0·02 (n=18) vs 0·15&0·01
(n=18), P<0·001; 16·7 mM glucose: 1·46&0·20 (n=18)
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Figure 1 Insulin secretion (pg insulin/ng DNA/min) is represented
in each group as the mean value&S.E.M.; the number of cases is
shown above each bar, and was obtained in three different
experiments performed with islets isolated from six hamsters from
each experimental group. P<0·001: a vs b and c vs d.

Glucose metabolism in pancreatic islets · M L MASSA and others 553

www.endocrinology.org Journal of Endocrinology (2001) 171, 551–556

Downloaded from Bioscientifica.com at 10/04/2019 12:51:54AM
via free access



vs 0·76&0·05 (n=17) pmol glucose/ng DNA/min,
P<0·005) (Fig. 2A and B respectively).

Hexokinase and glucokinase activity

At increasing concentrations of glucose (up to 1 mM), the
rate of glucose phosphorylation by islet homogenates was
compatible with the participation of a hexokinase-like
enzyme, with a Km for glucose close to 59 µM. On the
other hand, when increasing the concentration of glucose
up to 100 mM, the rate was compatible with the partici-
pation of a glucokinase-like enzyme, with a Km close
to 35 mM. The Km of hexokinase measured in S5 vs C5
islets (100·14&7·01 vs 59·90&3·95 µM, P<0·001) as
well as its maximal velocity (Vmax ) (0·010&0·0005 vs
0·008&0·0006 pmol glucose/ng DNA/min, P<0·02,
25% increase) were significantly higher in S5 islets

(Fig. 3A). Conversely, glucokinase Km from S5 was
significantly lower than that from C5 islet homogenates
(15·31&2·64 vs 35·01&1·65 mM, P<0·001), whereas
no significant differences in Vmax were found between
both groups (0·048&0·009 vs 0·094&0·035 pmol
glucose/ng DNA/min, not significant) (Fig. 3B).

On the other hand, the glucose phosphorylation ratio
measured at 1 and 100 mM glucose was significantly
higher in S5 than in C5 hamsters (0·26&0·02 vs
0·11&0·01, P<0·005), suggesting a higher hexokinase/
glucokinase activity ratio in S5 animals. Such a difference
could be attributed to an increased hexokinase activity in
S5 animals.

DNA content

The DNA content of islets isolated from C5 and
S5 hamsters was 57&2·85 and 41·5&2·02 ng DNA/islet
respectively (P<0·005). Thus, islets from C5 animals
would have a larger number of cells than those from
S5 hamsters.
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Figure 2 (A) Glucose oxidation and (B) glucose utilization
measured as 14CO2 from D-[U-14C]-glucose and 3H2O from
D-[5-3H]-glucose respectively. Each group represents the mean
value&S.E.M. expressed as pmol glucose/ng DNA/min. The
number of cases is shown above each bar, and was obtained in
three different experiments performed with islets isolated from six
hamsters from each experimental group. P<0·001 in A and B: a vs
b and c vs d.
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Figure 3 Glucose phosphorylation kinetics of islet homogenates.
Each value represents the mean of 12 replicates performed in four
different experiments with islets isolated from eight hamsters from
each experimental group. The plot (vi=Km#vi/Eadie–Hofstee
S+Vmax) (where vi is initial velocity and S is substrate
concentration) was used to estimate the Km and Vmax values for
hexokinase and glucokinase. In both experimental groups (A)
hexokinase activity was measured at 0·05, 0·01, 0·25 0·5 and
1 mM glucose, while (B) glucokinase activity was tested at 5, 10,
50 and 100 mM glucose. The comparison of vi/S values
(means&S.E.M.) for hexokinase and glucokinase measured at each
glucose concentration within each experimental group showed
significant differences (P<0·001), except in the case of 50 vs
100 mM glucose in the control group (C5).
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Discussion

Our results show that islet â-cells from sucrose-treated
animals released more insulin than those from control
animals, in the presence of low or high glucose. This effect
was observed either in vitro or in vivo (normoglycaemia
with hyperinsulinaemia), and is in agreement with that
previously reported by our group using the same exper-
imental model (Massa et al. 1997, Del Zotto et al. 1999).
These functional changes were accompanied by a signifi-
cant increase (100%) in the â-cell mass due to an increased
â-cell replication rate and islet neogenesis without changes
in the percentage of á- and â-cells (Massa et al. 1997, Del
Zotto et al. 1999, 2000). The latter process resulted in an
increment of small-sized islets, which is reflected in the
current experiments in the lower DNA content measured
in S5 islets. Sucrose-induced insulin resistance might be
the underlying mechanism that triggered these functional
and morphological â-cell changes (Massa et al. 1997, Del
Zotto et al. 1999, 2000).

Glucose stimulates insulin secretion in a dose–response
sigmoidal fashion (Ashcroft et al. 1970), and the shape of
this curve follows the same pattern as that of glucose
phosphorylation in the islets (Ashcroft et al. 1970,
Matschinsky 1990).

Glucose phosphorylation is the rate-limiting step for
glucose metabolism and for triggering the release of insulin
(Lenzen & Panten 1988, Matschinsky 1990, Lenzen
1992). It is accomplished by two different enzymes, with
high and low affinity for glucose (hexokinase and gluco-
kinase respectively) (Lenzen & Panten 1988). The pres-
ence of these two kinases in â-cells enables the islets to
effectively phosphorylate glucose in the presence of a wide
range of glucose concentrations, adjusting appropriately
the release of insulin to the actual glucose level.

Changes in the release of insulin are accompanied by
simultaneous changes in glucose metabolism (and islet
phosphorylating activity), as it occurs in different physio-
logical conditions, such as pregnancy (Brelje & Sorenson
1988, Cockburn et al. 1997), and in several experimental
conditions characterized by â-cell overload and hypergly-
caemia (Loubatieres 1964, Lee et al. 1989, Epstein et al.
1992, Becker et al. 1996, Leahy 1996). In such circum-
stances, â-cells undergo a simultaneous increase in glucose
sensitivity and responsiveness, in glucose metabolism and
in the hexokinase/glucokinase ratio. The islets from our
sucrose-treated hamsters showed all these features,
namely, a higher release of insulin in response to glucose,
together with an increased glucose metabolism and
hexokinase/glucokinase ratio, but in the presence of
normal blood glucose levels. Therefore, the overload
of â-cells per se rather than hyperglycaemia would trigger
the changes in â-cell function.

The hexokinase/glucokinase ratio in S5 animals in-
creased 279 times compared with controls; the magnitude
of this increment was similar to that reported by

Hosokawa et al. (1995) in islets from 90% pancreatect-
omized rats. The 25% increase in islet hexokinase Vmax
measured in our S5 animals – comparable with that stated
by Hosokawa et al. (1995) – without concomitant changes
in glucokinase activity, can account for the increased
hexokinase/glucokinase ratio, and in time for the in-
creased glucose metabolism and â-cell hypersensitivity
and hyper-responsiveness to glucose. The fact that hex-
okinase overexpression in â-cells (Epstein et al. 1992,
Becker et al. 1996) induces similar changes in their
secretory function lends support to the latter assumption.

Together, these results reinforce the concept that (a)
under conditions of â-cell overload, hexokinase partially
takes control over the glucose set-point for insulin secre-
tion, causing the â-cell hypersensitivity to glucose
(Lenzen & Panten 1988, Epstein et al. 1992, Lenzen 1992,
Newgard 1992, Hosokawa et al. 1995, Leahy 1996), and
(b) hexokinase is metabolically more active than gluco-
kinase to up-regulate the â-cell function. Consequently, it
could be assumed that sucrose induces an increase in the
hexokinase/glucokinase activity ratio in the islets, which is
responsible for the increase in â-cell glucose metabolism,
and in the â-cell sensitivity and responsiveness to glucose.
These changes make the islets capable of overcoming the
increased demand of insulin – elicited by sucrose feeding
– keeping blood glucose levels within a normal range
at the expense of an increased release of insulin (hyper-
insulinaemia), characteristic of the insulin-resistant state
(Reaven 1988).

In our model, the morphological and functional changes
depicted in the islets were accompanied by a significant
increment in the mass of INGAP-positive cells (Del Zotto
et al. 2000). It remains to be demonstrated whether this
compound might also play a role in the control of the
metabolic changes currently described.
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